4 research outputs found

    Methods for linear radial motion estimation in time-of-flight range imaging

    Get PDF
    Motion artefacts in time-of-flight range imaging are treated as a feature to measure. Methods for measuring linear radial velocity from range imaging cameras are developed and tested. With the measurement of velocity, the range to the position of the target object at the start of the data acquisition period is computed, effectively correcting the motion error. A new phase based pseudo-quadrature method designed for low speed measurement measures radial velocity up to 卤1.8 m/s with RMSE 0.045 m/s and standard deviation of 0.09-0.33 m/s, and new high-speed Doppler extraction method measures radial velocity up to 卤40 m/s with standard deviation better than 1 m/s and RMSE of 3.5 m/s

    Tackling 3D ToF Artifacts Through Learning and the FLAT Dataset

    Full text link
    Scene motion, multiple reflections, and sensor noise introduce artifacts in the depth reconstruction performed by time-of-flight cameras. We propose a two-stage, deep-learning approach to address all of these sources of artifacts simultaneously. We also introduce FLAT, a synthetic dataset of 2000 ToF measurements that capture all of these nonidealities, and allows to simulate different camera hardware. Using the Kinect 2 camera as a baseline, we show improved reconstruction errors over state-of-the-art methods, on both simulated and real data.Comment: ECCV 201

    Multi-Modal 3D Object Detection in Autonomous Driving: a Survey

    Full text link
    In the past few years, we have witnessed rapid development of autonomous driving. However, achieving full autonomy remains a daunting task due to the complex and dynamic driving environment. As a result, self-driving cars are equipped with a suite of sensors to conduct robust and accurate environment perception. As the number and type of sensors keep increasing, combining them for better perception is becoming a natural trend. So far, there has been no indepth review that focuses on multi-sensor fusion based perception. To bridge this gap and motivate future research, this survey devotes to review recent fusion-based 3D detection deep learning models that leverage multiple sensor data sources, especially cameras and LiDARs. In this survey, we first introduce the background of popular sensors for autonomous cars, including their common data representations as well as object detection networks developed for each type of sensor data. Next, we discuss some popular datasets for multi-modal 3D object detection, with a special focus on the sensor data included in each dataset. Then we present in-depth reviews of recent multi-modal 3D detection networks by considering the following three aspects of the fusion: fusion location, fusion data representation, and fusion granularity. After a detailed review, we discuss open challenges and point out possible solutions. We hope that our detailed review can help researchers to embark investigations in the area of multi-modal 3D object detection

