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Since Hermite–Gaussian (HG) functions provide an orthonormal basis with the most compact time–
frequency supports (TFSs), they are ideally suited for time–frequency component analysis of finite energy
signals. For a signal component whose TFS tightly fits into a circular region around the origin, HG
function expansion provides optimal representation by using the fewest number of basis functions.
However, for signal components whose TFS has a non-circular shape away from the origin, straight
forward expansions require excessively large number of HGs resulting to noise fitting. Furthermore, for
closely spaced signal components with non-circular TFSs, direct application of HG expansion cannot
provide reliable estimates to the individual signal components. To alleviate these problems, by using
expectation maximization (EM) iterations, we propose a fully automated pre-processing technique which
identifies and transforms TFSs of individual signal components to circular regions centered around the
origin so that reliable signal estimates for the signal components can be obtained. The HG expansion
order for each signal component is determined by using a robust estimation technique. Then, the
estimated components are post-processed to transform their TFSs back to their original positions.
The proposed technique can be used to analyze signals with overlapping components as long as the
overlapped supports of the components have an area smaller than the effective support of a Gaussian
atom which has the smallest time-bandwidth product. It is shown that if the area of the overlap
region is larger than this threshold, the components cannot be uniquely identified. Obtained results on
the synthetic and real signals demonstrate the effectiveness for the proposed time–frequency analysis
technique under severe noise cases.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Since Hermite–Gaussian (HG) functions constitute a natural ba-
sis for signals with compact time–frequency supports (TFSs), they
have found applications in various fields of signal processing. In
image processing, Hermite transform has been proposed for cap-
turing local information [1]. Another image processing application
is given in [2] for rotation of images. Also, in [3], HG functions are
used for reconstruction of video frames. In telecommunications,
highly localized pulse shapes both in time and frequency domains
can be generated by using linear combinations of the HG func-
tions [4]. As part of biomedical applications, representation of EEG
and ECG signals in terms of HGs also have been proposed [5,6].
In [7], HG functions are used for characterization of the origins of
vibrations in swallowing accelerometry signals. An electromagnet-
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ics application is reported in [8], where the time domain response
of a three-dimensional conducting object excited by a compact
TFS function is modeled by using HG expansions to obtain a fast
extrapolator based on this expansion. Another electromagnetics
application reported in [9], where a new method for evaluating
distortion in multiple waveform sets in UWB communications has
been proposed. Finally, as signal processing applications, HG func-
tions are used for designing high resolution, multi-window time–
frequency representation, where different order HGs are employed
to realize multiple windows, and non-stationary spectrum estima-
tion [10–13].

Single or multi-component signals with compact TFSs are fre-
quently encountered in radar, sonar, seismic, acoustic, speech and
biomedical signal processing applications [14–19]. Decomposition
of such a signal into its components is an important application
of time–frequency analysis [20]. For signals whose components
have generalized time–bandwidth products of around 1, wavelet
and chirplet based signal analysis techniques have been developed
[21–23].

In this work, we are proposing a new signal analysis technique
for signals whose components may have larger time-bandwidth
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products. Such signals are commonly employed in electronic war-
fare, including radar and sonar applications, because of their high
resolution properties. Furthermore, biomedical signals including
EEG and ECG have complicated time–frequency structures that
significantly benefits from the proposed approach. The proposed
technique makes use of adaptive HG basis expansion to estimate
individual signal components. It is a well-known fact that HG func-
tions form an orthonormal basis for the space of finite energy
signals which are piecewise smooth in every finite interval [24].
What makes HGs special among other types of basis functions is
their optimal localization properties in both time and frequency
domains. For any circular TFS around the origin, HGs provide the
highest energy concentration inside that region [25–27]. There-
fore, if a signal component has a circular TFS around the origin,
its representation by using the HG basis provides the optimal rep-
resentation for a given number of representation order. However,
if the signal component has a non-circular TFS positioned away
from the origin, its HG representation is no longer optimal. Here,
we propose an adaptive pre-processing stage where TFS of the sig-
nal component is transformed to a circular one centered around
the origin so that it can be efficiently represented by HGs. The ex-
pansion order is estimated by a noise penalized costm function.
Then, the desired representation is obtained by back transforming
the identified signal component. For signals with multiple com-
ponents that do not have overlapping TFSs, an EM based iterative
procedure is proposed for joint analysis and expansion of individ-
ual signal components in HG basis.

The outline of the presentation is as follows. In Section 2, we
give a brief review of HG functions and emphasize their fundamen-
tal properties. In Section 3, the proposed pre-processing stage is
introduced. EM based iterative component estimation for analysis
of multi-component signals and determination of optimal expan-
sion orders are explained in Section 4. Results on synthetic and
real signals are provided in Section 5. Conclusions are given in Sec-
tion 6.

Note that, unless otherwise is stated, the integrals are com-
puted in the (−∞,∞) interval. Bold characters denote vectors,
(.)H and (.)∗ are used for vector Hermitian and complex conju-
gation operations.

2. Review of Hermite–Gaussian functions

HG functions form a family of solutions to the following non-
linear differential equation:

f ′′(t) + 4π2
(

2n + 1

2π
− t2

)
f (t) = 0. (1)

The nth order HG function hn(t) is related to the nth order Hermite
polynomial Hn(t) as

hn(t) = 21/4

√
2nn! Hn(

√
2πt)e−πt2

, (2)

where, with the initialization of H0(t) = 1 and H1(t) = 2t , Hn(t)
can be recursively obtained as

Hn+1(t) = 2t Hn(t) − 2nHn−1(t). (3)

Therefore, HG functions can also be computed recursively. A de-
tailed discussion on HG functions and Hermite polynomials are
available in [28] and [29], respectively. HG functions, of which the
first four are shown in Fig. 1, form an orthonormal basis for the
space of finite energy signals which are piecewise smooth in every
finite [−τ , τ ] interval [24]. Hence, if s(t) is in this space, it can be
represented as
Fig. 1. The first four HG functions: (a) h0(t); (b) h1(t); (c) h2(t); (d) h3(t).

s(t) =
∞∑

n=0

αnhn(t), (4)

where the expansion coefficients are

αn =
∫

hn(t)s(t)dt. (5)

Furthermore, HG functions are eigenvectors of the Fourier transfor-
mation [30]:

F
{

hn(t)
} = λnhn(t), (6)

where F is the Fourier transform operator defined as F{s(t)} =∫
s(t)e− j2π f t dt and λn = e− j π

2 n is its nth eigenvalue. Similarly, the
fractional Fourier transform (FrFT) of order −2 � a < 2, also admits
the HG functions as its eigenfunctions [31]:

Fa{hn(t)
} = e− j π

2 anhn(t), (7)

where Fa is the FrFT operator of order a. Hence, FrFT of s(t) can be
obtained as:

Fa{s(t)
} =

∞∑
n=0

αne− j π
2 anhn(t). (8)

As seen from Eq. (7), the FrFT simply scales HGs. Thus, HG
functions have circular support in the time–frequency plane. To
demonstrate this fact, in Fig. 2, Wigner–Ville distribution of h0(t),
h5(t), h15(t) and h45(t) are shown.

