
Specification Patterns for Time-Related Properties

Volker Gruhn, Ralf Laue
University of Leipzig, Germany, Chair of Applied Telematics / e-Business∗

{gruhn,laue}@ebus.informatik.uni-leipzig.de

Abstract

We present a pattern system for property specification. It
extends the existing patterns identified in [4] which allow to
reason about occurrence and order of events, but not about
time conditions. Introducing time-related patterns allows
the specification of real-time requirements.

The paper is limited to 3 pages. Therefore it contains
only basic ideas. The details can be found in [9].

Keywords: patterns, formal specification, timed model
checking, verification

1 Introduction

Often the persons who have to specify time-related re-
quirements (for example business analysts who have to
specify deadlines and other time-related conditions in busi-
ness process models) are not familiar with existing for-
malisms and regard it as too difficult to use timed temporal
logics. On the other hand, model checking tools that can
be used to verify the correctness of a system often require
specifications given as temporal logics formulas.

Property specification patterns were successfully used to
bridge this gap between practitioners and model checking
tools. However, the existing pattern system does not yet
consider information about time. We present a catalog of
patterns for time-related requirements.

2 Untimed Specification Patterns

Dwyer and his colleagues collected 555 specifications
and found that 92% of them matched one of the patterns
from their pattern system for property specification[4]. This
pattern system enables people who are not experts in tempo-
ral logic to read and write formal specifications in a variety
of formalisms. With the help of this system, properties like
”Event A must be followed by event B” can be expressed.

∗The Chair of Applied Telematics / e-Business is endowed by Deutsche
Telekom AG

The pattern system does, however, not include timed prop-
erties like ”Event A must be followed by event B within k
time units”. The pattern system is explained more deeply in
[4] and on patterns.projects.cis.ksu.edu.

A property specification consists of a pattern (which de-
scribes what must occur) and a scope, which describes when
the pattern must hold.

The patterns are as follows (In an event-based formal-
ism, capital letters stand for events):
Absence: P never occurs.
Universality: P occurs throughout a scope.
Existence: P must occur sometime.
Bounded Existence: P must occur at least / exactly or at
most k times.
Precedence: P must always be preceded by Q.
Response: P must always be followed by Q.
Chain Precedence / Chain Response: A sequence
P1, . . . Pn must always be preceded / followed by a
sequence Q1, . . . , Qm.

Scopes define, when the above patterns must hold:
global: The pattern must hold during the complete system
execution.
before: The pattern must hold up to an event X.
after: The pattern must hold after the occurrence of an
event X.
between: The pattern must hold from the occurrence of X
to the occurrence of Y.
until: The same as ”between”, but the pattern must hold
even if Y never occurs.

2.1 Adding Time Information

We express properties using an event-based formalism.
This allows us to write something like ”the point of time,
when event P occurs”, abbreviated by t(P). We use terms
like t(P ) ± k for ”k time units after/before the occurrence
of P”.

We have added information about time to the following
elements of the specification patterns:

1. The events (see section 5): Instead of just specify-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226137591?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ing that ”X occurs”, we consider events like ”X occurs
twice in n time units”.

2. The properties (see section 4): We want to be able
to specify properties like time-bounded Response (”P
must always be followed by Q within k time units”).

3. The scopes (see section 6): We want to delimit the
period of validity for a pattern by scopes like ”after
t(P)+k”.

3 Timed Observer Automata

We use the concept of timed observer automata
(observers)[2] to describe the desired system behavior. In-
tuitively, observer automata run in parallel with the model
under verification. They reach a certain state if and only
if some property can be violated in the model. Synchro-
nization labels are used for synchronizing the model under
verification with observer automata: If ”something interest-
ing” occurs in the model, the observer automata can react
immediately.

The majority of our patterns deal with safety properties.
In order to prove that such a property is true, it is sufficient
to check that the observer cannot reach some location(s),
which we call error locations.

For liveness properties (like ”every occurrence of P is
followed by an occurrence of Q”), reasoning about infinite
runs is necessary. As usual, we use acceptance conditions
for this purpose: Some locations in the observer TA are
marked as accepting locations. A counterexample is de-
tected, if there is a non-Zeno run entering an accepting lo-
cation infinitely often.

4 The Patterns

In [9], we have published the time-related patterns with
their observers. The timed patterns include:

• time-bounded existence (something must occur within
k time units)

• time-bounded response (P must be followed by Q, and
t(Q) �� t(P )+k or t(Q) �� t(T )±k(where T is some
external event and ��∈ {≤,≥}). For t(Q) ≥ t(P )+k,
we distinguish two subcases: Either events Q that oc-
cur ”too early” (i.e. before t(P)+k) are ignored or such
events are regarded as a violation of the specification.

• precedence pattern ”Q enables P after a delay”

• precedence pattern ”Q enables P for k time units”

5 (Combined) Events

Using synchronization labels, a TA can ”observe” the oc-
currence of an event in another TA and react in some way if
the event occurs and synchronization can take place. How-
ever, often we want to react to ”observations” which are
related to more than one event or to the time when it occurs.
To handle such ”combined events” like ”P occurs n times”
or ”both P and Q occur within a time span of no more than k
time units” , we construct a reporting TA which can take cer-
tain transitions if and only if the combined event happens.
These transitions can be labeled with a new synchroniza-
tion label M!. In this way the reporting TA can signalize
the combined event in the same way as ”simple” events are
signalized.