    Task-oriented viewpoint planning for free-form objects

    Get PDF
    A thesis submitted to the Universitat Polit猫cnica de Catalunya to obtain the degree of Doctor of Philosophy. Doctoral programme: Automatic Control, Robotics and Computer Vision. This thesis was completed at: Institut de Rob貌tica i Inform脿tica Industrial, CSIC-UPC.[EN]: This thesis deals with active sensing and its use in real exploration tasks under both scene ambiguities and measurement uncertainties. While object modeling is the implicit objective of most of active sensing algorithms, in this work we have explored new strategies to deal with more generic and more complex tasks. Active sensing requires the ability of moving the perceptual system to gather new information. Our approach uses a robot manipulator with a 3D Time-of-Flight (ToF) camera attached to the end-effector. For a complex task, we have focused our attention on plant phenotyping. Plants are complex objects, with leaves that change their position and size along time. Valid viewpoints for a certain plant are hardly valid for a different one, even belonging to the same species. Some instruments, such as chlorophyll meters or disk sampling tools, require being precisely positioned over a particular location of the leaf. Therefore, their use requires the modeling of specific regions of interest of the plant, including also the free space needed for avoiding obstacles and approaching the leaf with tool. It is easy to observe that predefined camera trajectories are not valid here, and that usually with one single view it is very difficult to acquire all the required information. The overall objective of this thesis is to solve complex active sensing tasks by embedding their exploratory goal into a pre-estimated geometrical model, using information-gain as the fundamental guideline for the reward function. The main contributions can be divided in two groups: first, the evaluation of ToF cameras and their calibration to assess the uncertainty of the measurements (presented in Part I); and second, the proposal of a framework capable of embedding the task, modeled as free and occupied space, and that takes into account the modeled sensor's uncertainty to improve the action selection algorithm (presented in Part II). This thesishas given rise to 14 publications, including 5 indexed journals, and its results have been used in the GARNICS European project. The complete framework is based on the Next-Best-View methodology and it can be summarized in the following main steps. First, an initial view of the object (e.g., a plant) is acquired. From this initial view and given a set of candidate viewpoints, the expected gain obtained by moving the robot and acquiring the next image is computed. This computation takes into account the uncertainty from all the different pixels of the sensor, the expected information based on a predefined task model, and the possible occlusions. Once the most promising view is selected, the robot moves, takes a new image, integrates this information intothe model, and evaluates again the set of remaining views. Finally, the task terminates when enough information is gathered. In our examples, this process enables the robot to perform a measurement on top of a leaf. The key ingredient is to model the complexity of the task in a layered representation of free-occupied occupancy grid maps. This allows to naturally encode the requirements of the task, to maintain and update the belief state with the measurements performed, to simulate and compute the expected gains of all potential viewpoints, and to encode the termination condition. During this work the technology of ToF cameras has incredibly evolved. Nowadays it is very popular and ToF cameras are already embedded in some consumer devices. Although the quality of the measurements has been considerably improved, it is still not uniform in the sensor. We believe, as it has been demonstrated in various experiments in this work, that a careful modeling of the sensor's uncertainty is highly beneficial and helps to design better decision systems. In our case, it enables a more realistic computation of the information gain measure, and consequently, a better selection criterion.[CA]: Aquesta tesi aborda el tema de la percepci贸 activa i el seu 煤s en tasques d'exploraci贸 en entorns reals tot considerant la ambig眉itat en l'escena i la incertesa del sistema de percepci贸. Al contrari de la majoria d'algoritmes de percepci贸 activa, on el modelatge d'objectes sol ser l'objectiu impl铆cit, en aquesta tesi hem explorat noves estrat猫gies per poder tractar tasques gen猫riques i de major complexitat. Tot sistema de percepci贸 activa requereix un aparell sensorial amb la capacitat de variar els seus par脿metres de forma controlada, per poder, d'aquesta manera, recopilar nova informaci贸 per resoldre una tasca determinada. En tasques d'exploraci贸, la posici贸 i orientaci贸 del sensor s贸n par脿metres claus per resoldre la tasca. En el nostre estudi hem fet 煤s d'un robot manipulador com a sistema de posicionament i d'una c脿mera de profunditat de temps de vol (ToF), adherida al seu efector final, com a sistema de percepci贸. Com a tasca final, ens hem concentrat en l'adquisici贸 de mesures sobre fulles dins de l'脿mbit del fenotipatge de les plantes. Les plantes son objectes molt complexos, amb fulles que canvien de textura, posici贸 i mida al llarg del temps. Aix貌 comporta diverses dificultats. Per una banda, abans de dur a terme una mesura sobre un fulla s'ha d'explorar l'entorn i trobar una regi贸 que ho permeti. A m茅s a m茅s, aquells punts de vista que han estat adequats per una determinada planta dif铆cilment ho seran per una altra, tot i sent les dues de la mateixa esp猫cie. Per un altra banda, en el moment de la mesura, certs instruments, tals com els mesuradors de clorofil路la o les eines d'extracci贸 de mostres, requereixen ser posicionats amb molta precisi贸. 脡s necessari, doncs, disposar d'un model detallat d'aquestes regions d'inter猫s, i que inclogui no nom茅s l'espai ocupat sin贸 tamb茅 el lliure. Gr脿cies a la modelitzaci贸 de l'espai lliure es pot dur a terme una bona evitaci贸 d'obstacles i un bon c脿lcul de la traject貌ria d'aproximaci贸 de l'eina a la fulla. En aquest context, 茅s f脿cil veure que, en general, amb un sol punt de vistano n'hi haprou per adquirir tota la informaci贸 necess脿ria per prendre una mesura, i que l'煤s de traject貌ries predeterminades no garanteixen l'猫xit. L'objectiu general d'aquesta tesi 茅s resoldre tasques complexes de percepci贸 activa mitjan莽ant la codificaci贸 del seu objectiu d'exploraci贸 en un model geom猫tric pr猫viament estimat, fent servir el guany d'informaci贸 com a guia fonamental dins de la funci贸 de cost. Les principals contribucions d'aquesta tesi es poden dividir en dos grups: primer, l'avaluaci贸 de les c脿meres ToF i el seu calibratge per poder avaluar la incertesa de les seves mesures (presentat en la Part I); i en segon lloc, la proposta d'un sistema capa莽 de codificar la tasca mitjan莽ant el modelatge de l'espai lliure i ocupat, i que t茅 en compte la incertesa del sensor per millorar la selecci贸 de les accions (presentat en la Part II). Aquesta tesi ha donat lloc a 14 publicacions, incloent 5 en revistes indexades, i els resultats obtinguts s'han fet servir en el projecte Europeu GARNICS. La funcionalitat del sistema complet est脿 basada en els m猫todes Next-Best-View (seg眉ent-millor-vista) i es pot desglossar en els seg眉ents passos principals. En primer lloc, s'obt茅 una vista inicial de l'objecte (p. ex., una planta). A partir d'aquesta vista inicial i d'un conjunt de vistes candidates, s'estima, per cada una d'elles, el guany d'informaci贸 resultant, tant de moure la c脿mera com d'obtenir una nova mesura. 脡s rellevant dir que aquest c脿lcul t茅 en compte la incertesa de cada un dels p铆xels del sensor, l'estimaci贸 de la informaci贸 basada en el model de la tasca preestablerta i les possibles oclusions. Un cop seleccionada la vista m茅s prometedora, el robot es mou a la nova posici贸, pren una nova imatge, integra aquesta informaci贸 en el model i torna a avaluar, un altre cop, el conjunt de punts de vista restants. Per 煤ltim, la tasca acaba en el moment que es recopila suficient informaci贸.This work has been partially supported by a JAE fellowship of the Spanish Scientific Research Council (CSIC), the Spanish Ministry of Science and Innovation, the Catalan Research Commission and the European Commission under the research projects: DPI2008-06022: PAU: Percepci贸n y acci贸n ante incertidumbre. DPI2011-27510: PAU+: Perception and Action in Robotics Problems with Large State Spaces. 201350E102: MANIPlus: Manipulaci贸n robotizada de objetos deformables. 2009-SGR-155: SGR ROB脪TICA: Grup de recerca consolidat - Grup de Rob貌tica. FP6-2004-IST-4-27657: EU PACO PLUS project. FP7-ICT-2009-4-247947: GARNICS: Gardening with a cognitive system. FP7-ICT-2009-6-269959: IntellAct: Intelligent observation and execution of Actions and manipulations.Peer Reviewe
    corecore