
1

Exact Inference Techniques for the Analysis of
Bayesian Attack Graphs

Luis Muñoz-González, Daniele Sgandurra, Martı́n Barrère, and Emil C. Lupu

Abstract—Attack graphs are a powerful tool for security risk assessment by analysing network vulnerabilities and the paths attackers

can use to compromise network resources. The uncertainty about the attacker’s behaviour makes Bayesian networks suitable to model

attack graphs to perform static and dynamic analysis. Previous approaches have focused on the formalization of attack graphs into a

Bayesian model rather than proposing mechanisms for their analysis. In this paper we propose to use efficient algorithms to make exact

inference in Bayesian attack graphs, enabling the static and dynamic network risk assessments. To support the validity of our approach

we have performed an extensive experimental evaluation on synthetic Bayesian attack graphs with different topologies, showing the

computational advantages in terms of time and memory use of the proposed techniques when compared to existing approaches.

Index Terms—Security risk assessment, attack graphs, Bayesian networks, dynamic analysis, probabilistic graphical models.

✦

1 INTRODUCTION

THE estimated cyber-security market is expected to grow
to $101 billions in 2018 [1]. Nevertheless, efforts to pro-

tect networks cannot cope with the sophistication of attack-
ers, as shown by the history of data-breaches organizations
have suffered, including in recent times [2]. However, it
is not always possible to patch all existing vulnerabilities:
some systems cannot be interrupted or a lack of manpower
prevents from doing so. Therefore, one way to optimize the
resources and effort required to protect a network is to firstly
assess its risks, and then, prioritize the most critical threats.
This requires estimating the risk exposure of vulnerable
network nodes, given the threat likelihood and the severity
of the impacts [3], and using these values to select appro-
priate countermeasures. This process produces not only a
better threat prioritization, but also an improved return-
on-investment. However, this approach does not consider
the dependencies between vulnerabilities, thus limiting its
usefulness.

These shortcomings can be addressed with Attack
Graphs (AGs) [4], [5], [6], which represent prior knowledge
about vulnerabilities and network connectivity, enabling
system administrators to reason about threats and their risks
in a formal way. AGs permit a priori analysis of the possible
avenues an attacker can exploit to compromise the system.
Thus, they can be used to focus on the most-effective threats
and produce a better countermeasures selection [7], which
is also known as static analysis.

On the other hand, proactive security hardening is not
always the best strategy. As discussed in [8], a reactive
security strategy can be competitive when the defender
does not overreact to the last attack but learns from past
experience. In this sense, AGs can also be used to dynamically
profile the attacker’s paths, to determine which nodes are
more likely to be attacked in the next steps. They can also
be used to evaluate the security risks for valuable network

• All the authors are with the Department of Computing at Imperial College
London, 180 Queen’s Gate, SW7 2AZ, London, UK.
E-mail: {l.munoz, d.sgandurra, m.barrere, e.c.lupu}@imperial.ac.uk

resources and to reason about nodes that may have been
already compromised, when we observe evidence of an
ongoing attack. Since organizations are often under attack,
this dynamic analysis gives system administrators impor-
tant insights in real-time on where they should spend their
efforts and the most vulnerable targets.

Both static and dynamic analysis of AGs have inherent
probabilistic characteristics given the uncertainty about the
attackers’ ability to exploit vulnerabilities. In this sense,
Bayesian Networks (BNs) provide an appropriate frame-
work to model AGs, since they depict causal relationships
between random variables in a compact way. This approach
has already been proposed in the literature: [9] present a
Bayesian AG (BAG) to model attack paths in a network, us-
ing Variable Elimination (VE) as an algorithm for inference
on the Bayesian model. [10], [11] present mechanisms to
calculate the conditional probability tables, which represent
the combined effect of vulnerabilities to compromise a node.
More recently, [12] present a BN framework to perform risk
assessment and propose risk mitigation strategies in the
context of AGs.

However, none of the above propose appropriate and
efficient algorithms for inference on their models, and com-
puting unconditional probabilities in BNs is an NP-Hard
problem. For example, using a brute force approach and
computing the joint probability distribution for a BAG
with 40 nodes, using 8 bytes to store each entry in the
table, requires 240+3/1, 0243 = 8, 192 Gigabytes of mem-
ory. Therefore, the use of efficient inference techniques is
important to reduce the time and computational resources
required and improve the applicability of the approach.
More concretely, in [10], [11] no mechanism is proposed to
calculate the unconditional probabilities of compromising
each node. Forward-backward propagation is proposed in
[12]. However, as shown in [13], [14], this technique is
applicable only when the corresponding graph is a chain1,

1. In this context, a chain is a graph where, given nodes X1, ...,XN ,
there is only one edge from each Xi to Xi+1 for i = 1, ...,N − 1.

2

which is not true for AGs in general. Finally, although the
VE algorithm proposed in [9] is valid for inference in BAGs,
its computational complexity limits its applicability to small
graphs, especially in the case of the dynamic analysis where
the time to respond to an attack is of essence. Furthermore,
none of the previous papers reports an experimental evalua-
tion of the time and memory requirements of the techniques
proposed to assess their suitability for static and dynamic
analysis of AGs.

The main contributions of this paper are the following:

• We propose a revised BAG model for the static and
dynamic analysis of AGs, which overcomes some
limitations of previous models, such as the unde-
sirable effects of adding a prior on the attacker ca-
pabilities. Furthermore, this model serves as a basis
for further model extensions, including zero-day vul-
nerabilities, attacker’s capabilities or dependencies
between vulnerability types, among others.

• Although exact inference in probabilistic graphical
models is NP-Hard, we propose to use message
passing algorithms such as Belief Propagation (BP)
(for Attack Trees) and Junction Tree (JT) (for general
AGs), to efficiently calculate the unconditional prob-
abilities that the nodes have been compromised con-
sidering, if applicable, evidence of ongoing attacks.

• To assess the applicability of the algorithms proposed
and to show the limitations of existing approaches,
we provide a comprehensive experimental evalua-
tion using synthetic AGs. Our results show that the
JT algorithm can be applied to AGs of hundreds of
nodes, corresponding to networks of thousands of
nodes. As far as we know, this is the first experimen-
tal evaluation in the literature of AGs that analyses
the time and memory requirements for static and
dynamic inference in BAGs.

• Our results also show the importance of cluster struc-
tures when modelling with AGs. We show that the
JT algorithm in clustered networks scales linearly in
the number of nodes for dynamic inference, which
makes it suitable for use in practical settings such
as corporate networks where hosts are grouped for
management purposes.

The rest of the paper is organised as follows. Section 2
reviews Attack Graph models. In Section 3 we present a
BAG model that improves upon existing models in the liter-
ature. In Section 4 we introduce VE, BP, and JT as procedures
to perform exact inference on BAGs. Experimental results
for static and dynamic inference on BAGs are presented in
Section 5 while in Section 6 we sketch possible extensions
of our model. Section 7 concludes the paper and discusses
further research directions.

2 ATTACK GRAPHS

AGs are graphical models that represent the knowledge
about vulnerabilities in a network, and their interactions,
showing the different paths an attacker can follow to reach
a given goal. Along each path, vulnerabilities are exploited
in sequence, each successful exploit giving the attacker more

Fig. 1. Simple example of a network configuration and the corresponding
logical AG taken from [19], [20].

privileges towards his goal. Two main types of AG are used
in the literature: state-based representations and logical AGs.

In state-based representations [4], [5], [15] each node in the
AG reprents the state of the whole network after a simple
atomic attack, and contains a table with global variables
defining that state. The number of states and variables
combinatorially explodes when increasing the number of
nodes [16], [17], [18], thus limiting the applicability of these
representations to very small networks only. Moreover,
state-based AGs can contain duplicate attack paths that
differ only in the order of the attack steps. This additionally
increases the complexity of the graph.

In contrast, logical AGs are defined as bipartite graphs
which represent dependencies between exploits and secu-
rity conditions [16]. These representations rely on a mono-
tonicity principle: the attacker never relinquishes privileges
once obtained. Although not always applicable this assump-
tion is reasonable in most cases. Monotonicity allows to
remove duplicated paths and results in a Directed Acyclic
Graph (DAG), which grows polynomially with the number
of vulnerabilities and the number of connected pairs of hosts
[6]. Formally, we can define an AG (in the logical represen-
tation) as a directed bipartite graph G = (E ∪ C,Rr ∪ Ri),
where the vertices E and C are the sets of exploits and
security conditions, respectively, and the edges Rr ⊆ C ×E
and Ri ⊆ E × C are require and imply relations.

