4,379 research outputs found

    An Analytical Evaluation of Network Security Modelling Techniques Applied to Manage Threats

    Get PDF
    The current ubiquity of information coupled with the reliance on such data by businesses has led to a great deal of resources being deployed to ensure the security of this information. Threats can come from a number of sources and the dangers from those insiders closest to the source have increased significantly recently. This paper focuses on techniques used to identify and manage threats as well as the measures that every organisation should consider to put into action. A novel game-based onion skin model has been proposed, combining techniques used in theory-based and hardware-based hardening strategies

    Toward optimal multi-objective models of network security: Survey

    Get PDF
    Information security is an important aspect of a successful business today. However, financial difficulties and budget cuts create a problem of selecting appropriate security measures and keeping networked systems up and running. Economic models proposed in the literature do not address the challenging problem of security countermeasure selection. We have made a classification of security models, which can be used to harden a system in a cost effective manner based on the methodologies used. In addition, we have specified the challenges of the simplified risk assessment approaches used in the economic models and have made recommendations how the challenges can be addressed in order to support decision makers

    Towards optimal multi-objective models of network security: survey

    Get PDF
    Information security is an important aspect of a successful business today. However, financial difficulties and budget cuts create a problem of selecting appropriate security measures and keeping networked systems up and running. Economic models proposed in the literature do not address the challenging problem of security countermeasure selection. We have made a classification of security models, which can be used to harden a system in a cost effective manner based on the methodologies used. In addition, we have specified the challenges of the simplified risk assessment approaches used in the economic models and have made recommendations how the challenges can be addressed in order to support decision makers

    Exact Inference Techniques for the Analysis of Bayesian Attack Graphs

    Get PDF
    Attack graphs are a powerful tool for security risk assessment by analysing network vulnerabilities and the paths attackers can use to compromise network resources. The uncertainty about the attacker's behaviour makes Bayesian networks suitable to model attack graphs to perform static and dynamic analysis. Previous approaches have focused on the formalization of attack graphs into a Bayesian model rather than proposing mechanisms for their analysis. In this paper we propose to use efficient algorithms to make exact inference in Bayesian attack graphs, enabling the static and dynamic network risk assessments. To support the validity of our approach we have performed an extensive experimental evaluation on synthetic Bayesian attack graphs with different topologies, showing the computational advantages in terms of time and memory use of the proposed techniques when compared to existing approaches.Comment: 14 pages, 15 figure

    A novel risk assessment and optimisation model for a multi-objective network security countermeasure selection problem

    Get PDF
    Budget cuts and the high demand in strengthening the security of computer systems and services constitute a challenge. Poor system knowledge and inappropriate selection of security measures may lead to unexpected financial and data losses. This paper proposes a novel Risk Assessment and Optimisation Model (RAOM) to solve a security countermeasure selection problem, where variables such as financial cost and risk may affect a final decision. A Multi-Objective Tabu Search (MOTS) algorithm has been developed to construct an efficient frontier of non-dominated solutions, which can satisfy organisational security needs in a cost-effective manner

    Towards an efficient vulnerability analysis methodology for better security risk management

    Get PDF
    2010 Summer.Includes bibliographical references.Risk management is a process that allows IT managers to balance between cost of the protective measures and gains in mission capability. A system administrator has to make a decision and choose an appropriate security plan that maximizes the resource utilization. However, making the decision is not a trivial task. Most organizations have tight budgets for IT security; therefore, the chosen plan must be reviewed as thoroughly as other management decisions. Unfortunately, even the best-practice security risk management frameworks do not provide adequate information for effective risk management. Vulnerability scanning and penetration testing that form the core of traditional risk management, identify only the set of system vulnerabilities. Given the complexity of today's network infrastructure, it is not enough to consider the presence or absence of vulnerabilities in isolation. Materializing a threat strongly requires the combination of multiple attacks using different vulnerabilities. Such a requirement is far beyond the capabilities of current day vulnerability scanners. Consequently, assessing the cost of an attack or cost of implementing appropriate security controls is possible only in a piecemeal manner. In this work, we develop and formalize new network vulnerability analysis model. The model encodes in a concise manner, the contributions of different security conditions that lead to system compromise. We extend the model with a systematic risk assessment methodology to support reasoning under uncertainty in an attempt to evaluate the vulnerability exploitation probability. We develop a cost model to quantify the potential loss and gain that can occur in a system if certain conditions are met (or protected). We also quantify the security control cost incurred to implement a set of security hardening measures. We propose solutions for the system administrator's decision problems covering the area of the risk analysis and risk mitigation analysis. Finally, we extend the vulnerability assessment model to the areas of intrusion detection and forensic investigation

    Cyber Network Resilience against Self-Propagating Malware Attacks

    Full text link
    Self-propagating malware (SPM) has led to huge financial losses, major data breaches, and widespread service disruptions in recent years. In this paper, we explore the problem of developing cyber resilient systems capable of mitigating the spread of SPM attacks. We begin with an in-depth study of a well-known self-propagating malware, WannaCry, and present a compartmental model called SIIDR that accurately captures the behavior observed in real-world attack traces. Next, we investigate ten cyber defense techniques, including existing edge and node hardening strategies, as well as newly developed methods based on reconfiguring network communication (NodeSplit) and isolating communities. We evaluate all defense strategies in detail using six real-world communication graphs collected from a large retail network and compare their performance across a wide range of attacks and network topologies. We show that several of these defenses are able to efficiently reduce the spread of SPM attacks modeled with SIIDR. For instance, given a strong attack that infects 97% of nodes when no defense is employed, strategically securing a small number of nodes (0.08%) reduces the infection footprint in one of the networks down to 1%.Comment: 20 page

    A Cost-effective Shuffling Method against DDoS Attacks using Moving Target Defense

    Full text link
    Moving Target Defense (MTD) has emerged as a newcomer into the asymmetric field of attack and defense, and shuffling-based MTD has been regarded as one of the most effective ways to mitigate DDoS attacks. However, previous work does not acknowledge that frequent shuffles would significantly intensify the overhead. MTD requires a quantitative measure to compare the cost and effectiveness of available adaptations and explore the best trade-off between them. In this paper, therefore, we propose a new cost-effective shuffling method against DDoS attacks using MTD. By exploiting Multi-Objective Markov Decision Processes to model the interaction between the attacker and the defender, and designing a cost-effective shuffling algorithm, we study the best trade-off between the effectiveness and cost of shuffling in a given shuffling scenario. Finally, simulation and experimentation on an experimental software defined network (SDN) indicate that our approach imposes an acceptable shuffling overload and is effective in mitigating DDoS attacks
    corecore