3. Support adaptive Hermite–Gaussian expansion

A piecewise smooth signal s(t) can be approximated by using
the following Lth order HG expansion:

s̃(L)(t) =
L∑

n=0

αnhn(t), (9)

with its corresponding normalized approximation error:

e(L) =
∫ ∣∣s(t) − s̃(L)(t)

∣∣2
dt/

∫ ∣∣s(t)∣∣2
dt, (10)

where αn are obtained as in (5). Since the basis functions are or-
thonormal, in the absence of noise, by increasing the expansion
order L, the approximation error can be decreased. However, for
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Fig. 2. Wigner–Ville distribution of (a) h0(t); (b) h5(t); (c) h15(t); (d) h45(t).

Fig. 3. Synthetically generated noisy observations of (a) non-circular and (b) circular
TFS signals; (c), (d) their respective spectrograms. While computing the spectro-
grams, a Gaussian window with standard deviation σ = 1/

√
2π s was used.

noisy s(t), to avoid noise fitting the expansion order should not be
increased indefinitely. Thus, in the noisy case, a low order repre-
sentation with a reasonably small approximation error is desired. If
s(t) has circular TFS centered at the origin of the time–frequency
plane, HG basis provides the optimal representation in the sense
that the fewest of number of basis functions are required for its
representation [25–27]. If s(t) has a non-circular TFS away from
the origin, high number of HGs would be used and most of them
will have their support largely dominated by noise or other signal
components that might be present, rather than the signal compo-
nent. This fact is demonstrated in Figs. 3 and 4. In Fig. 3, synthet-
Fig. 4. The original (solid) and HG expansion based approximation (dashed) of the
(a) non-circular support and (b) circular support signal shown in Fig. 3.

ically generated noisy observations of non-circular support (a) and
circular support (b) signals are shown together with their spec-
trograms provided in (c) and (d), respectively. In Fig. 4, the actual
noise-free signal components and their respective HG approxima-
tions are shown. Even at this low SNR, the signal with circular
TFS is successfully approximated by HG functions. However, in
the case of non-circular support, the representation has signifi-
cant noise artifacts. Since in practice, TFSs of signal components
are not necessarily circular nor centered at the origin, HG repre-
sentation of them do not provide desirable results. To overcome
this problem, we propose a pre-processing stage which transforms
the TFS of the signal component to a circular one centered around
the origin. This transformation is achieved by applying sequen-
tially three time–frequency operations: (1) time–frequency trans-
lation, (2) instantaneous-frequency shifting and (3) scaling. Then,
the transformed signal component is represented by HG basis. Fi-
nally, obtained representation is transformed back to the original
support of the component by applying the corresponding inverse
operations as a post-processing stage. In the proceeding subsec-
tions, first, proposed operations operating on a mono-component,
noise free signal s(t) will be presented. Then, how to apply these
operations on noisy observations of multi-component signals will
be detailed.

3.1. Time–frequency translation operation

As a first step of support transformation, as in [32], time and
frequency centers of a mono-component signal s(t) are obtained
by using

tc =
∫

t|s(t)|2 dt∫ |s(t)|2 dt
, fc =

∫
f |S( f )|2 df∫ |s(t)|2 dt

, (11)

where S( f ) is the Fourier transform of s(t). Then, the signal is
translated in the time–frequency plane so that its time–frequency
center is at the origin:

sc(t) = s(t + tc)e− j2π fct . (12)

3.2. Instantaneous frequency shifting operation

To represent sc(t) with fewest number of HG functions, its
TFS should fit into a circular region centered at the origin in
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the time–frequency plane. This means that, the generalized time-
bandwidth product (GTBP) of the translated signal sc(t) should be
minimized [21]. GTBP of sc(t) can be minimized by shifting its in-
stantaneous frequency (IF) to the dc level for all time instants. IF
of sc(t) can be computed as

fc(t) =
∫

f W sc (t, f )df∫
W sc (t, f )df

, (13)

where W sc (t, f ) is the Wigner–Ville distribution of sc(t) [32]. Note
that since sc(t) is mono-component and noise free, computed fc(t)
is the true instantaneous frequency of sc(t). Then, IF shifting oper-
ation is applied to sc(t) as:

sφ(t) = sc(t)e− j2πφc(t), (14)

where φc(t) is the instantaneous phase of sc(t) defined as the cu-
mulative IF function [32]:

φc(t) =
t∫

−∞
fc(τ )dτ . (15)

3.3. Scaling operation

Once time–frequency translation and IF shifting operations are
applied to s(t), it should be scaled by a proper scaling factor so
that its effective duration and bandwidth are equalized. Effective
duration and bandwidth of sφ(t) are defined as [32]:

Dφ =
[∫

(t − tφ)2|sφ(t)|2 dt∫ |sφ(t)|2 dt

]1/2

, (16)

Bφ =
[∫

( f − fφ)2|Sφ( f )|2 df∫ |sφ(t)|2 dt

]1/2

, (17)

where Sφ( f ) is the Fourier transform of sφ(t), tφ and fφ are, re-
spectively, time and frequency centers of the sφ(t) given by

tφ =
∫

t|sφ(t)|2 dt∫ |sφ(t)|2 dt
, fφ =

∫
f |Sφ( f )|2 df∫ |sφ(t)|2 dt

. (18)

Effective duration and bandwidth of sφ(tν) are equalized by choos-
ing the scaling factor ν as:

ν = √
Dφ/Bφ. (19)

Following this scaling, effective duration and bandwidth of sφ(tν)

are both equal to
√

Dφ Bφ . After applying the scaling operation, we
get:

ss(t) = s(tν + tc)e− j2πφ(tν+tc). (20)

The effect of the proposed time–frequency operations on the
TFS of a mono-component signal is demonstrated in Fig. 5. In (a),
TFS of the signal is shown. Here, the radius R effectively deter-
mines expansion order for the signal achieving a reasonably small
approximation error. After applying (b) time–frequency translation,
(c) IF shifting and (d) scaling operations, TFS of the resulting signal
fits into a circular region with a smaller area centered around the
origin of the time–frequency plane. Since R ′ is smaller than R , the
signal can be represented with significantly less number of basis
functions than its original version.

Once these transforms are applied to s(t) as the pre-processing
stage, resulting signal ss(t) is approximated by an Lth order expan-
sion:

s̃s(t) =
L∑

αnhn(t), (21)

n=0
Fig. 5. Illustration of the proposed pre-processing stage: (a) TFS of the signal; (b) af-
ter time–frequency translation; (c) after instantaneous frequency shifting; (d) after
scaling. R and R ′ denote the radius of the smallest circle, which encloses the signal
support.

Fig. 6. Support adaptive HG expansion for mono-component signals.

where αn = ∫
hn(t)ss(t)dt . Inverse operations are applied to this

approximation to obtain an estimate of the original signal s(t):

s̃(t) = s̃s

(
t − tc

ν

)
e j2πφ(t). (22)

In Fig. 6, block diagram of the proposed support adaptive HG ex-
pansion for a mono-component signal s(t) is shown in a compact
form. First, pre-processing stage is applied to s(t) to transform its
TFS to a circular region centered around the origin. The input p de-
notes the parameter vector consisting of the required parameters
for the pre-processing stage, i.e., p = {tc, f (t), v}. Another impor-
tant input parameter of the mono-component signal analysis is
the representation order L, which will be discussed in detail in
Section 4. For a reasonable approximation error, L is chosen ac-
cording to the area of the effective TFS of ss(t). Since ss(t) has
compact circular TFS, time-bandwidth product of ss(t) is a good
measure for its TFS [21]. The HG basis expansion in (21) essentially
performs a representation of ss(t) by using L + 1 basis functions
where L + 1, the degrees of freedom in the representation, is ap-
proximately same as the time-bandwidth product of ss(t). Given p
and L, ss(t) is approximated by s̃s(t) as in (21). Then, inverse op-
erations are applied to transform back the support of the obtained
signal estimate s̃s(t) to its original location.