Figure 1 shows a scenario from [19], [20], where Host
1 offers File Transfer Protocol (FTP), Secure Shell (SSH),
and Remote Shell (RSH) access, whilst Host 2 offers FTP
and RSH. The firewall allows FTP, SSH, and RSH traffic
from external users (Host 0) to both servers. The goal of
the attacker is to gain root privileges on Host 2. In the AG,
the conditions are represented as circles where the host
involved is inside the parentheses, while vulnerabilities are
depicted in rectangles, showing the source and destination
host inside parentheses, i.e., (source, destination). In Figure
1, we observe that there are three possible paths for the
attacker. The probabilities that an attacker can successfully
exploit the vulnerabilities in the network given in [20], using
the Base Score metric of the CVSS score, are: 0.8 for ftp rhost,
0.1 for ssh bof, 0.9 for rsh, and 0.1 for local bof.

3

3 BAYESIAN ATTACK GRAPHS

As logical representations of AGs result in DAGs, Bayesian
Networks (BNs) are suitable to model the AGs and perform
static and dynamic analysis, to calculate the probability that
an attacker can reach each state (condition) in the graph.

The use of BNs for AGs was first introduced in [9] for
the dynamic analysis of AGs. The authors proposed to use
the VE algorithm [21] to calculate the probability that an
attacker can reach a security state given prior knowledge of
the state it had reached. They also propose to use the Most
Probable Explanation (MPE) algorithm (relying on VE) to
determine the nodes that have been possibly already com-
promised. However, VE can be computationally expensive
compared to other inference algorithms such as Junction
Tree (JT). Furthermore, the authors do not propose an elim-
ination ordering algorithm before applying VE, which has
significant impact on the algorithm’s performance, as we
show in Section 5. Moreover, finding the optimal elimination
order turns out to be another NP-Hard problem [22]. [9] also
lacks an experimental evaluation to assess the applicability
of the algorithm in practice. Finally, we consider that the
use of MPE is not appropriate in the context of AGs and can
lead to misleading conclusions about the network state, as
further discussed in Section 4.

[11] and [10] show how to calculate the conditional
probability tables in a Bayesian Attack Graphs (BAGs) as
the combined effect of vulnerabilities in a network. In [19], a
Dynamic BN is proposed to also model temporal factors that
affect the impact of the vulnerabilities, however they do not
provide any mechanism for inference on their models. [12]
proposes a risk management framework using BNs to assess
at run-time the chances of a network compromise and select
mitigation strategies. However, the authors propose to use
forward-backward propagation for inference, which is not
appropriate for general AGs, as this algorithm can only be
applied to chains, not to general graphs [13], [14].

A BN is a directed graphical model where the nodes
represent random variables and the directed edges rep-
resent dependencies between them, forming a DAG. Let
X = {X1, ..., Xn} be a set of random variables (continuous
or discrete). The joint probability distribution can be written
as:

p(X) =
n
∏

i=1

p(Xi|pai) (1)

so that, under the BN representation, for each node Xi there
is a directed edge from each node in the set of parents nodes
pai of Xi pointing to Xi. For example, the joint probability
distribution of the BAG in Figure 2 can be written as:

p(A,B,C,D,E, F,G) = p(A) p(B|A) p(D|A) p(C|A,B)×

p(E|C) p(F |D,E) p(G|F)
(2)

3.1 Model assumptions

Following a treatment similar to others works in the litera-
ture on AGs, we will make here the following assumptions
to build the BAG from the AG logical representation: 1)
We consider that successfully exploiting a vulnerability in
a given context (e.g., on a host) does not change the prob-
ability of exploiting the same or similar vulnerabilities in

Fig. 2. BAG representation for the AG in Figure 1 with the unconditional
probabilities calculated for each node when there are no attacks.

a different context (on another host). 2) The probability of
successfully exploiting a vulnerability remains constant in
time e.g., the attacker does not improve his success during
the attack. Although in [19] a dynamic network is proposed
to model such aspects, the changes in probabilities are slow
enough (i.e., days or weeks) to be considered constant. It
is then better to recompute the model, than to increase the
complexity of the model to deal with such dynamic aspects.
3) The attacker’s capabilities are not considered or, at least,
all the potential attackers are supposed to have the same
skills and attack preferences. 4) We do not consider zero-
day vulnerabilities, social engineering attacks and insider
attacks. 5) We assume that the Intrusion Detection System
(IDS) may not detect all the events of interest and that it does
not trigger false alarms (or false alarms have been discarded
following investigation).

Although these assumptions may seem restrictive, they
are common in the literature on AGs. Furthermore, the
efficient probabilistic inference mechanisms we propose can
also be applied to other more flexible BAG models as
discussed in Section 6. Under these assumptions, the nodes
in the BAG represent the different security states that an
attacker can reach. We model the behaviour of these states
as Bernoulli random variables, so the probability of a node
Xi to be compromised is2 Pr(Xi = T) = p, and, conse-
quently, the probability of a node not to be compromised is
Pr(Xi = F) = 1− p, with p ∈ [0, 1].

In Figure 2 we show the BAG generated from the AG
shown in Figure 1 along with the probabilities for each node
to be compromised by an attacker. The initial node, A ≡
user(0), shows that the attacker has user privileges on his
own machine with probability 1.

3.2 Conditional Probability Distributions

Under the BN representation, the information available at
each node Xi is the conditional probability distribution
of Xi to be compromised given its parent nodes, i.e.,
p(Xi|pai). From a security view point, these conditional
probabilities represent the probabilities of an attacker to
reach security state Xi given the observations of the set
of preconditions pai. These allow the attacker to compro-
mise Xi by exploiting the vulnerabilities ei, which link
pai with Xi in the original bipartite AG. We consider that

2. To simplify the mathematical notation, we will refer to the uncon-
ditional probability of a node to be compromised as Pr(Xi).

4

the probabilities of successfully exploiting vulnerabilities
are parameters of the model (instead of random variables),
which allows to calculate the conditional probability tables
that define p(Xi|pai).

The scores provided by the Common Vulnerability Scor-
ing System (CVSS) [23] can be used to estimate pvj , the
probability of an attacker successfully exploiting a vulner-
ability vj . Although CVSS scores estimate the impact of a
vulnerability rather than its probability of being successfully
exploited, in the absence of better indicators, CVSS scores
or some of their submetrics are often used in the literature.
Whilst [19], [24] use the entire CVSS score, in our opinion,
the exploitability submetric is more appropriate since it tries
to measure the difficulty of exploiting a vulnerability. This is
also proposed in [12]. For the AG in Figure 1 we have used
the probabilities given by [20], which only consider the Base
Score metric of the CVSS score.

To calculate the conditional probability distributions
p(Xi|pai) we consider two possible cases [12]: A logical
AND where all the preconditions should be met to com-
promise node Xi. This can be expressed as:

p(Xi|pai) =

{

0, ∃Xj ∈ pai|Xj = F
∏

j:Xj
pvj , otherwise

(3)

A logical OR where only one of the preconditions in pai
needs to be satisfied to compromise Xi. This can be calcu-
lated using the noisy-OR formulation [25], so that:

p(Xi|pai) =

{

0, ∀Xj ∈ pai|Xj = F

1−
∏

j:Xj
(1− pvj), otherwise

(4)
The Supplementary Material shows how to compute the

conditional probability tables for the AND and OR cases
through an example.

3.3 Effect of the prior probability on the initial state

The effect of the initial node of the BAG, which represents
the initial state of the attacker (for example, node A in Figure
2) requires further consideration. It has not been discussed
in the literature and can have significant implications for the
analysis of AGs, as we will show. In our opinion, this node
does not represent a random variable, as considered in other
approaches, since it only represents that the attacker has full
rights on his own machine. This is equivalent to consider
that Pr(X0) = 1. Other studies, e.g. [12], propose to use
this node to reflect some subjective prior knowledge of the
attacker’s capabilities or the attacker intention and let the
administrator set the value of Pr(X0). This has two main
shortcomings: firstly, modelling the attacker’s capabilities
only describes a subjective average behaviour of different
kinds of attackers and, secondly, the effect of this prior
can lead to misleading conclusions in the dynamic analysis
of the AG, especially when reasoning about the nodes an
attacker may have already compromised.

