1,801,199 research outputs found

    Utilization of Historic Information in an Optimisation Task

    Get PDF
    One of the basic components of a discrete model of motor behavior and decision making, which describes tracking and supervisory control in unitary terms, is assumed to be a filtering mechanism which is tied to the representational principles of human memory for time-series information. In a series of experiments subjects used the time-series information with certain significant limitations: there is a range-effect; asymmetric distributions seem to be recognized, but it does not seem to be possible to optimize performance based on skewed distributions. Thus there is a transformation of the displayed data between the perceptual system and representation in memory involving a loss of information. This rules out a number of representational principles for time-series information in memory and fits very well into the framework of a comprehensive discrete model for control of complex systems, modelling continuous control (tracking), discrete responses, supervisory behavior and learning

    Predictability, complexity and learning

    Full text link
    We define {\em predictive information} Ipred(T)I_{\rm pred} (T) as the mutual information between the past and the future of a time series. Three qualitatively different behaviors are found in the limit of large observation times TT: Ipred(T)I_{\rm pred} (T) can remain finite, grow logarithmically, or grow as a fractional power law. If the time series allows us to learn a model with a finite number of parameters, then Ipred(T)I_{\rm pred} (T) grows logarithmically with a coefficient that counts the dimensionality of the model space. In contrast, power--law growth is associated, for example, with the learning of infinite parameter (or nonparametric) models such as continuous functions with smoothness constraints. There are connections between the predictive information and measures of complexity that have been defined both in learning theory and in the analysis of physical systems through statistical mechanics and dynamical systems theory. Further, in the same way that entropy provides the unique measure of available information consistent with some simple and plausible conditions, we argue that the divergent part of Ipred(T)I_{\rm pred} (T) provides the unique measure for the complexity of dynamics underlying a time series. Finally, we discuss how these ideas may be useful in different problems in physics, statistics, and biology.Comment: 53 pages, 3 figures, 98 references, LaTeX2

    Simultaneous Learning of Nonlinear Manifold and Dynamical Models for High-dimensional Time Series

    Full text link
    The goal of this work is to learn a parsimonious and informative representation for high-dimensional time series. Conceptually, this comprises two distinct yet tightly coupled tasks: learning a low-dimensional manifold and modeling the dynamical process. These two tasks have a complementary relationship as the temporal constraints provide valuable neighborhood information for dimensionality reduction and conversely, the low-dimensional space allows dynamics to be learnt efficiently. Solving these two tasks simultaneously allows important information to be exchanged mutually. If nonlinear models are required to capture the rich complexity of time series, then the learning problem becomes harder as the nonlinearities in both tasks are coupled. The proposed solution approximates the nonlinear manifold and dynamics using piecewise linear models. The interactions among the linear models are captured in a graphical model. By exploiting the model structure, efficient inference and learning algorithms are obtained without oversimplifying the model of the underlying dynamical process. Evaluation of the proposed framework with competing approaches is conducted in three sets of experiments: dimensionality reduction and reconstruction using synthetic time series, video synthesis using a dynamic texture database, and human motion synthesis, classification and tracking on a benchmark data set. In all experiments, the proposed approach provides superior performance.National Science Foundation (IIS 0308213, IIS 0329009, CNS 0202067

    Wind energy forecasting with neural networks: a literature review

    Get PDF
    Renewable energy is intermittent by nature and to integrate this energy into the Grid while assuring safety and stability the accurate forecasting of there newable energy generation is critical. Wind Energy prediction is based on the ability to forecast wind. There are many methods for wind forecasting based on the statistical properties of the wind time series and in the integration of meteorological information, these methods are being used commercially around the world. But one family of new methods for wind power fore castingis surging based on Machine Learning Deep Learning techniques. This paper analyses the characteristics of the Wind Speed time series data and performs a literature review of recently published works of wind power forecasting using Machine Learning approaches (neural and deep learning networks), which have been published in the last few years.Peer ReviewedPostprint (published version

    Methods and Approaches for Characterizing Learning Related Changes Observed in functional MRI Data — A Review

    Get PDF
    Brain imaging data have so far revealed a wealth of information about neuronal circuits involved in higher mental functions like memory, attention, emotion, language etc. Our efforts are toward understanding the learning related effects in brain activity during the acquisition of visuo-motor sequential skills. The aim of this paper is to survey various methods and approaches of analysis that allow the characterization of learning related changes in fMRI data. Traditional imaging analysis using the Statistical Parametric Map (SPM) approach averages out temporal changes and presents overall differences between different stages of learning. We outline other potential approaches for revealing learning effects such as statistical time series analysis, modelling of haemodynamic response function and independent component analysis. We present example case studies from our visuo-motor sequence learning experiments to describe application of SPM and statistical time series analyses. Our review highlights that the problem of characterizing learning induced changes in fMRI data remains an interesting and challenging open research problem
    • …
    corecore