To demonstrate the performance of the proposed time-fre-
quency transforms, a synthetic mono-component, noise free signal
whose real part is shown in Fig. 7(a), was generated. The spec-
trogram of the signal before and after the pre-processing stage
are also provided in (b) and (c), respectively. Note that, the pro-
posed time–frequency operations successfully translate the TFS of
the signal to a circular region around the origin. In Fig. 8, we
compare the normalized approximation error defined in (10) as
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Fig. 7. (a) Synthetically generated signal. Its spectrogram (b) before and (c) after the
pre-processing stage. While computing the spectrogram, a Gaussian window with
standard deviation 1/

√
2π s was used.

Fig. 8. Normalized approximation error as a function of approximation order L:
(i) when no operations is applied (marked with square); (ii) when only time–
frequency translation is applied (marked with star); (iii) when all the proposed
operations are applied (marked with circle).

a function of approximation order L, (i) when no operations is
applied to the signal (marked with squares), (ii) when only time–
frequency translation is applied (marked with stars) and (iii) when
all the proposed operations are applied (marked with circles). Note
that in Fig. 8 approximation order 0 corresponds to the HG rep-
resentation by using a single HG function of order 0. Therefore,
depending on the effectiveness of the pre-processing, the resul-
tant error of the representation eve with a single HG function
makes a difference. As illustrated, proposed pre-processing stage
significantly decreases the required number of HG functions to
achieve a reasonably small approximation error. In Fig. 9, the orig-
inal signal and its order-10 HG approximation after applying the
proposed pre-processing stage are shown for a normalized approx-
imation error of −25 dB. Note that the same level of approx-
imation error would be achieved by using more than 70 basis
functions when no pre-processing is performed and more than
35 basis functions when only time–frequency translation is ap-
plied.
Fig. 9. Comparison of original signal (solid) and order-10 HG approximation
(dashed) after applying the proposed pre-processing stage.

4. Iterative component estimation for analysis of
multi-component signals

In this section, we discuss the analysis of multi-component sig-
nals by using the proposed method. Consider the multi-component
signal in noise:

x(t) = s1(t) + s2(t) + · · · + sK (t) + n(t), (23)

where sk(t), k = 1,2, . . . , K are signal components with non-
overlapping compact TFSs and n(t) is the additive observation
noise with variance σ 2, which is assumed to have circularly sym-
metric white Gaussian distribution. For this multi-component sig-
nal, the proposed mono-component analysis technique cannot be
applied directly to obtain reliable estimates of the pre-processing
stage parameters {tc, f (t), v}. For estimating each component, the
parameters belonging to that particular component should be es-
timated from the available observation x(t), separately. For this
purpose, we propose an EM like iterative, fully automated com-
ponent estimation technique.

The pre-processing stage parameters for the kth signal compo-
nent sk(t) can be estimated from its spectrogram. Since the signal
components are assumed to have non-overlapping TFSs, the spec-
trogram of sk(t) can be estimated by running a segmentation al-
gorithm on the spectrogram of x(t). At the initialization step i = 0
of the proposed iterative technique, the spectrogram of the avail-
able observation |X(t, f )|2 is computed, where X(t, f ) denotes
the short time Fourier transform (STFT) of x(t). While comput-
ing the spectrogram, a Gaussian window with a valid variance
which resolves all the signal components in the resulting time–
frequency distribution is used. This variance can be chosen by
observing the time and frequency support of x(t). Let Tx and Bx
denote the observed time and frequency support of x(t), respec-
tively. The standard deviation of the Gaussian window for time-
bandwidth product optimal STFT is given by

√
Tx/

√
2π Bx [21].

Then, we use a segmentation algorithm to obtain the initial TFSs
of individual signal components. For this purpose, Chan–Vese ac-
tive contours can be utilized [33]. In this segmentation technique,
by minimizing an appropriately chosen energy functional, inten-
sity images are segmented with enclosing contours. Ideally, this
energy functional is minimized when the active contours are set-
tled on the boundary of the regions. However, to improve the
performance, in [33], authors proposed a variety of user defined
stopping criteria for different types of images. In our case, the
active contour iterations are terminated when the average inten-
sity along a current contour is larger than a threshold which is
chosen as pi

1 = λi |X(t̄, f̄ )|2 + (1 − λi) σ 2

Fs
, where, σ 2 is the noise

variance, Fs is the sampling frequency, |X(t̄, f̄ )|2 is the maximum
value of |X(t, f )|2 and 0 < λi < 1 is the parameter controlling
the threshold level at iteration i. Here the choice of λi is criti-
cal, since a very low λi may yield a single TFS by combining TFSs
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of all the components (occurs more often when the TFSs of the
components are close to each other), on the other hand, a very
large λi may force the segmentation algorithm to miss the TFSs
of low amplitude components. After choosing an appropriate λi ,
the segmentation algorithm returns what will be called as initial
time–frequency masks Mk(t, f ), k = 1,2, . . . , K for each compo-
nent. Then, T̃k(t, f ) = X(t, f ) × Mk(t, f ) serves as an initial esti-
mate for the STFT of sk(t). Time–frequency translation parameters
of the kth component can be estimated from T̃k(t, f ) by using:

t̃k
c =

∫∫
t|T̃k(t, f )|2 dt df∫∫ |T̃k(t, f )|2 dt df

, (24)

f̃ k
c =

∫∫
f |T̃k(t, f )|2 dt df∫∫ |T̃k(t, f )|2 dt df

. (25)

Similarly, IF of sk(t) can be estimated by:

f̃ k(t) =
∫

f |T̃k(t, f )|2 df∫ |T̃k(t, f )|2 df
. (26)

Once these parameters are estimated, time–frequency translation
and IF shifting are applied to the available observation:

xk
φ(t) = x

(
t + tk

c

)
e− j2πφk(t+tk

c )

= sφ,k(t) +
K∑

h=1
h �=k

sh
(
t + tk

c

)
e− j2πφk(t+tk

c ) + nk
φ(t), (27)

where nk
φ(t) is the resulting noise process and sφ,k(t) = sk(t + tk

c )×
e− j2πφk(t+tk

c ) . To obtain the scaling factor, STFT of the translated
and IF shifted signal component sφ,k(t) should be estimated. Let
Xk