To illustrate this, consider the example in Figure 3.(a),
where we have the same BAG as in Figure 2, but with
the prior belief on the initial state to the attacker set to
Pr(A) = 0.7, instead of 1. As expected, the unconditional
probabilities of the other nodes decrease with respect to
the probabilities calculated in Figure 2. At some stage,

(a)

(b)

Fig. 3. (a) Unconditional probabilities for the BAG in Figure 2 when the
prior belief on the initial state of the attacker (node A) is set to 0.7. (b)
Unconditional probabilities for the previous BAG when evidence that the
attacker has compromised node E is observed. The result is the same
as when observing the same evidence for the BAG in Figure 2.

forensic evidence of an attack may let us conclude that
node E has been compromised as shown in Figure 3.(b);
thus Pr(E) = 1. Note that this result is the same regardless
of the value of Pr(A). In the case where Pr(A) = 1, we
see that all nodes have increased their probabilities except
D. This indicates that nodes C and B, as parents of E,
may have been compromised. In contrast, if Pr(A) = 0.7
and E has been compromised, the probabilities of all the
nodes have increased. This is misleading, as there is no
additional evidence that the attacker followed the path from
A to D or that the attacker’s ability to compromise D has
increased. This effect can hinder reasoning about the attack
paths that an attacker could follow or nodes that may have
been already compromised.

Finally, to calculate the unconditional probabilities of
the BAG more efficiently, we propose to use one initial
node (the initial state of the attacker) for each initial attack
path. This does not affect the values of the unconditional
probabilities for the other nodes (with and without evidence
of possible compromise), but allows to break some loops in
the graph, which reduces the complexity of the inference
algorithms described in the following sections. For example,
the BAG in Figure 2 becomes the tree shown in Figure 4.
This makes it suitable to use Belief Propagation (BP) to
calculate the unconditional probabilities of all the nodes
efficiently. Note also that by splitting the initial state of the
attacker in different nodes, we consider the initial attack
paths independently and can thus track their change in
probabilities when considering new evidence of compro-
mise. This recommendation applies even when the prior
belief on the attacker’s state is not set to 1 and represented
as a random variable and avoids the misleading intuitions
we can get when modelling the initial state as in Figure 3.(a).

5

(a)

(b)

Fig. 4. (a) Unconditional probabilities for the BAG in Figure 2 splitting
the node of the initial state of the attacker in 3 nodes, one for each initial
attack path. (b) Unconditional probabilities for the previous BAG when
evidence that the attacker has compromised node E is observed. The
result is the same than in Figure 3.(b).

3.4 Applying BAGs for Security Risk Assessment

The applicability of the proposed BAG model for security
risk assessment can be categorized in: static risk analysis,
dynamic risk analysis, and dynamic risk mitigation.

For static risk analysis we consider the security posture at
rest. From the network topology, network reachability and
the results of a vulnerability analysis we can build the BAG
model, determine the values of the successful exploitation of
vulnerabilities e.g., using the Base Score metric of the CVSS
score, and build the conditional probability tables. Then,
using inference techniques, such as the JT algorithm, we
can compute the unconditional probabilities of all the nodes
in the BAG. These probabilities serve as risk estimates that
can be used to detect weak areas in the network and serve
as an input for network hardening or static risk mitigation
techniques.

For dynamic risk analysis, the BAG model is recomputed
at run-time, taking into account indications that some of
the network components may have been compromised, e.g.,
from a Security and Incident Event Management System
(SIEM) or IDS. Then, the nodes where we observe evidence
of compromise are set to 1 (or to a value corresponding
to the evidence observed) and the posterior probabilities of
the rest of the nodes in the BAG given the evidence are
computed. In this context, our model enables administrators
to dynamically profile the possible attack paths that the
attacker is following and to determine the nodes that are
more likely to be compromised in the next steps.

The computed posterior probabilities also provide the
administrator with run-time risk estimates that can be used
to select countermeasures and dynamic risk mitigation strate-
gies. This involves planning the most efficient strategies to

reduce the risk taking into account the available security
measures that can be applied and the cost of applying them.
Once countermeasures have been selected and applied the
conditional probabilities can be updated in the BAG and
the posterior probabilities recomputed. We do not consider
in this paper methods for the selection of countermeasures
but our BAG model can be combined with that proposed in
[12], which models risk mitigation as a discrete reasoning
problem solved using a genetic algorithm.

4 EXACT INFERENCE IN BAGS

For the analysis of AGs, we are interested in calculating the
unconditional probability distributions p(Xi), rather than
p(Xi|pai), to determine the probability that an attacker
can reach a given security condition, and thus, the risk.
Using Bayes rule it is possible to calculate p(Xi) from the
conditional probability distributions:

p(Xi) =
∑

X−Xi

p(X) =
∑

X−Xi

n
∏

j=1

p(Xj|paj) (5)

where X − Xi indicates that we sum over all the set of
random variables X except Xi.

However, the exact calculation of (5) is an NP-Hard
problem [25], [26]. In our case, as each node corresponds
to a Bernoulli random variable, the memory required to
store the joint probability distribution p(X) grows as 2n.
Thus, applying brute force for inference in probabilistic
graphical models is not a reasonable approach in terms of
computational time and memory, even for small graphs, and
the use of efficient algorithms is a strong requisite.

As discussed in previous section, this issue has not been
covered adequately in the literature on BAGs. [12] proposes
to use forward-backward propagation, but this procedure
is only valid for chains [13], [14] and cannot be applied
to general AGs. The Variable Elimination (VE) algorithm
proposed in [9], is an efficient technique to calculate the
unconditional probabilities, but the authors do not propose
a heuristic to find a reasonable elimination ordering, which
impacts the performance of the algorithm significantly. VE is
also used in [9] for Maximum A Posteriori (MAP) estimation
to provide the MPE. However, MAP estimations can lead
to misleading conclusions. For the example in Figure 2,
the result of the MPE queries when there is no evidence
of attacks is that all the nodes except G are in the True
state (and then G is in the False state). The attacker would
have therefore already compromised all the nodes except G,
which makes no sense. In this case, we can easily show that
MPE is impractical to assess the security risk in AGs.

In the next section, we first review VE, the algorithm that
was used in [9]. Then, we describe the Belief Propagation
(BP) and Junction Tree (JT) algorithms, which we propose
for static and dynamic analysis of BAGs. These algorithms
use a message passing approach to calculate the uncondi-
tional probabilities on BNs and their average computational
complexity is significantly lower than VE.

4.1 Variable Elimination

VE or Bucket Elimination is a heuristic first introduced in
[27] and revisited in [21] to efficiently compute the uncon-
ditional probabilities in BNs and Markov Random Fields

6

(MRFs). In essence, to address the exponential blow-up
when computing marginal probabilities, it identifies factors
in the joint distribution that depend on a small number of
variables, computes them once and caches the results to
avoid generating them exponentially many times [25].

For example, consider the probability p(G) that an at-
tacker can obtain root privileges on Host 2, in the AG shown
in Figure 2. We can then write p(G) as:

p(G) =
∑

A

∑

B

∑

C

∑

D

∑

E

∑

F

p(A) p(B|A) p(C|A,B) ×

× p(D|A) p(E|C) p(F |D,E) p(G|F)
(6)

As discussed before, computing the joint distribution scales
in time and memory as O(2n), with n = 7 in this case. In
contrast to this brute force approach, VE groups factors that
involve the same variables and marginalizes (sums over)
those variables. Then, we can re-write p(G) as:

p(G) =
∑

F

p(G|F)
∑

E

∑

D

p(F |D,E)
∑

C

p(E|C) ×

×
∑

B

∑

A

p(A) p(B|A) p(C|A,B) p(D|A)
(7)

Evaluating this expression from right to left we can re-
cursively eliminate all the variables in the BN except G.
In this case, we follow the elimination ordering Ω =
{A,B,C,D,E, F}. The steps of elimination using the VE
algorithm are shown in Table 1: At each step we create a
new factor φi by multiplying all the factors that involve the
variable we want to eliminate, and then marginalizing the
corresponding variable from the factor φi.

TABLE 1
Steps of VE algorithm for the BAG in Figure 2 to calculate p(G) using

the elimination order Ω = {A,B, C,D,E,F}.

Var. Factors

A:
φ1(A,B,C,D) = p(A)p(B|A)p(C|A,B)p(D|A)

τ1(B,C,D) =
∑

A
φ1(A,B,C,D)

B:
φ2(B,C,D) = τ1(B,C,D)
τ2(C,D) =

∑
B
τ1(B,C,D)

C:
φ3(C,D,E) = τ2(C,D)p(E|C)
τ3(D,E) =

∑
C
φ3(C,D,E)

D:
φ4(D,E, F) = τ3(D,E)p(F |D,E)

τ4(E,F) =
∑

D
φ4(D,E, F)

E:
φ5(E,F) = τ4(E,F)
τ5(F) =

∑
E
φ5(E,F)

F :
φ6(F,G) = τ5(F)p(G|F)

p(G) = τ6(G) =
∑

F
φ6(F,G)

The same principle applies when we observe evidence
of compromise on some of the nodes and compute the
posterior probabilities of the nodes given the evidence. In
this case, as described in [13], [25], we first compute the
joint probability distribution of the query variable and the
evidence, and then, divide by the marginal probability of
the observed evidence. For example, if we observe that an
attacker has compromised node C in Figure 2 (the attacker
has user privileges on Host 1), the posterior probability of G
given the evidence is calculated as:

p(G|C = 1) =
p(G,C = 1)

p(C = 1)
(8)

The computational cost of the algorithm is exponential
in the scope of the factor with the maximum number of
variables created during the elimination. In the example
shown in Table 1, this is φ1, whose scope is A,B,C,D. Its
computation requires a table with 24 = 16 entries, whereas
the computation of the expression in (6) requires a table
with 27 = 128 entries. So, even in this simple example we
can notice significant savings.