[9] lists reporting TA for these combined events:
chains (sequences) of events
time-bounded chains (sequences) of events
an event occurs n times
an event occurs n times within k time units
collections of events (for example events A, B and C occur,
regardless of the order between these events)
time-bounded collections of events
non-occurrence of some event in a given time span

6 Scopes

Let A be the observer TA for some property. It can ob-
serve whether the property holds globally, i.e. during the
entire execution of the model. A can be modified in order
to check the property over a given scope. With the modified
TA A’, we can check the validity of a property before, after
and until t(D), and we can also deal with scopes before, af-
ter and until t(D)± k, where k is an integer. This allows us
to write specifications like ”Something must happen within
at least 10 time units after the system has been started”.

7 Implementation

The general procedure for implementing observers to
check a property in a model-checking tool is as follows: The
reporting TA and the observers must be scheduled together
with the model under verification in a round-robin manner
such that each step of the model is followed by a step of
each reporting TA and a step of each observer without let-
ting time pass. Hereby, it is necessary to pay attention to
the hierarchy of synchronization labels: The TA whose run
depends on events reported by other TA must be scheduled
after the TA that can report something to them. Usually, this
means that after each step of the model under verification,
each reporting TA has the chance to evolve and finally the
observers are scheduled.



8 Related Work

The original pattern catalog was introduced in [4], a sur-
vey of property specifications was published in [5]. [6]
specifies time conditions using sentences in structured En-
glish, which is a pattern-like system. Later, the authors
found that this approach was not suitable for their research
project, so they started to use RT-OCL as an alternative
approach[7].

The use of TA for specifying temporal properties is quite
common[11][3]. [3] states that ”automata based notations
turned out to be simpler than most logics for describing se-
quences of events”.

[8], [7], [10] and others1 use timed UML models to
specify a system and its properties. UML sequence dia-
grams, OCL constraints or UML state machines (acting as
observers) serve as property specification language.

In the papers mentioned so far, the observer TA have to
be constructed by hand, even if the translation of the model
itself into the input language of a model checker can be done
automatically. [1] introduces a visual language to specify
real-time requirements and a tool that translates these re-
quirements into the input language of the model checker
Kronos. The user has still to learn a new notation, but the
visual language is much easier to understand than other for-
malisms. However, we see a major drawback in the way
how properties have to be specified: The user has to graphi-
cally describe the scenarios which violate the requirements.

9 Conclusions and Directions for Future Re-
search

We believe that the proposed pattern system helps to
specify time-related properties for model checking. Be-
cause the system is most useful if the observers are gener-
ated automatically in the input language of existing model
checking tools, we will develop tool-support for this task.

We believe that the vast majority of real-world specifi-
cations are instances of patterns in our system. We should,
however, evaluate the completeness of our pattern system
by surveying an appropriate number of real-world specifi-
cations. If necessary, the pattern system will be updated as
a consequence of this study.

References

[1] A. Alfonso, V. A. Braberman, N. Kicillof, and A. Olivero.
Visual timed event scenarios. In 26th International Confer-
ence on Software Engineering (ICSE 2004), pages 168–177.
IEEE Computer Society, 2004.

1[8] mentions a number of other papers in the bibliography.

[2] R. Alur and D. L. Dill. Automata for modeling real-time
systems. In Proceedings of the 17th International Collo-
quium on Automata, Languages and Programming, pages
322–335. Springer-Verlag, 1990.

[3] V. A. Braberman and M. Felder. Verification of real-time
designs: Combining scheduling theory with automatic for-
mal verification. In ESEC / SIGSOFT FSE, pages 494–510,
1999.

[4] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property
specification patterns for finite-state verification. In FMSP
’98: Proceedings of the second workshop on Formal meth-
ods in software practice, pages 7–15. ACM Press, 1998.

[5] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in
property specifications for finite-state verification. In Proc.
of the 21st international conference on Software engineer-
ing, pages 411–420. IEEE Computer Society Press, 1999.

[6] S. Flake, W. Müller, and J. Ruf. Structured english for
model checking specification. In GI-Workshop Methoden
und Beschreibungssprachen zur Modellierung und Verifika-
tion von Schaltungen und Systemen in Frankfurt, Berlin,
2000. VDE Verlag.

[7] S. Flake, U. Pape, J. Ruf, and W. Müller. Specification and
formal verification of temporal properties of production au-
tomation systems. In Integration of Software Specification
Techniques for Applications in Engineering, volume 3147
of LNCS. Springer Verlag, 2004.

[8] S. Graf, I. Ober, and I. Ober. Model checking of UML
models via a mapping to communicating extended timed au-
tomata. In S. Graf and L. Mounier, editors, Proceedings
of SPIN’04 Workshop, Barcelona, Spain, volume 2989 of
LNCS. Springer, April 2004.

[9] V. Gruhn and R. Laue. Patterns for timed property speci-
fication. In 3rd Int. Workshop on Quantitative Aspects of
Programming Languages (QAPL 05), Edinburgh, Scotland,
April 2005, to appear, 2005.

[10] A. Knapp, S. Merz, and C. Rauh. Model checking - timed
UML state machines and collaborations. In Proceedings
of the 7th International Symposium on Formal Techniques
in Real-Time and Fault-Tolerant Systems, pages 395–416.
Springer-Verlag, 2002.

[11] I. Ober and A. Kerbrat. Verification of quantitative temporal
properties of SDL specifications. In SDL ’01: Proceedings
of the 10th International SDL Forum Copenhagen on Meet-
ing UML, pages 182–202. Springer-Verlag, 2001.