φ(t, f ) denote the STFT of xk
φ(t). To obtain an estimate of STFT

of sφ,k(t), one more segmentation is used on |Xk
φ(t, f )|2 pro-

viding more accurate mask Mφ,k(t, f ) around the origin by us-

ing the segmentation threshold pi
2,k = λi |Xk

φ(t̄, f̄ )|2 + (1 − λi) σ 2

Fs
,

where |Xk
φ(t̄, f̄ )|2 is the maximum value of |Xk

φ(t, f )|2. By us-

ing Mφ,k(t, f ), STFT of sφ,k(t) can be estimated by T̃φ,k(t, f ) =
Xk

φ(t, f ) × Mφ,k(t, f ). Then, effective duration and bandwidth of

sφ,k(t) are obtained from T̃φ,k(t, f ) by using

d̃k
φ =

[∫∫
(t − μ̃k

t )
2|T̃φ,k(t, f )|2 dt df∫∫ |T̃φ,k(t, f )|2 dt df

]1/2

, (28)

b̃φ,k =
[∫∫

( f − μ̃k
f )

2|T̃φ,k(t, f )|2 dt df∫∫ |T̃φ,k(t, f )|2 dt df

]1/2

, (29)

where μ̃k
t and μ̃k

f are estimates of time and frequency averages:

μ̃k
t =

∫∫
t|T̃φ,k(t, f )|2 dt df∫∫ |T̃φ,k(t, f )|2 dt df

, μ̃k
f =

∫∫
f |T̃φ,k(t, f )|2 dt df∫∫ |T̃φ,k(t, f )|2 dt df

.

(30)

Since STFT uses a window function, effective duration and band-
width that are computed over the STFT of the signal are related
with the effective duration and bandwidth of the STFT window
function through the following equation [32]:

dk
φ =

√(
Dk

φ

)2 + D2
g, (31)

bk
φ =

√(
Bk

φ

)2 + B2
g . (32)

Here, Dk
φ and D g are the true effective durations of sk

φ(t) and
the STFT window function g(t), respectively, computed using (16).
Bk
φ and B g are the corresponding bandwidths computed us-

ing (17). dk
φ and bk

φ are the effective durations and bandwidths
of sφ,k(t) computed over its STFT, Tφ,k(t, f ), using (28), (29). Then
the scaling factor can be estimated as

ν̃k =
√√√√ (d̃k

φ)2 − D2
g

(b̃k
φ)2 − B2

g

. (33)

As T̃φ,k(t, f ) approaches the true STFT of sφ,k(t), the es-
timate in (33) approaches the true scaling parameters√

[(dk
φ)2 − D2

g ]/[(bk
φ)2 − B2

g]. After estimating all the transform pa-

rameters for all components {tk
c , f k(t), vk, k = 1,2, . . . , K } at the

initialization step i = 0 of the algorithm, the pre-processing stage
is applied to the available observation x(t) for each component:

xk
s (t) = x

(
tνk + tk

c

)
e− j2πφk(tνk+tk

c )

= ss,k(t) +
K∑

h=1
h �=k

sh
(
tνk + tk

c

)
e− j2πφk(tνk+tk

c ) + nk
s (t) (34)

where nk
s (t) is the resulting noise process and ss,k(t) =

sk(tνk + tk
c )e− j2πφk(tνk+tk

c ) . Note that, after the pre-processing op-
erations, nk

s (t) is still circularly symmetric Gaussian noise. Then,
for estimating each component, its corresponding transformed ob-
servation xk

s (t) is expanded in the HG basis. The expansion coef-
ficients are computed by αn,k = ∫

hn(t)xk
s (t)dt and initial estimate

of each signal component is computed:

s̃i
k(t) =

Lk∑
n=0

αn,khn

(
t − tk

c

νk

)
e j2πφk(t). (35)

At this point, assume that the optimal expansion orders Lk , k =
1,2, . . . , K are known. At the end of this section, determination of
optimal expansion orders will be explained.

Then, we start the EM iterations to further refine the compo-
nent estimates. This time, for estimating the transform parame-
ters of the kth component, complete information for each com-
ponent is obtained by the using the following signals: xi+1

k (t) =
x(t) − ∑

p �=k s̃i
p(t) ∀k = 1,2, . . . , K is used. The idea is that dur-

ing the iterations xi+1
k (t) gets closer to a mono-component sig-

nal and hence more reliable estimates for the kth component
parameters can be obtained. The segmentation algorithm is run
over the spectrogram of xi+1

k (t) with a lower threshold param-
eter λi+1 = λic, where 0 < c < 1, which is typically chosen as
c = 0.8, and the transform parameters of the kth component are
reestimated from the returned TFS. This parameter estimation pro-
cess is repeated for all the components before the next EM it-
eration. The iterations are stopped when the average normalized
change in signal estimates between two consecutive EM iterations
1
K

∑K
k=1 ‖s̃i+1

k (t)− s̃i
k(t)‖2/‖s̃i+1

k (t)‖2 is lower than a certain thresh-
old q, which is typically chosen as 0.01.

While running the above iterative method, to obtain a reli-
able estimate of each component, at each iteration, the expansion
orders should be chosen optimally. To simplify the notation, we
will drop the superscript i, which indicates the iteration number.
Since the available observation includes multiple components, the
optimal approximation orders L̂ = [L̂1, L̂2, . . . , L̂ K ] should be deter-
mined jointly so that the identified supports for the components
do not have significant overlaps. To determine the optimal approx-
imation orders L̂, the expected value of the total approximation er-
ror energy E{∫ |s(t)−∑K

k=1 s̃k(t)|2 dt} should be minimized over L.
Here, s(t) = ∑K

k=1 sk(t) and s̃k(t) is the order-Lk HG approximation
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of sk(t) given in (35). To simplify the presentation, we will con-
sider discrete observation case where the bold characters denote
the vector of samples of the corresponding continuous time signal.
The optimal approximation orders can be estimated by minimizing
the following cost function:

J (L) = E

{∥∥∥∥∥s −
K∑

k=1

s̃k

∥∥∥∥∥
2}

, (36)

where s̃k = ∑Lk
n=0 αn,kgn,k and representation coefficients αn,k are

obtained as αn,k = hH
n xk

s with xk
s being the available observation

signal obtained after the pre-processing stage applied for the kth
component given in (34). Here, gn,k is the post-processed HG
function of order n for the kth component, specifically, gn,k(t) =
hn(

t−tk
c

νk )e j2πφk(t) , where hn ’s are orthonormalized. Then, the cost
function in (36) can be expanded as

J (L) = E

{
sH s − 2Re

{
K∑

k=1

sH s̃k

}
+

K∑
k=1

K∑
l=1

s̃H
k s̃l

}

= −2Re

{
K∑

k=1

E
{

sH s̃k
}} +

K∑
k=1

E
{

s̃H
k s̃k

}

+
K∑

k=1

K∑
l �=k

E
{

s̃H
k s̃l

}
, (37)

where E{sH s} term is dropped because it is not a function of L.
The first term in (37) can be simplified as:

Re

{
K∑

k=1

E
{

sH s̃k
}} = Re

{
K∑

k=1

E

{
sH

Lk∑
n=0

αn,kgn,k

}}

= Re

{
K∑

k=1

Lk∑
n=0

E{αn,k}sH gn,k

}

= Re

{
K∑

k=1

Lk∑
n=0

E
{

hH
n xk

s

}
sH gn,k

}

= Re

{
K∑

k=1

Lk∑
n=0

E
{

hH
n

(
sk

s + nk
s

)}
sH gn,k

}
. (38)