The variables’ elimination order has a significant impact
on the size of the intermediate factors created, and thus, the
computational complexity of the algorithm [25], [28]. For
instance, if in the previous example we use the elimination
ordering: Ω

′ = {B,A,C,D,E, F}, the factor created to
first eliminate B is φ′

1(A,B,C) = p(A) p(B|A) p(C|A,B),
so that τ ′1(A,C) =

∑

B φ′
1(A,B,C). Then, φ′

2(A,C,D) =
p(A) p(C|A,B) τ ′1(A,C) and τ ′2(C,D) =

∑

A φ′
2(A,C,D).

Following then the same elimination steps as in Table 1 we
obtain an ordering where the maximum scope of the biggest
factor is reduced from 4 to 3.

Although finding the elimination order that minimizes
the scope of the biggest factor is also NP-Hard [25], several
greedy heuristics [25], [28], [29], [30] provide good elim-
ination orders at reduced computational cost. These rely
on the concept of an induced graph: the graph obtained
when eliminating a variable from the original one. They
seek orderings that induce small graphs, thus eliminating
variables so that the scope of the intermediate factors φi

and τi remains as small as possible. Criteria commonly used
in these heuristics include: [25], [28]: 1) Min-neighbours: At
each step removing the node with the fewest neighbours
in the current graph; 2) Min-fill: At each step removing the
node whose removal requires adding the fewest edges in
the induced graph; 3) Min-weight: At each step removing
the node with the minimum product of weights of its
neighbours, where the weights are the number of elements
in the scope of the conditional probability associated with
the node (for example, in the BAG in Figure 2, the weight
for node E would be 3 × 3 = 9, since its neighbours C
and F have 3 variables in their scope); 4) weighted-min-fill:
At each step removing the node with the smallest sum of
weights of the edges that need to be added to the graph due
to its elimination (the weight of an edge is the product of
the weights of the nodes associated to that edge).

The use of VE for BAGs was previously proposed in [9]
using the algorithm from [21], where no elimination order-
ing is proposed. In the experiments described in Section
5, we will show the impact of the elimination ordering in
terms of the time and memory required to compute the
unconditional probabilities.

Finally, as discussed in [13], the main disadvantage of
VE, in addition to the exponential scalability with the scope
of the biggest factor, is its inefficiency when we compute
multiple queries, e.g., when we calculate the unconditional
probabilities of all the graph nodes. In VE we need to com-
pute the elimination ordering and the factors each time we
make a query, whereas other algorithms like BP or JT cache
information (messages) that can be re-used to efficiently
compute the marginal probabilities as we explain below.

7

Fig. 5. Factor graph for the BAG in Figure 4.

4.2 Belief Propagation

Like VE, BP allows to efficiently compute the unconditional
probabilities in BNs and MRFs when the graph is a tree or a
polytree. Although this is not the general structure of AGs,
this technique can be applied to Attack Trees (ATs) [31]. BP
is also referred to as the sum-product algorithm and is based
on probabilistic message passing. This also is the basis of
the JT algorithm which can be applied to any kind of BN
and that we describe in Section 4.3. The first version of BP
was proposed in [32] and, then, extended in [33] for the
case of polytrees, although its complete formulation is only
introduced in [34].

To describe the algorithm we follow an approach similar
to [35], based on factor graph representations [36], [37].
As explained before, BNs (and MRFs) express the joint
probability distribution of several random variables as the
product of factors over subsets of those variables. Factor
graphs make this decomposition explicit by introducing ad-
ditional nodes for the factors themselves in addition to those
representing random variables. This results in a bipartite
graph.

For example, the joint probability of the BAG shown in
Figure 4 can be expressed as:

p(A1, A2, A3, B, C,D,E, F,G) =
6
∏

i=1

fi(Xi) (9)

where the factors fi(Xi) are:

f1(A1, D) = p(A1) p(D|A1)

f2(A2, B) = p(A2) p(B|A2)

f3(A3, B, C) = p(A3) p(C|A3, B)

f4(C,E) = p(E|C)

f5(D,E, F) = p(F |D,E)

f6(F,G) = p(G|F)

(10)

The factor graph is shown in Figure 5, though note that
several factor graphs can exist for a given BN or MRF.

BP works by passing real valued functions called mes-
sages amongst neighbouring nodes in the tree or polytree
network. Since the factor graph induces a bipartite graph,
we can distinguish between two types of messages: from
variable to factor and from factor to variable. Messages from
a variable Xi to a factor fj (in the neighbourhood of Xi) are
given by:

µXi,fj (Xi) =
∏

fk∈{Fi−fj}

µfk,Xi
(Xi) (11)

where µfk,Xi
(Xi) are the messages from the factor nodes

in the neighbourhood of Xi except fj . Similarly, messages
from a factor fi to a variable Xj in the neighbourhood of fi
are calculated as:

µfi,Xj
(Xj) =

∑

Xk∈Xs

fi(Xj ,Xs)
∏

Xk∈Xs

µXk,fj (Xk) (12)

where Xs is the set of variable nodes in the neighbourhood
of fi except Xj .

When a variable Xi is a leaf node, the corresponding
messages to the factors in its neighbourhood are equal to
one, i.e. µXi,fj (Xi) = 1. On the contrary, if a factor fi is a
leaf node, messages to a variable node in its neighbourhood
are µfi,Xj

(Xj) =
∑

Xk∈Xs
fi(Xj ,Xs).

BP computes messages from all the node variables to
their corresponding factors and vice versa, starting from the
leaf nodes and propagating the messages across the tree or
polytree graph according to the following rule: A node N
(variable or factor) cannot send messages to another node M
until it receives all the messages from its neighbours except
M . An example of the message passing process for the factor
graph in Figure 4 is shown in the Supplementary Material.

Once all messages are computed, the unconditional
probability for a node Xi can be calculated as:

p(Xi) =
∏

fj∈Fi

µfj ,Xi
(Xi) (13)

where Fi are the factor nodes in the neighbourhood of
Xi. In MRFs, the same principle applies, but the product
of the messages results in an unnormalized p(Xi), though
calculating the normalizing constant is straightforward.

In contrast to VE, where we need to run the whole
algorithm for each marginal probability we compute, BP
can efficiently calculate all the marginal probabilities by
computing all the messages once and storing them. So when
we observe evidence of compromise in some nodes, only
the factors that depend on the values that have changed
need to be recomputed. For example, if the attacker has
compromised node D, we take into account only the values
of the function for which D = T , when computing messages
involving factor f1, so that

f1(A1, D = T) = p(A1) p(D = T |A1) (14)

This requires us to consider only the elements of the condi-
tional probability table for p(D|A1) where D = T . On the
other hand, when computing the messages from factor to
variable nodes involving observed variables, i.e., variables
for which we observe new evidence, we do not need to sum
over these variables to obtain the corresponding message.

The computational complexity of BP will be discussed in
Section 4.3, as BP can be considered a especial case of the JT
algorithm.

4.3 Junction Tree

In this section we describe the JT (or clique tree) algorithm,
a method that takes the advantage of the message passing
scheme of BP to compute all the marginals of a BN or
a MRF, but is applied to general graphs rather than just
trees and polytrees. JT aims to create a tree structure where
the nodes represent clusters of the random variables in

8

the graph, and then, apply message passing as in BP, to
compute the unconditional probabilities. This method is
equally applicable to both BNs and MRFs.

Besides presenting the BP algorithm for polytrees, [34]
also describes a simple approach to cluster nodes in general
graphs. However, the technique produces very inefficient
trees [25]. In contrast, the two variants of JT algorithm,
namely the Shenoy-Shafer algorithm [38], [39] and the
Hugin algorithm [40], [41] produce more efficient trees by
clustering nodes. Both techniques rely on the same princi-
ples although they differ in the way messages are computed.
We will use here the Shenoy-Shafer method which uses the
same message passing scheme as BP. A detailed comparison
of Hugin and Shenoy-Shafer can be found in [42].

