636 research outputs found

    Time-frequency analysis of signals using support adaptive Hermite-Gaussian expansions

    Get PDF
    Cataloged from PDF version of article.Since Hermite–Gaussian (HG) functions provide an orthonormal basis with the most compact time– frequency supports (TFSs), they are ideally suited for time–frequency component analysis of finite energy signals. For a signal component whose TFS tightly fits into a circular region around the origin, HG function expansion provides optimal representation by using the fewest number of basis functions. However, for signal components whose TFS has a non-circular shape away from the origin, straight forward expansions require excessively large number of HGs resulting to noise fitting. Furthermore, for closely spaced signal components with non-circular TFSs, direct application of HG expansion cannot provide reliable estimates to the individual signal components. To alleviate these problems, by using expectation maximization (EM) iterations, we propose a fully automated pre-processing technique which identifies and transforms TFSs of individual signal components to circular regions centered around the origin so that reliable signal estimates for the signal components can be obtained. The HG expansion order for each signal component is determined by using a robust estimation technique. Then, the estimated components are post-processed to transform their TFSs back to their original positions. The proposed technique can be used to analyze signals with overlapping components as long as the overlapped supports of the components have an area smaller than the effective support of a Gaussian atom which has the smallest time-bandwidth product. It is shown that if the area of the overlap region is larger than this threshold, the components cannot be uniquely identified. Obtained results on the synthetic and real signals demonstrate the effectiveness for the proposed time–frequency analysis technique under severe noise cases. © 2012 Elsevier Inc. All rights reserved

    High-order, Dispersionless "Fast-Hybrid" Wave Equation Solver. Part I: O(1)\mathcal{O}(1) Sampling Cost via Incident-Field Windowing and Recentering

    Get PDF
    This paper proposes a frequency/time hybrid integral-equation method for the time dependent wave equation in two and three-dimensional spatial domains. Relying on Fourier Transformation in time, the method utilizes a fixed (time-independent) number of frequency-domain integral-equation solutions to evaluate, with superalgebraically-small errors, time domain solutions for arbitrarily long times. The approach relies on two main elements, namely, 1) A smooth time-windowing methodology that enables accurate band-limited representations for arbitrarily-long time signals, and 2) A novel Fourier transform approach which, in a time-parallel manner and without causing spurious periodicity effects, delivers numerically dispersionless spectrally-accurate solutions. A similar hybrid technique can be obtained on the basis of Laplace transforms instead of Fourier transforms, but we do not consider the Laplace-based method in the present contribution. The algorithm can handle dispersive media, it can tackle complex physical structures, it enables parallelization in time in a straightforward manner, and it allows for time leaping---that is, solution sampling at any given time TT at O(1)\mathcal{O}(1)-bounded sampling cost, for arbitrarily large values of TT, and without requirement of evaluation of the solution at intermediate times. The proposed frequency-time hybridization strategy, which generalizes to any linear partial differential equation in the time domain for which frequency-domain solutions can be obtained (including e.g. the time-domain Maxwell equations), and which is applicable in a wide range of scientific and engineering contexts, provides significant advantages over other available alternatives such as volumetric discretization, time-domain integral equations, and convolution-quadrature approaches.Comment: 33 pages, 8 figures, revised and extended manuscript (and now including direct comparisons to existing CQ and TDIE solver implementations) (Part I of II

    Stochastic Testing Method for Transistor-Level Uncertainty Quantification Based on Generalized Polynomial Chaos

    Get PDF
    Uncertainties have become a major concern in integrated circuit design. In order to avoid the huge number of repeated simulations in conventional Monte Carlo flows, this paper presents an intrusive spectral simulator for statistical circuit analysis. Our simulator employs the recently developed generalized polynomial chaos expansion to perform uncertainty quantification of nonlinear transistor circuits with both Gaussian and non-Gaussian random parameters. We modify the nonintrusive stochastic collocation (SC) method and develop an intrusive variant called stochastic testing (ST) method. Compared with the popular intrusive stochastic Galerkin (SG) method, the coupled deterministic equations resulting from our proposed ST method can be solved in a decoupled manner at each time point. At the same time, ST requires fewer samples and allows more flexible time step size controls than directly using a nonintrusive SC solver. These two properties make ST more efficient than SG and than existing SC methods, and more suitable for time-domain circuit simulation. Simulation results of several digital, analog and RF circuits are reported. Since our algorithm is based on generic mathematical models, the proposed ST algorithm can be applied to many other engineering problems
    • …
    corecore