Since nk
s is zero mean,

Re

{
K∑

k=1

E
{

sH s̃k
}} = Re

{
K∑

k=1

Lk∑
n=0

hH
n sk

s sH gn,k

}

= Re

{
K∑

k=1

Lk∑
n=0

βn,kβ
∗
n,kν

k

}

=
K∑

k=1

Lk∑
n=0

νk|βn,k|2. (39)

Here, sk
s and nk

s are the sum of the signal components and noise
after the pre-processing stage applied for the kth component in
(34) respectively, i.e., sk

s (t) = s(tνk + tk
c )e− j2πφk(tνk+tk

c ) , and nk
s (t) =

xk
s (t) − sk

s (t). The coefficient βn,k is the projection of sk
s (t) on

the nth HG function, i.e., βn,k = hH
n sk

s , and sH gn,k = β∗
n,k since∫

hn(t)∗ss(t)dt = 1
νk

∫
gn,k(t)∗s(t)dt . Note that pre-processing stage

doesn’t change the statistical properties of the noise process, which
is assumed to have a circularly symmetric white Gaussian distribu-
tion with variance σ 2. The expectation in the second term in (37)
can be computed as:

K∑
k=1

E
{

s̃H
k s̃k

} =
K∑

k=1

E

{( Lk∑
n=0

αn,kgn,k

)H( Lk∑
m=0

αm,kgm,k

)}
. (40)

Since gH
n,kgm,k = νkδ(m − n), it reduces to

K∑
k=1

E
{

s̃H
k s̃k

} =
K∑

k=1

E

{ Lk∑
n=0

νk|αn,k|2
}

=
K∑

k=1

Lk∑
n=0

νk E
{

hH
n xk

s xk
s

H
hn

}

=
K∑

k=1

Lk∑
n=0

νkhH
n E

{(
sk

s + nk
s

)(
sk

s + nk
s

)H}
hn. (41)

Since nk
s is circularly symmetric white Gaussian noise,

K∑
k=1

E
{

s̃H
k s̃k

} =
K∑

k=1

Lk∑
n=0

νkhH
n

[
sk

s sk
s

H + σ 2I
]
hn

=
K∑

k=1

Lk∑
n=0

νk|βn,k|2 +
K∑

k=1

νk(Lk + 1)σ 2, (42)

where I is the identity matrix. Finally, the expectation in the third
term in (37) can be computed as:

K∑
k=1

K∑
l �=k

E
{

s̃H
k s̃l

} =
K∑

k=1

K∑
l �=k

E

{( Lk∑
n=0

α∗
n,kgH

n,k

)( Ll∑
m=0

αm,lgm,l

)}

=
K∑

k=1

K∑
l �=k

Lk∑
n=0

Ll∑
m=0

E
{
α∗

n,kαm,l
}
ξ

n,l
n,k, (43)

where ξ
m,l
n,k = gH

n,kgm,l . Then,

K∑
k=1

K∑
l �=k

E
{

s̃H
k s̃l

}

=
K∑

k=1

K∑
l �=k

Lk∑
n=0

Ll∑
m=0

E
{

hH
mxl

sxk
s

H
hn

}
ξ

m,l
n,k

=
K∑

k=1

K∑
l �=k

Lk∑
n=0

Ll∑
m=0

hH
m E

{(
sl

s + nl
s

)(
sk

s + nk
s

)H}
hnξ

m,l
n,k

=
K∑

k=1

K∑
l �=k

Lk∑
n=0

Ll∑
m=0

hH
m

(
sl

ssk
s

H + σ 2I
)
hnξ

m,l
n,k . (44)

Since hH
mhn = δ(m − n),

K∑
k=1

K∑
l �=k

E
{

s̃H
k s̃l

} =
K∑

k=1

K∑
l �=k

Lk∑
n=0

Ll∑
m=0

βm,lβ
∗
n,kξ

m,l
n,k

+ σ 2
K∑

k=1

K∑
l �=k

min{Lk,Ll}∑
n=0

ξ
n,l
n,k. (45)

Then Eq. in (36) reduces to the following form:
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J (L) = −
K∑

k=1

Lk∑
n=0

νk|βn,k|2 +
K∑

k=1

νk(Lk + 1)σ 2

+
K∑

k=1

K∑
l �=k

Lk∑
n=0

Ll∑
m=0

βm,lβ
∗
n,kξ

m,l
n,k

+ σ 2
K∑

k=1

K∑
l �=k

min{Lk,Ll}∑
n=0

ξ
n,l
n,k. (46)

However, since we do not have access to the noise free signal
s(t), βn,k cannot be computed directly. However, as detailed in the
next derivation, |βn,k|2 ≈ |αn,k|2 − σ 2. This is because E{|αn,k|2} =
|βn,k|2 + σ 2.

E
{|αn,k|2

} = E
{

hH
n xk

s xk
s

H
hn

}
= hH

n E
{

xk
s xk

s
H}

hn

= hH
n E

{(
sk

s + nk
s

)(
sk

s + nk
s

)H}
hn

= hH
n

(
sk

s sk
s

H + σ 2I
)
hn

= |βn,k|2 + σ 2. (47)

By using this approximation, the following computable cost func-
tion, which is to be minimized, is used in the proposed approach
here:

Ĵ (L) = −
K∑

k=1

Lk∑
n=0

νk|αn,k|2 + 2
K∑

k=1

νk(Lk + 1)σ 2

+
K∑

k=1

K∑
l �=k

Lk∑
n=0

Ll∑
m=0

α∗
n,kαm,lξ

m,l
n,k . (48)

In the above cost function, while the second term controls the ef-
fect of noise, third term controls the cross correlation between the
signal estimates. For mono-component case K = 1, the cost func-
tion in (48) reduces to

Ĵ (L)K=1 = −
L∑

n=0

ν1|αn,1|2 + 2ν1(L + 1)σ 2. (49)

To simulate the performance of the expansion order estima-
tor for mono-component signals given in (49), we generated ten
thousand different realizations of a noisy synthetic signal of the

form x(t) = ∑L̄
n=0 αnhn(t) + n(t). In each realization, the HG co-

efficients αn , n = 0,1, . . . , L̄ were chosen from a normal distri-
bution and the noise samples n(t) were generated from a zero
mean Gaussian distribution, whose variance was set according to
the given SNR value. For different representation orders L̄ (rang-
ing from 0 to 100), and different SNR values (ranging from −10 dB
to 10 dB), we calculated the sample mean and sample standard
deviation of the absolute error between the actual representation
order L̄ and its estimate L̃, i.e. |L̄ − L̃|. In Figs. 10(a) and (b), these
two statistical measures are plotted as a function of L̄ for different
SNR values. As observed from this plot, even for a complicated sig-
nal that is composed of many HGs (e.g. L = 100) and under very
low SNR values (e.g. −10 dB), the average absolute error in expan-
sion order estimation is only around 3.5 with standard deviation
of 5.5.

Having discussed choosing the expansion orders optimally, the
fully automated iterative method for signal component estimation
is summarized in Algorithm 1.

When the signal components have overlapping TFSs, decompos-
ing the observation signal into its components is a harder problem.
Fig. 10. (a) Ensemble average of the absolute error between actual representation
order L̄ and its estimate L̃ and (b) its standard deviation as a function of L̄ for
different SNR values.