The first step of the JT algorithm is to create a clus-
ter graph with a tree structure from the initial BN (or
MRF). This can be viewed as an extension of factor graphs
that clusters several random variables between two factors
where each random variable can appear in more than one
cluster node. The cluster or clique tree must also satisfy
the running intersection property: if a random variable Xi

appears in two cluster nodes, Xi ∈ Cj and Xi ∈ Ck, then,
Xi must also appear in each cluster node in the unique path
existing between Cj and Ck in the clique tree.

As shown in [25], an execution of VE induces a clus-
ter graph with a tree structure that satisfies the running
intersection property. Other procedures similarly rely on
creating a chordal graph by moralizing and triangulating
the original BN or MRF, so that each clique in the chordal
graph is a cluster node in the clique tree. However, for
the sake of clarity and since both solutions have a similar
computational burden, we prefer to describe the use of VE
as a method to obtain the clique tree.

To describe the procedure of generating the clique
tree we use the BAG shown in Figure 2 and the corre-
sponding execution of VE following the elimination order
Ω = {A,B,C,D,E, F} shown in Table 1. First, we create
a initial factor f ′

i for each φi used in the computation of
VE. Then, we draw an edge between f ′

i and f ′
j if the factor

generated from τi is used in the computation of τj . In our
example, we have an edge between factors f ′

1(A,B,C,D)
and f ′

2(B,C,D), corresponding to the terms φ1(A,B,C,D)
and φ2(B,C,D) respectively (because φ2(B,C,D) depends
on τ1(B,C,D)). Next, we add cluster nodes between each
pair of factors considering all the random variables that
intersect the two adjacent factors. For example, between
f ′
1(A,B,C,D) and f ′

2(B,C,D) we include a cluster node
with the variables B,C,D. After these two steps, we get
the JT shown in Figure 6.(a). However, we can reduce the
tree by removing redundant factors (those whose scope is
a subset of the scope of adjacent factors) removing also the
corresponding cluster nodes between the implied factors.
This is the case of factors f ′

2 and f ′
5 in our example, whose

scopes are a subset of the scopes of f ′
1 and f ′

4 respectively.
Finally, we add to each leaf factor node a cluster node, which
becomes a leaf node, with the random variables that are in
the scope of that factor but are not in the other cluster nodes
associated to it. For example, for f ′

1 we should add a cluster
node with the variables A and B, since the other cluster
node associated to f ′

1 contains C and D and the scope of
f ′
1 is {A,B,C,D}. The reduced final clique tree is shown in

(a)

(b)

Fig. 6. (a) Initial factors for the JT of the BAG in Figure 2 following the
elimination order in Table 1. (b) Final factors for the JT after clustering
factors and adding the leaf variable nodes.

Figure 6.(b).
Once we have defined the factors and obtained the

reduced JT, as in the case of BP, we associate each fi with
different factors from the joint probability distribution. This
can be done by simply assigning the set of factors used at
each step in VE to the corresponding factor in the clique
tree. Thus, in our example, one possible assignment is:

f1(A,B,C,D) = p(A) p(B|A) p(C|A,B) p(D|A)

f2(C,D,E) = p(E|C)

f3(D,E, F) = p(F |D,E)

f4(F,G) = p(G|F)

(15)

To calculate the unconditional probabilities in the JT we
use the same message passing scheme as in BP. The only
difference is that the scopes of the messages from nodes to
factors and from factors to nodes, given in equations (11)
and (12), depend on multiple random variables rather than
just one. For example, the scope of the message from cluster
node A,B to f1 is A,B, i.e. µAB,f1(A,B). The list of all
messages needed to calculate the marginal probabilities are
shown in the Supplementary Material.

The unconditional joint probability for the variables in
cluster node Xs, assuming the graph is a BN, is given by:

p(Xs) =
∏

fj∈Fs

µfj ,Xs
(Xs) (16)

where Fs are the factor nodes in the neighbourhood of the
cluster node Xs. To calculate the marginal probability for
one random variable in the set Xs from p(Xs), we just sum
over the other variables in Xs. For example, the expression
to calculate p(C), the probability that an attacker obtains
user privileges in Host 1, is given by:

p(C) =
∑

D

p(C,D) =
∑

D

µf1,CD · µf2,CD (17)

Evidence of compromise can then be included in infer-
ences using the JT algorithm in the same way as in BP, as
previously described.

Finally, as in the case of VE, the computational complex-
ity of the JT algorithm is exponential in the scope of the
biggest factor in the clique tree. Concretely, if all variables in
the graph are discrete and have K possible values each (in
our case, K = 2), JT scales in time and space as O(|F |Ks),
where |F | is the number of factors and s is the size of the

9

scope of the largest factor in the clique tree. JT therefore
suffers from the same scalability problems as VE. However,
for JT, we only need to run VE to create the clique tree
once and then compute and store all the messages, which
is significantly more efficient than VE, where the algorithm
needs to be run from the start each time we want to compute
the marginal probability for a single node.

5 EXPERIMENTS

In this section we present our experimental results compar-
ing the performance of JT to that of the VE algorithm used
in [9]. More broadly, the purpose of the experiments is to
analyse the performance of the VE and JT algorithms for
inference in BAGs in terms of both time and the memory
requirements. This allows us to examine their suitability for
static and dynamic analysis of AGs, as the BAG models pro-
posed in the literature [9], [12], [20] have not been evaluated
experimentally. Beyond the differences between VE and JT
when used for inference in BNs, we also want to highlight,
through these experiments, the impact of the elimination
ordering heuristic. For VE we establish the elimination
ordering at random, since in [9] no elimination ordering is
proposed, whereas for JT, we use the min-weight heuristic
[25] to find the elimination ordering needed to build the
clique tree. For the implementation of both algorithms we
use the Bayes Net toolbox for Matlab3.

To provide a comprehensive evaluation of the algorithms
we have used synthetic AGs, as many graphs of different
sizes and structure are needed to provide meaningful per-
formance results. Such a broad range of empirical AGs is not
available especially as generating AGs for real systems is
far from trivial. Furthermore, typical structures for AGs are
not clear from the examples encountered in the literature,
and we expect them to vary significantly since they depend
on both the network topology and the number of vulner-
abilities. In view of these limitations and in order to give
a good characterisation of the performance of VE and JT
we have considered two kind of structures for our synthetic
AGs: Random graphs, where we control the in-degree of the
nodes (which is related to the number of vulnerabilities on
each network node), and cluster graphs, where we explore
the behaviour of the algorithms with respect to the size of
the clusters. We expect real use-cases to have a range of
structures between these two kind of graphs depending on
the network topology. We also include in our discussion an
AG generated using a realistic use-case representative of the
corporate network of an SME.

The values for the probabilities of exploitation of vulner-
abilities needed to build the conditional probability tables
are drawn at random, as well as the kind of logical condi-
tions to build these tables: AND/OR. It is important to note
that this does not have an impact on the time or memory
required to calculate the unconditional probabilities with
VE and JT, but only on the values of the probabilities of
the nodes.

3. Implementation available at https://github.com/bayesnet/bnt
Our code implementation with the experiments for the BAG model can
be found at http://rissgroup.org/

Fig. 7. Example of a network representative of an SME.

5.1 AG example

For our first example, we have built a realistic small use-case
scenario, to show the results of our proposed techniques
in a understandable way. Later, we will show more tests
performed on larger AGs generated synthetically.

Figure 7 shows a typical network for an SME. In detail,
we have two internal LANs (one for finance/accounting,
one for technicians), a Wireless LAN for visitors (but that,
if compromised, can be also used to reach the internal
network), and finally a DMZ hosting the SME servers (in
the example, a public Web Server, a Mail Server, and a Local
Database used to store public and private data). In Figure 7
we show for each node its reachable ports and the nodes
from where they are reachable (this includes those ports
open/filtered by the firewall as well as those open/closed
by local firewalls, switches, routers, etc.). Additionally, we
have highlighted vulnerabilities that may be present on the
nodes, the port on which they can be exploited (if remote),
their CVE identifier, the type of vulnerability (DoS, elevation
of privilege, etc.), and the likelihood of exploiting it. We
have based this likelihood on the CVSS Exploitability Sub-
score (divided by 10), which is in line with existing use in
the literature. Although, as discussed in Section 3, this fails
to account for the resources/skills of the attackers and the
knowledge of the existence of an exploit among others. In
our example, when the CVSS Exploitability Subscore is 1.0
(i.e., an easy to use exploit already exists), we have lowered
its value to 0.95. A probability of successful exploitation
of 1.0 would mean that the attacker has already reached
the next security state without necessarily exploiting the
vulnerability, which is not true.

