2 research outputs found

    A decentralized low-chattering sliding mode formation flight controller for a swarm of UAVs

    Get PDF
    In this paper, a nonlinear robust formation flight controller for a swarm of unmanned aerial vehicles (UAVs) is presented. It is based on the virtual leader approach and is capable of achieving and maintaining a formation with time-varying shape. By using a decentralized architecture, the local controller in each UAV uses information only from the UAV itself, its neighbors, and from the virtual leader. Also, a synchronization control objective provides a mechanism to weight between the fleet achieving the desired formation shape, that is, achieving the desired relative position between the UAVs, and each UAV achieving its desired absolute position. The use of a combination of a sliding mode controller and a low pass filter reduces the usual chattering effect, providing a smooth control signal while maintaining robustness. Simulation results show the effectiveness of the proposed decentralized controller

    Optimization and Communication in UAV Networks

    Get PDF
    UAVs are becoming a reality and attract increasing attention. They can be remotely controlled or completely autonomous and be used alone or as a fleet and in a large set of applications. They are constrained by hardware since they cannot be too heavy and rely on batteries. Their use still raises a large set of exciting new challenges in terms of trajectory optimization and positioning when they are used alone or in cooperation, and communication when they evolve in swarm, to name but a few examples. This book presents some new original contributions regarding UAV or UAV swarm optimization and communication aspects
    corecore