Although the proposed approach is designed for analysis of signals
whose time–frequency components do not have significant over-
laps in the time–frequency domain, some insights for the overlap-
ping case will be provided. Consider a signal s(t), which have two
components with overlapping TFSs s(t) = s1(t) + s2(t), as demon-
strated in Fig. 11. In the figure, S1 and S2 denote the effective
TFS of s1(t) and s2(t), respectively. Sint is the effective support of
the overlap region. Let S[.] be an operator which returns the ef-
fective support of the given signal, i.e., S[sk(t)] = Sk , k = 1,2, and
H0 denote the effective support of HG function of order 0, i.e.,
S[h0(t)] = H0. The following two theorems explain the uniqueness
of the decomposition of s(t) into s1(t) and s2(t) according to the
area of the effective intersection region between the component
supports.

Theorem 1. If the intersection region Sint allows covering an ellipse
of area larger than or equal to the area of H0 , the decomposition
s(t) = s̃1(t) + s̃2(t) such that S[s̃1(t)] = S1 and S[s̃1(t)] = S2 is non-
unique.

Proof. Since area of Sint is larger than H0, there exist a signal
sint(t) with a sufficiently small energy such that S[sint(t)] ⊆ Sint .
The decomposition can be rewritten as

s(t) = s̃1(t) + s̃2(t)

= s̃1(t) + s̃2(t) + sint(t) − sint(t)

= s̃1(t) + sint(t) + s̃2(t) − sint(t). (50)
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Algorithm 1 Component extraction based on iterative parameter
estimation.
1: //Initialization
2: i ← 0
3: Set segmentation threshold parameter λi

4: Set segmentation threshold pi
1 = λi |X(t̄, f̄ )|2 + (1 − λi) σ 2

Fs

5: Estimate tk
c , f k(t) ∀k = 1,2, . . . , K by segmenting |X(t, f )|2 with the segmenta-

tion threshold pi
1

6: Compute xk
φ(t) ∀k = 1,2, . . . , K by using tk

c , f k(t)

7: Set segmentation threshold pi
2,k = λi |Xk

φ(t̄, f̄ )|2 + (1 − λi) σ 2

Fs
∀k = 1,2, . . . , K

8: Estimate vk ∀k = 1,2, . . . , K by segmenting |Xk
φ(t, f )|2 with the segmentation

threshold pi
2,k

9: Form xk
s (t) ∀k = 1,2, . . . , K

10: Compute αn,k , ξ
m,l
n,k ∀k, l = 1,2, . . . , K , ∀n,m = 1,2, ..

11: Solve (48) using {αn,k, ξ
m,l
n,k , νk, ∀k, l = 1,2, . . . , K , ∀n,m = 1,2, ..}

12: Compute s̃i
k(t), ∀k = 1,2, . . . , K

13: qi = 1
14: //EM Iterations
15: while qi > q do
16: i ← i + 1
17: λi = cλi−1

18: for k = 1 to K do
19: xi

k(t) ← x(t) − ∑
p �=k s̃i−1

p (t)

20: Set segmentation threshold pi
1 = λi |Xk(t̄, f̄ )|2 + (1 − λi) σ 2

Fs

21: Estimate tk
c , f k(t) by segmenting |Xk(t, f )|2 with the segmentation

threshold pi
1

22: Compute xk
φ(t) by using tk

c , f k(t)

23: Set segmentation threshold pi
2 = λi |Xk

φ(t̄, f̄ )|2 + (1 − λi) σ 2

Fs

24: Estimate vk by segmenting |Xk
φ(t, f )|2 with the segmentation threshold

pi
2

25: end for
26: Form xk

s (t) ∀k = 1,2, . . . , K

27: Compute αn,k , ξ
m,l
n,k ∀k, l = 1,2, . . . , K , ∀n,m = 1,2, ..

28: Solve (48) using {αn,k, ξ
m,l
n,k , νk, ∀k, l = 1,2, . . . , K , ∀n,m = 1,2, ..}

29: Compute s̃i
k(t), ∀k = 1,2, . . . , K

30: qi = 1
K

∑K
k=1 ‖s̃i

k(t) − s̃i−1
k (t)‖2/‖s̃i

k(t)‖2

31: end while

Fig. 11. Demonstration of a multi-component signal whose components have over-
lapping TFSs. S1 and S2 are the effective TFSs of the signal components. Sint is the
effective overlapping region. H0 denotes the effective TFS of the HG function of or-
der 0.

Since S[s̃1(t) + sint(t)] = S1 and S[s̃2(t) − sint(t)] = S2, s(t) =
[s̃1(t) + sint(t)] + [s̃2(t) − sint(t)] is another decomposition of s(t).
Hence, the decomposition is non-unique.

Theorem 2. If the intersection region Sint doesn’t allow covering an
ellipse of area larger than or equal to the area of H0 , the decomposi-
tion s(t) = s̃1(t) + s̃2(t) such that S[s̃1(t)] = S1 and S[s̃2(t)] = S2 is
unique.
Proof. Assume that there exists non-unique decompositions s(t) =
s̃1(t) + s̃2(t) and s(t) = ŝ1(t) + ŝ2(t). Then,

0 = s̃1(t) + s̃2(t) − ŝ1(t) − ŝ2(t)

= [
s̃1(t) − ŝ1(t)

] + [
s̃2(t) − ŝ2(t)

]
= e1(t) + e2(t), (51)

where e1(t) = s̃1(t) − ŝ1(t) and e2(t) = s̃2(t) − ŝ2(t). Since e1(t) +
e2(t) = 0, then S[e1(t)] = S[e2(t)]. Therefore, S[e1(t)] ⊂ Sint and
S[e2(t)] ⊂ Sint . This is a contradiction since it is already assumed
that area of Sint is smaller than H0 and there exists no signal
whose effective TFS is equal to Sint . Hence the decomposition is
unique. �

In Theorem 1, it is proven that, if the overlapped region be-
tween two signal components has an area of larger than or equal
to the effective support of a Gaussian atom (Hermite–Gaussian
function of order 0), then the unique separation of these two com-
ponents is not possible. Therefore, there exist no time–frequency
analysis tools that can uniquely decompose overlapping compo-
nents whenever their overlapped region is sufficiently large. The-
orem 2 provides a positive result for the analysis of overlapping
signal components. It states that if the overlapped area doesn’t
allow fitting a Gaussian atom, then the decomposition becomes
unique. To extend the proposed approach to the case of overlap-
ping signal components as described in Theorem 2, the proposed
approach can be modified such that Hermite–Gaussian fitting is
performed in the non-overlapping parts of the signal components
after the pre-processing stage. However this extension of the pro-
posed approach is left as a future work on the subject.

In the next section, analysis results on both simulated and real
signals will be provided.