In Figure 8 we show the BAG obtained when the goal of
the attacker is assumed to be to compromise the Database
Server. Note that we have clustered all (similar) users in
one single node in the BAG, and similarly for the system
administrators. From an AG perspective, compromising one
or several machines with the same behaviour (in terms of
connectivity, services running, and vulnerabilities) can be
considered the same in terms of privileges acquired towards
compromising a given target. In contrast, the number of

10

Fig. 8. BAG for the network in Figure 7 showing the unconditional
probabilities that an attacker can successfully reach a security state for
all the nodes in the BAG.

similar machines compromised is important when consid-
ering more generic targets such as information leakage or
botnet recruitment. Furthermore, although in our example
clustering similar machines is a simplification of the reality
(we assume their behaviour to be exactly the same, which
is not necessarily the case) the approximation still depicts
in quite a realistic way the kind of AG we can produce for
typical corporate networks. In our example, we do not con-
sider insider attackers, and we assume that attackers start
the attack from the Internet or from the visitors Wireless
LAN.

Using the JT algorithm, the time required to create the
clique tree and to compute the marginal probabilities for
each node in the BAG, shown in Figure 8, is less than 0.05
seconds on a common desktop computer, which makes JT
suitable as a tool for the analysis of this AG. Although this
example intends to be representative of a small corporate
network, in some practical situations we can expect more
complex and much larger AGs. To assess the suitability
of JT for the analysis of AGs, we use, in the rest of the
experiments, synthetic AGs with varying numbers of nodes
and topologies.

5.2 AGs with pseudo-random structure

For this kind of graphs we build the BAG directly by
generating random DAGs where we limit the maximum
number of parents for each node. This corresponds to limit-
ing the maximum number of vulnerabilities that can allow
an attacker to obtain a certain security condition. In our
opinion, this assumption is reasonable as on real (managed)
corporate networks we expect to have a limited number
of vulnerabilities on each host. Then, for each node Xj

in the graph, we randomly select the number of parents
by drawing an random integer np in the interval [1,m]
uniformly, where m is the maximum number of parents.
After that, we randomly select np parent nodes for Xj from
the set of nodes in the BAG for which Xj is not a parent
node (to avoid directed cycles). For m, we have explored
the values 2, 3, and 4. These values are selected on the
assumption that the number of vulnerabilities to reach a

0 50 100 150 200
10

-2

10
-1

10
0

10
1

10
2

10
3

VE-2

VE-3

VE-4

JT-2

JT-3

JT-4

Number of nodes

T
im

e
(s

)

Fig. 9. Average time to compute the unconditional probabilities for VE
and JT. The notation VE-m and JT-m stands for the value of m, the
maximum number of parents of each node, used to generate the graphs
in each case.

security state is expected to be reduced. For the number
of nodes n in the graph we have explored values in the
range [10, 220]. However, depending on the algorithm and
the value of m we have limited the value of n because of
physical memory limitations. For example, VE could only
be applied to random networks with m = 4 up to n = 60
nodes. For each value of n and m, we have generated 20
random networks and, for each network, we compute the
unconditional probabilities for all the nodes with VE and JT.

We show in Figure 9 the average time required to com-
pute all the unconditional probabilities for VE and JT. In the
case of JT, the reported time includes the time required to
find the elimination order, build the clique tree, compute
all the messages, and calculate the marginal probabilities.
The difference in performance between the algorithms is
remarkable: JT is much faster than VE in all the cases
considered. For example, for n = 130 and m = 2, the
average time to compute the unconditional probabilities is
less than 1 second for JT, whereas it is almost 1000 seconds
for VE. As described in Section 4, JT only needs to build
the clique tree and compute the messages once, while in VE
we compute everything each time we want to calculate the
unconditional probability in one network node, thus much
less efficient. Besides, the elimination ordering also plays an
important role: a good elimination ordering can reduce the
scope of the factors appearing in the clique tree (or the φi

factors in VE), and thus reduces the size of the tables that
need to be computed and requires less memory.

We report in Figure 10 the average number of nodes
in the scope of the biggest factor for both VE and JT, as
a function of the number of nodes. This corresponds to
the number of variables of the biggest φi and fi for VE
and JT respectively. We first note the big computational
savings of VE and JT when compared to applying brute
force, i.e. computing the joint probability on all the nodes.
We further appreciate, that, again, JT is more efficient than
VE in all the cases. However, the difference between them
here is only due to the elimination ordering algorithm.
As mentioned before, we have not used any elimination
ordering for VE, as none was proposed in [9], whereas for
JT we have used the min-weight heuristic. When using the
same elimination ordering, we should expect similar results

11

0 50 100 150 200
0

5

10

15

20

25

VE-2

VE-3

VE-4

JT-2

JT-3

JT-4
Baseline

Number of nodes

A
v

g
.

m
ax

#
o

f
cl

u
st

er
ed

n
o

d
es

Fig. 10. Average number of nodes of the biggest factor for VE and JT.
The notation VE-m and JT-m stands for the value of m, the maximum
number of parents of each node, used to generate the graphs in each
case. The black-dotted line indicates the memory required when apply-
ing brute force.

for VE and JT. We can observe the computational savings
in terms of memory (and then, also in time) when using an
elimination ordering heuristic. Note that the tables needed
to compute the factors in VE and JT grow exponentially
with the number of variables in the scope of the factors.
For example, for n = 130 and m = 2 the average number
of nodes in the biggest factor for VE is approximately 23,
whereas for JT is 14. This means that the average memory
required to store these factors (considering that we use 8
bytes to store each entry in the table) is 223+3/10242 = 64
Megabytes for VE without an elimination ordering heuristic
and only 214+3/10242 = 0.125 Megabytes for JT using the
min-weight heuristic.

As described in Section 4, when evidence of compromise
is observed in some of the graph nodes, the JT algorithm
does not need to build the clique tree again but only to
recompute the messages taking into account the evidence.
In this sense, static analysis with the JT algorithm consists
in building the clique tree, computing all the messages
and calculating the unconditional probabilities in the ab-
sence of any evidence of compromise. In contrast, dynamic
analysis consists only in recomputing all the messages and
recalculating the marginal probabilities (conditioned on the
evidence). This scenario is frequent in AG analysis when
correlating with compromise evidence from IDS and SIEM
at run-time. Figure 11 shows the difference in time between
the static and the dynamic analysis using the JT for graphs
with m = 4 and nodes n varying from 10 to 90. For the
dynamic analysis we randomly select one node where we
consider the evidence has been observed. It is interesting to
note that, although the time to recompute the probabilities
is lower, the difference is not very significant. This means
that, for pseudo-random graphs, the bottleneck of the JT
algorithm is the computation of the messages rather than
the elimination ordering algorithm used to build the tree,
since the number of variables for each factor is high (at least
for some factors), as we can observe in Figure 10. This is due
to the fact that the generated graphs are highly connected.
This observation does not apply in the case of VE as the
steps to compute the marginal probabilities are the same for
static and dynamic analysis.

0 10 20 30 40 50 60 70 80 90 100

0

2

4

6

8

10

12

14

Number of nodes

T
im

e
(s

)

Static

Dynamic

Fig. 11. Time to compute the unconditional probabilities with the JT
for pseudo-random graphs with m = 4 for the static and the dynamic
analysis of the BAGs (when we observe evidence at one node).

5.3 AGs with cluster structure

To generate synthetic graphs with a cluster structure, we
have considered networks with clusters of the same size,
nc. For each cluster, we have generated pseudo-random
subgraphs limiting the maximum number of parents for
each node to m. Finally, we have included dependencies
between clusters by adding one edge from one node in each
cluster to one node in other clusters provided that the added
edge preserves the DAG structure required for BNs. For the
first experiment we have set nc = 10 and varied the nodes
in the network from 100 to 1000. Then, we have measured
the time required to compute the unconditional probabilities
using VE (with random elimination ordering) and JT (using
min-weight to build the clique tree) for both the static and
the dynamic analysis, considering that we observe evidence
at one node. The results in Figure 12 show again a significant
difference in performance between JT and VE, as in the case
of pseudo-random graphs. The difference here is mainly due
to the fact that in VE we need to recompute everything each
time we calculate the marginal probability for a node rather
than the lack of an elimination ordering heuristic for VE.

We can observe in Figure 12 that the time required by VE
to calculate the marginal probabilities is almost the same for
the static and the dynamic analysis. This is not surprising
as VE basically performs the same operations in both. In
contrast, JT shows a noticeable difference between the time
required for the static and the dynamic analysis. In this case,
the proportion of time required to build the clique tree is
significantly higher than the proportion of time needed to
compute all the messages and calculate the probabilities.
Note that this behaviour is just the opposite of that observed
for pseudo-random networks and can be explained by the
clustered structure of the graph, which leads to smaller
factors in the clique tree.

In Figure 13 we show the average number of nodes in
the scope of the biggest factor for VE and JT. Note that,
again, the difference of applying VE or JT with respect to
the baseline (applying brute force) is huge. Also, as in the
case of the pseudo-random BAGs, we observe a signifcant
difference between JT and VE. In particular, the average
number of nodes in the scope of the biggest factor increases
slowly with the number of nodes in the graph for JT, in
contrast to VE. As before, these differences can be explained
by the use of the min-weight heuristic to find an elimination
ordering when using JT.

12

0 100 200 300 400 500 600 700 800 900 1000 1100
10

-1

10
0

10
1

10
2

10
3

Number of nodes

T
im

e
(s

)

VE

JT

(a)

0 100 200 300 400 500 600 700 800 900 1000 1100
10

-2

10
-1

10
0

10
1

10
2

10
3

Number of nodes

T
im

e
(s

)

VE

JT

(b)

Fig. 12. Time to compute the unconditional probabilities for VE and JT
for cluster BAGs with clusters of size 10 and m = 4: (a) for the static
analysis and (b) for the dynamic analysis (when we observe evidence at
one node).

0 100 200 300 400 500 600 700 800 900 1000 1100

5

6

7

8

9

10

11

12

13

14

VE

JT

Baseline

Number of nodes

A
v

g
.

m
ax

#
o

f
cl

u
st

er
ed

n
o

d
es

Fig. 13. Average number of nodes of the biggest factor for VE and JT for
the cluster BAGs. The black-dotted line indicates the memory required
when applying brute force.

In Figure 14 we show the performance of JT for the static
and the dynamic analysis in cluster graphs whilst varying
the size of the clusters (from 10 to 50) and the size of the
graph (from 100 to 1000), setting m = 4. As in Figure 12, the
difference in time between the two analyses is significant.
Moreover we can appreciate a different behaviour: Whilst
the time required for static analysis still scales exponentially
with the number of nodes, that required for dynamic anal-
ysis broadly scales linearly. The exponential behaviour of
the static analysis is due to the elimination ordering algo-
rithm used to build the clique tree. However, the clustered
structure of the graph combined with weak dependencies
between clusters result in factors of a similar size regardless
of the network size. This allows the computation of the
messages and of the probabilities to scale nearly linearly.

It is important to highlight the reduced time (less than
1 s) required by JT to recompute the unconditional prob-

0 100 200 300 400 500 600 700 800 900 1000 1100

0

50

100

150

Number of nodes

T
im

e
(s

)

JT-10

JT-30

JT-50

(a)

0 100 200 300 400 500 600 700 800 900 1000 1100
0

0.2

0.4

0.6

0.8

1

Number of nodes
T

im
e

(s
)

JT-10

JT-30

JT-50

(b)

Fig. 14. Time to compute the unconditional probabilities for JT algorithm
for cluster BAGs with different cluster sizes (10, 30, and 50) and m = 4:
(a) for the static analysis and (b) for the dynamic analysis (when we
observe evidence at one node).

0 100 200 300 400 500 600 700 800 900 1000 1100

5

6

7

8

9

10

11

12

13

14

JT-10

JT-30

JT-50

Number of nodes

A
v

g
.

m
ax

#
o

f
cl

u
st

er
ed

n
o

d
es

Fig. 15. Average number of nodes of the biggest factor for VE and JT for
the cluster BAGs. The black-dotted line indicates the memory required
when applying brute force.

abilities when we observe evidence of compromise. This
makes JT an appealing choice to perform dynamic analysis
on real AGs, to select and apply risk mitigation strategies
at run-time. In contrast, the high cost of recomputing the
same probabilities for VE renders it unusable in practice. For
static analysis, the exponential memory and time scalability
of JT (and so, VE) still limits their application to medium-
size graphs, although this analysis can be done off-line
and also depends on the topology of the AG. Furthermore,
modelling with AGs can be performed at different levels
of granularity. For example, the AG model in [43] only
considers vulnerabilities that let an attacker move from
one subnetwork to another. From the AG perspective this
means that compromises within a subnetwork are con-
sidered equivalent for the risk assessment of the whole
network. In this sense, intermediate levels of granularity can
be adopted to achieve better accuracy when modelling the

13

AG. In any case, taking into account the cluster structure of
networks in AG modelling is a key aspect to be considered
to perform a tractable dynamic risk assessment of networks
with BAGs using the JT algorithm.

In Figure 15 we show the average number of nodes in
the scope of the biggest factor as a function of the total
nodes when applying JT and varying cluster size. Similarly
to Figure 13, we observe that the increase in size of the
biggest factor is slow. Thus, the factor that affects most the
memory required to apply JT is the size of the clusters rather
than the total number of nodes in the graph.

6 EXTENSIONS OF THE BAG MODEL

The BAG model presented in Section 3 can be extended to
analyse more complex aspects of an attack.

The effect of zero-day vulnerabilities can be considered
by adding one extra node (with no parents) connected to
each of the security condition nodes in the graph. The
difficulty lies in estimating a reasonable score to rate their
probability of successful exploitation when building the
conditional probability tables. In [12] the network admi-
nistrator is required to quantify it, but this is not a trivial
task. The same reasoning applies when considering insider
or social engineering attacks.

To model the uncertainty about the evidence that a node
may be compromised (based on IDS and SIEM information)
we should include correction terms in equations (3) and (4).
One possible solution is to add one extra parent node for
each existing node in the BAG, setting the prior probabilities
of these added nodes to 1 (as in the case of the attacker’s
initial state node). Then, we can use the error probability of
the IDS as a parameter to build the conditional probability
tables of the corresponding nodes. The modification of (3)
to compute the probability table in the AND case including
this uncertainty results in:

p(Xi|pai) =

pe, ∃Xj ∈ pai|Xj = F
1− (1− pe)×

(1 −
∏

j:Xj

pvj)
, otherwise

(18)

In the OR case, the modification of expression (4) is given
by:

p(Xi|pai) =

pe, ∀Xj ∈ pai|Xj = F
1− (1− pe)×
∏

j:Xj

(1− pvj)
, otherwise

(19)

where pe is the error probability of the IDS.
In [10] a dynamic BN is proposed to consider variations

in time of the CVSS scores. Although the theoretical model
in [10] is correct, scores do not change rapidly over time,
while additional complexity of the dynamic BN limits its
application in real scenarios. In terms of computational
complexity, it would perhaps be more reasonable to update
the conditional probability distributions in the model we
propose and recompute. To support this claim, the expe-
rimental results in Section 5 show the computational cost
implications of augmenting the complexity of the BAG.

7 CONCLUSIONS

We have proposed in this paper a BN model for AGs and
efficient exact inference techniques for their static and dy-
namic analysis. These techniques allow to assess the risk of
the nodes in a network against cyber-attacks by calculating
the probabilities that an attacker can compromise each node
given the nodes that have been already compromised. These
can help system administrators to respond to an attack or
to take the corresponding countermeasures to an ongoing
intrusion.

We have reviewed and proposed solutions to the short-
comings of existing BAG models in the literature, such as the
implications of adding prior probabilities in the attacker’s
capabilities. In this sense, although some of our assump-
tions are still restrictive, we have proposed and sketched
some direct extensions of the Bayesian model that we will
consider in our future work.

We have also shown the limitations of previous state-of-
the-art techniques to perform static and dynamic analysis
of BAG, and the importance of using efficient algorithms
to calculate the marginal probabilities. To support this, we
have presented an extensive experimental evaluation with
synthetic AGs to measure the time and memory required to
calculate them. This stands in contrast with the related work
where such analysis is missing. Our results show the ad-
vantages of the JT algorithm to perform static and dynamic
analysis of AGs for graphs with hundreds of nodes, which
in most cases would correspond to corporate networks of
thousand of nodes. We have shown the important improve-
ments of the JT algorithm in terms of time and memory with
respect to the VE algorithm proposed in [9].

We have further shown the importance of modelling
AGs taking into account the subnetwork structure of typ-
ical corporate networks. Network clustering enables the
dynamic analysis with the JT algorithm to become tractable
and scales linearly in the number of nodes. This allows to
rapidly integrate new evidence in the analysis and enables
administrators to respond to an ongoing attack.

Further directions include exploring more scalable in-
ference techniques, extending the BAG model to make it
less restrictive, and investigating more accurate means of
estimating the probability of exploitation of vulnerabilities.
Furthermore, beyond static and dynamic analysis, we can
extend our model to other uses, such as prioritising forensic
investigations and evidence collection as suggested in [44].

ACKNOWLEDGEMENTS

This work has been supported by the UK government under
EPSRC grant EP/L022729/1. The authors would like to
thank British Telecom for their collaboration in this research
and our colleagues in our research group for their contribu-
tion to this work through many useful discussions.