5. Analysis of results on simulated and real signals

To demonstrate the performance of the proposed method, we
conducted experiments on synthetically generated mono- and
multi-component signals. For the mono-component case, the noisy
observation of a compact support signal of the form:

s(t) = w(t; t1, t2)a(t)e− j2π(αt2+βt+γ ) (52)

was generated. Here a(t) is low-pass filtered circularly symmetric
white noise, {α,β,γ } are IF parameters imposing linear frequency
modulation to the signal. As shown in Fig. 12, w(t) is the time-
window:

w(t; t1, t2) =
⎧⎨
⎩

e−(t−t1)2/κ2
if t < t1,

1 if t1 � t � t2,

e−(t−t2)2/κ2
if t > t2,

(53)

forcing the signal to have a compact TFS. The noise variance was
chosen such that the SNR was set to 0 dB, which is defined as
SNR = 10 log ‖s‖2/(Nsσ

2) where Ns is the number of available
samples along the signal support and σ 2 is the noise variance.
The spectrograms of the available signal before and after the pre-
processing stage are also provided in Figs. 12(b) and (c), respec-
tively. In a fully automated fashion, all the required parameters are
estimated using signal support returned by the segmentation algo-
rithm. In Fig. 13, approximation error as a function of expansion
order is plotted. As seen from this figure, if HG projections are
directly applied to the signal without applying the proposed pre-
processing technique (marked with squares), approximation error
remains above −10 dB. If only time–frequency translation is ap-
plied (marked with stars), the lowest approximation error achieved
is around −13 dB and corresponding approximation order is 35.
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Fig. 12. (a) Synthetically generated noisy observation of a mono-component, com-
pact TFS signal. SNR is 0 dB. Its spectrogram (b) before and (c) after pre-processing
stage. R and R ′ represent the radius of the smallest circle that encloses the sig-
nal support. While computing the spectrograms, a Gaussian window with standard
deviation σ = 1/

√
2π s was used.

Fig. 13. Approximation error as a function of approximation order: (i) if no trans-
form is applied (marked with squares); (ii) if only time–frequency translation is
applied (marked with stars); (iii) if all the proposed transforms are applied (marked
with circles).

If full scale pre-processing is applied (marked with circles), the
lowest approximation error achieved is around −16 dB and the
corresponding expansion order is only 7. For this synthetic sig-
nal, we compared the performance of the proposed method with
the powerful wavelet soft-thresholding technique [34]. First, dis-
crete wavelet transform is applied to the available observation
and wavelet coefficients ξk , k = 0,1,2.., N (N is the number of
available samples) were obtained. We used Daubechies’ compactly
supported, nearly linear phase wavelet sym8 with 9 vanishing mo-
ments [35]. The sym8 wavelet and its scaling function are shown
in Fig. 14. Then, soft thresholding is applied to the wavelet coeffi-
cients ξ̂k as:

ξ̂k = sgn(ξk)
(|ξk| − ε̂

)
+, (54)

where (.)+ is the non-negative part of its argument and the de-
noised signal was reconstructed by applying the inverse wavelet
transform to the new coefficients. The threshold ε̂ was estimated
according to Stein’s unbiased estimate of risk [36]:
Fig. 14. (a) Sym8 wavelet and (b) its corresponding scaling function.

Fig. 15. Original signal (solid-black), its approximation by proposed method
(dashed-blue) and wavelet soft-thresholding technique (dashed-doted-red). (For in-
terpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 16. Spectrogram of the synthetic test signals with (a) triangular, (b) constant,
(c) sinusoidal and (d) quadratic instantaneous frequencies.

ε̂ = arg min
0�ε�

√
2 log N

[
N − 2

{
k: |ξk � ε|} +

N∑
k=1

min
(|ξk|, ε

)]
. (55)

In Fig. 15, the original signal component (solid-black), its approx-
imation by the proposed method (dashed-blue) and the wavelet
soft-thresholding technique (dashed-dotted-red) are plotted. For
the proposed method, the optimal expansion order is estimated by
using (49) to be 5, which is consistent with Fig. 13. While the pro-
posed method achieves an approximation error of −15.2 dB, the
approximation error of the wavelet shrinkage technique remains
around −6.8 dB. As observed from this figure, although the avail-
able observations are significantly noisy, the proposed technique
provides accurate estimates for the signal component. To provide
more comparison results of the proposed method with wavelet
soft-thresholding technique, four more synthetic signals with tri-
angular, constant, sinusoidal and quadratic instantaneous frequen-
cies were generated. Spectrogram of each test signal is shown in
Fig. 16. For different SNR values, approximation errors of both
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Table 1
Approximation errors of the proposed method (Prop. Meth.) and wavelet soft-
thresholding (W.S. Thres.) for the test signals with triangular (Trian.), constant
(Cons.), sinusoidal (Sin.) and quadratic (Quad.) instantaneous frequencies shown in
Fig. 16, for different SNR values.

Trian. Cons. Sin. Quad.

SNR = 0 dB Prop. Meth. −13.6 −14.9 −14.6 −12.8
SNR = 0 dB W.S. Thres. −9.1 −10.5 −7.9 −9.8
SNR = 5 dB Prop. Meth. −17.6 −19.4 −15.6 −15.8
SNR = 5 dB W.S. Thres. −9.8 −12.8 −9 −11.6

Fig. 17. (a) Synthetically generated noisy observation of a 3-component signal and
(b) its spectrogram. SNR is 0 dB. R1, R2, R3 represent the radius of the smallest cir-
cle that encloses the support of the first, second and third component, respectively.
While computing the spectrogram, a Gaussian window with standard deviation
σ = 1/

√
2π s was used.

methods are reported in Table 1. Proposed method achieved a sig-
nificantly lower approximation error for each test case.

For the multi-component scenario, a three-component signal
is used. In this case, linear frequency modulation was imposed
on the first and the second components and quadratic frequency
modulation was imposed on the third component. The noisy sig-
nal and its spectrogram are shown in Figs. 17(a) and (b), respec-
tively. Since TFSs of the components are close to each other in the
time–frequency plane, projecting the observation signal on even
the time–frequency translated HGs cannot yield reliable compo-
nent estimates. As demonstrated in Fig. 17(b), for each component,
there is some energy leaked from the others in the region defined
by the smallest circle that encloses the support of that particular
component. After applying the pre-processing stage to the obser-
vation signal given in Fig. 17 for each component separately, the
spectrogram of the resulting signals are shown in Fig. 18. Note that
the radii of the smallest circles that enclose the TFSs of the com-
ponents in the resulting signal R ′

1, R ′
3, R ′

3 are considerably smaller
compared to R1, R2, R3 shown in Fig. 17, decreasing the required
number of HGs in the representation of the signal and hence de-
creasing the amount of noise fitting in the representation.

To demonstrate the performance of the proposed method on
multi-component signals, synthetic signal shown in Fig. 17 was
used. For approximating each component Algorithm 1 was de-
Fig. 18. Spectrogram of the signal shown in Fig. 17 after applying pre-processing
stage by using the parameters of the (a) first, (b) second and (c) third component.
R ′

1, R ′
2, R ′

3 represent the radius of the smallest circle that encloses the support
of the first, second and third component after the corresponding transformation.
While computing the spectrograms, a Gaussian window with standard deviation
σ = 1/

√
2π s was used.

Fig. 19. Actual (solid) and estimated (dashed) components at the end of the (a), (c),
(e) 1th and (b), (d), (f) 15th iteration of Algorithm 1.

ployed. After 15 iterations, Algorithm 1 terminated. In Figs. 19(a),
(c), (e), estimated components and the actual ones at the end of
the first iteration of Algorithm 1 are shown. Especially, for the low
amplitude components (a) and (c), approximation error is high.
In (b), (d), (f), results at the end of the last iteration are given.
The approximation errors of the first iteration are highly reduced.
Since all the signal components are detected by running Chan–
Vese segmentation algorithm on the spectrogram of the available
observation and all required parameters are estimated from the de-
tected component supports, proposed method is a fully automated
procedure.

The effect of the incorporated segmentation technique is also
investigated in the multi-component signal given in Fig. 17. For
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Table 2
Normalized approximation error and energy difference for each component esti-
mated by utilizing Chan–Vese and Watershed segmentation techniques in the pro-
posed method.

Norm. App. Err/Comp. p1(t) p2(t) p3(t)

ecv −14.7 −16.1 −14.3
ew −14.3 −15.6 −14.8
ed 0.17 0.25 0.21

Fig. 20. (a) Echolocation pulse emitted by the Large Brown Bat, Eptescius Fuscus;
(b) its noisy version at 0 dB; (c) spectrogram of the noisy signal. While computing
the spectrogram in (b), a Gaussian window with standard deviation σ = 14×10−5 s
was used.

the three components p1(t), p2(t), p3(t) in this signal, proposed
method is utilized by using both Chan–Vese and Watershed seg-
mentation [37] techniques. For each component two different esti-
mates are obtained p̃cv

k (t), p̃w
k (t), k = 1,2,3, where the superscript

cv and w denote the estimates based on Chan–Vese and Wa-
tershed segmentation techniques, respectively. The corresponding

normalized approximation errors ecv
k = 10 log(

‖pk(t)−p̃cv
k (t)‖2

‖pk(t)‖2 ), ew
k =

10 log(
‖pk(t)−p̃w

k (t)‖2

‖pk(t)‖2 ) and normalized energy difference percentages

edk = 100
‖p̃cv

k (t)−p̃w
k (t)‖2

‖p̃cv
k (t)‖2 are tabulated in Table 2. As observed, there

is no significant difference between the signal components esti-
mate by utilizing two different segmentation techniques.

Finally, we tested our method on two real signals. The first
one is the bat echolocation signal [38] shown in Fig. 20(a). It
is a 2.8 ms echolocation pulse emitted by the Large Brown Bat,
Eptescius Fuscus. We added synthetically generated circularly sym-
metric white noise such that the SNR was set to 0 dB. The resulting
noise corrupted signal and its spectrogram are shown in Fig. 20(b)
and (c), respectively. By applying the proposed multi-component
analysis technique, the strongest 3 components have been iden-
tified and extracted. The approximation orders were estimated to
be 4 for the first (occurring at time 0.5 ms and 50 kHz), 9 for
Fig. 21. (a) Sum of the estimated components and (b) its spectrogram. While com-
puting the spectrogram, a Gaussian window with standard deviation σ = 14 ×
10−5 s was used. (c) Obtained both auto-cross-term and cross–cross-term free
Wigner–Ville distributions of the echolocation pulse.

the second (occurring at time 0.1 ms and 40 kHz) and 8 for the
third component (occurring at time −0.5 ms and 25 kHz), using
(48). The sum of estimated components is plotted in Fig. 21(a).
The normalized approximation error between this signal and the
original one shown in Fig. 20(a) is around −11.7 dB. This error
was around −14.8 dB when we analyzed the original noise-free
signal. Its spectrogram is given in Fig. 21(b). Comparing this plot
with Fig. 20(c), proposed multi-component analysis method esti-
mated the signal components reliably.

To obtain a high resolution time–frequency representation of
this multi-component signal, we used Wigner–Ville distribution
(WVD). WVD provides the highest time–frequency resolution for
a mono-component signal which has linear frequency modulation.
However, direct computing WVD of a multi-component signal gen-
erates alien energy localizations, which do not actually exist in
the signal, in the resulting time–frequency representation. These
alien energy localizations are referred as cross-terms or cross–
cross-terms. To eliminate cross-terms, WVD of each component
estimated by the proposed method is computed and superposed.
However, since none of the estimated components has exact linear
instantaneous frequency, WVD of each component still has alien
energy localizations. This time, these alien energy localizations are
referred as auto-cross terms. Auto-cross terms can also be elimi-
nated by the proposed method. When the pre-processing stage is
applied to the signal component, the resulting signal has its com-
ponent under analysis with a compact circular support without
significant non-linear frequency variation. Once HG representation
is applied on to the signal extracting the component under anal-
ysis, the obtained signal doesn’t generate auto-cross terms in its
WVD. Then, inverse transforms (post-processing stage) is applied
to the computed WVD. Let s̃k

s (t), k = 1,2,3 denote the estimate of
the kth component after the pre-processing stage given in (34) and
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Fig. 22. (a) EEG recording and (b) its spectrogram. While computing the spectro-
gram, a Gaussian window with standard deviation σ = 0.1/

√
2π s was used.

Fig. 23. Estimated signal components (a)–(c) from the EEG recording shown in
Fig. 22.

WVk
s (t, f ) denote its WVD. The auto-cross-term-free WVD of s̃k(t)

is given by:

WVk(t, f ) = 1

vk
WVk

s

(
t − tk

c

vk
, vk( f − f k(t)

))
, (56)

where {tk
c , f k(t), vk}, k = 1,2,3 are the transform parameters. The

sum WV(t, f ) = WV1(t, f ) + WV2(t, f ) + WV3(t, f ) is both auto-
cross term and cross–cross-term free WVD of the bath echoloca-
tion pulse and shown in Fig. 21(c).

The second real signal that we analyzed is a 2 s EEG recording
(1 sec pre, 1 sec post stimulus), stimulated by an oddball paradigm
shown in Fig. 22 [39]. Only the post stimulus region (time > 0 s)
was analyzed. 3 components were identified and extracted by the
proposed method. Estimated components c1(t), c2(t), c3(t) are
shown in Figs. 23(a), (b), (c), respectively. In Fig. 24(a), the orig-
inal recording x(t) (solid-black) and sum of the estimated com-
ponents c̃(t) = c1(t) + c2(t) + c3(t) are plotted. To provide com-
parisons, wavelet based denoising method in [39] has also been
implemented and applied to the recording only for the post stimu-
Fig. 24. (a) Original EEG recording (solid-black), sum of the estimated components
(dashed-blue), wavelet denoising result (dotted-dashed-red). (b) Residuals for the
proposed method (dashed-blue) and wavelet denoising (dotted-dashed-red). (For in-
terpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

lus interval. The resulting denoised signal ĉ(t) (dashed-dotted-red)
is given in Fig. 24(a). In Fig. 24(b), the residuals r̃(t) = x(t) − x̂(t)
(dashed-blue) and r̂(t) = x(t) − ĉ(t) are also shown. As observed,
superposition of the estimated components by our method pro-
vides a better fit to the original recording. Note that, while the
wavelet method returns only the total denoised signal, our method
is capable of providing each individual signal component buried in
the available observation.

6. Conclusions

A new fully automated signal analysis technique is proposed
for decomposition of signals into its components that have com-
pact TFSs. The proposed approach utilizes HG functions that are
adapted to the identified TFSs of the individual signal compo-
nents. To fully achieve the optimal localization properties of the
HG function expansion, a pre-processing technique is developed to
transform the support of a chosen signal component to a circular
one centered around the origin. Also an EM like iterative proce-
dure is developed for accurate analysis of multi-component signals.
Robust techniques are introduced for reliable estimation of pre-
processing and expansion parameters. Obtained results show that
proposed method provides reliable identification and extraction of
signal components even under severe noise cases.
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