REFERENCES

[1] Gartner, Inc., “Gartner Says Worldwide Information Security
Spending Will Grow Almost 8 Percent in 2014 as Organiza-
tions Become More Threat-Aware,” http://www.gartner.com/
newsroom/id/2828722, 2014.

[2] Information is Beautiful, “World’s Biggest Data Breaches,”
http://www.informationisbeautiful.net/visualizations/
worlds-biggest-data-breaches-hacks/, 2015.

14

[3] E. Wheeler, Security Risk Management: Building an Information
Security Risk Management Program from the Ground Up, Syngress
Publishing, 2011.

[4] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing, “Auto-
mated generation and analysis of attack graphs,” in Procs. of the
IEEE Symp. on Security and Privacy, 2002, pp. 273–284.

[5] S. Jha, O. Sheyner, and J. Wing, “Two formal analyes s of
attack graphs,” in Procs. 15th IEEE Workshop on Computer Security
Foundations, 2002, pp. 49–63.

[6] M. Albanese, S. Jajodia, and S. Noel, “Time-efficient and cost-
effective network hardening using attack graphs,” in Int. Conf. on
Dependable Systems and Networks, 2012, pp. 1–12.

[7] K. Ingols, M. Chu, R. Lippmann, S. Webster, and S. Boyer, “Mod-
eling modern network attacks and countermeasures using attack
graphs,” in Conf. Computer Security Applications, 2009, pp. 117–126.

[8] A. Barth, B.I.P. Rubinstein, M. Sundararajan, J.C. Mitchell, D. Song,
and P.L. Bartlett, “A learning-based approach to reactive security,”
IEEE Trans. on Dependable and Secure Computing, vol. 9, no. 4, pp.
482–493, 2012.

[9] Y. Liu and H. Man, “Network vulnerability assessment using
Bayesian networks,” in Data Mining, Intrusion Detection, Inform.
Assurance, and Data Networks Security, 2005, vol. 5812, pp. 61–71.

[10] M. Frigault, L. Wang, A. Singhal, and S. Jajodia, “Measuring
network security using dynamic Bayesian network,” in Procs. 4th
Workshop on Quality of protection, 2008, pp. 23–30.

[11] L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia, “An attack
graph-based probabilistic security metric,” in Procs. 22nd IFIP WG
11.3 Conf. on Data and Applications Security, 2008, pp. 283–296.

[12] N. Poolsappasit, R. Dewri, and I. Ray, “Dynamic security risk man-
agement using Bayesian attack graphs,” IEEE Trans. on Dependable
and Secure Computing, vol. 9, no. 1, pp. 61–74, 2012.

[13] K.P. Murphy, Machine Learning: A Probabilistic Perspective, MIT
press, Cambridge, MA, 2012.

[14] L. Rabiner and B.H. Juang, “An introduction to hidden Markov
models,” IEEE ASSP Magazine, vol. 3, no. 1, pp. 4–16, 1986.

[15] C. Phillips and L.P. Swiler, “A graph-based system for network-
vulnerability analysis,” in Procs. of the Workshop on New Security
Paradigms, 1998, pp. 71–79.

[16] P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable, graph-based
network vulnerability analysis,” in Procs. 9th Conf. on Computer and
Communications Security, 2002, pp. 217–224.

[17] S. Jajodia, S. Noel, and B. OBerry, “Topological analysis of network
attack vulnerability,” in Managing Cyber Threats, pp. 247–266. 2005.

[18] X. Ou, W. F Boyer, and M.A. McQueen, “A scalable approach
to attack graph generation,” in Procs. 13th Conf. on Computer and
Communications Security, 2006, pp. 336–345.

[19] M. Frigault and L. Wang, “Measuring network security using
Bayesian network-based attack graphs,” in Procs. 3rd IEEE Int.
Workshop on Security, Trust, and Privacy for Software Applications,
2008, pp. 698–703.

[20] M. Frigault, “Measuring Network Security using Bayesian
Network-based Attack Graphs,” M.S. thesis, Concordia Univer-
sity, Montreal, Canada, 2010.

[21] R. Dechter, “Bucket elimination: A unifying framework for prob-
abilistic inference,” in Procs. 12th Int. Conf. on Uncertainty in AI.
Morgan Kaufmann, 1996, pp. 211–219.

[22] S. Arnborg, D. G Corneil, and A. Proskurowski, “Complexity of
finding embeddings in a k-tree,” SIAM J. on Algebraic Discrete
Methods, vol. 8, no. 2, pp. 277–284, 1987.

[23] Common Vulnerability Scoring System, V3, “Development up-
date,” https://www.first.org/cvss, 2015.

[24] S.H. Houmb and V.N.L. Franqueira, “Estimating ToE Risk Level
Using CVSS,” in 7th Int. Conf. on Availability, Reliability, and
Security. IEEE, 2009, pp. 718–725.

[25] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques, MIT press, Cambridge, MA, 2009.

[26] G.F. Cooper, “The computational complexity of probabilistic
inference using Bayesian belief networks,” J. of AI, vol. 42, no.
2, pp. 393–405, 1990.

[27] N.L. Zhang and D. Poole, “A simple approach to Bayesian
network computations,” in Procs. 10th Canadian Conf. on AI, 1994,
pp. 171–178.

[28] M. Fishelson and D. Geiger, “Optimizing exact genetic linkage
computations,” J. of Computational Biology, vol. 11, no. 2-3, pp.
263–275, 2004.

[29] C. Huang and A. Darwiche, “Inference in belief networks: A
procedural guide,” Int. J. of Approximate Reasoning, vol. 15, no.
3, pp. 225–263, 1996.

[30] U. Kjærulff, “Triangulation of Graphs–Algorithms Giving Small
Total State Space,” Tech. Rep. R90-09, Department of Mathematics
and Computer Science, Aalborg University, Denmark, 1990.

[31] B. Schneier, “Attack trees,” Dr. Dobbs journal, vol. 24, no. 12, pp.
21–29, 1999.

[32] J. Pearl, “Reverend Bayes on inference engines: A distributed
hierarchical approach,” in Procs. of the National Conf. on AI, 1982,
pp. 133–136.

[33] J.H. Kim and J. Pearl, “A computational model for causal and
diagnostic reasoning in inference systems,” in Procs. 8th Int. Conf.
on AI, 1983, pp. 190–193.

[34] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference, Morgan Kaufmann, San Francisco, CA, 1988.

[35] C.M. Bishop, Pattern Recognition and Machine Learning, Springer,
New York, NY, 2006.

[36] B.J. Frey, Graphical Models for Machine Learning and Digital Commu-
nication, MIT press, 1998.

[37] F.R. Kschischang, B.J. Frey, and H.A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Trans. on Inform. Theory, vol. 47,
no. 2, pp. 498–519, 2001.

[38] P.P. Shenoy and G.R. Shafer, “Axioms for probability and belief-
function proagation,” in Procs. 4th Conf. on Uncertainty in AI, 1990,
pp. 169–198.

[39] G.R. Shafer and P.P. Shenoy, “Probability propagation,” Annals of
Mathematics and AI, vol. 2, pp. 327–352, 1990.

[40] S.L. Lauritzen and D.T. Spiegelhalter, “Local computations with
probabilities on graphical structures and their applications to
expert systems,” J. of the Royal Statistical Society. Series B (Method-
ological), vol. 50, no. 2, pp. 157–224, 1988.

[41] F.V. Jensen, K.G. Olesen, and S.K. Andersen, “An algebra of
Bayesian belief universes for knowledge-based systems,” Net-
works, vol. 20, no. 5, pp. 637–659, 1990.

[42] V. Lepar and P.P. Shenoy, “A Comparison of Lauritzen-
Spiegelhalter, Hugin, and Shenoy-Shafer Architectures for com-
puting marginals of probability distributions,” in Procs. 14th Conf.
on Uncertainty in AI, 1998, vol. 14, pp. 328–337.

[43] S. Jajodia, S. Noel, P. Kalapa, M. Albanese, and J. Williams, “Caul-
dron mission-centric cyber situational awareness with defense in
depth,” in Military Communications Conf., 2011, pp. 1339–1344.

[44] C. Liu, A. Singhal, and D. Wijesekera, “Creating integrated
evidence graphs for network forensics,” in Advances in Digital
Forensics IX, 2013, pp. 227–241.

Luis Muñoz-González received the PhD degree from University Carlos
III of Madrid. He is currently a Research Associate at the Department
of Computing at Imperial College London. His main research interests
include Bayesian models, approximate inference, probabilistic graphical
models, and machine learning applied to cyber security.

Daniele Sgandurra holds a PhD in Computer Science from the Univer-
sity of Pisa. He is currently a Research Associate at the Department of
Computing, Imperial College London. His main research fields include
virtualization and cloud security, mobile security, threat modelling, social
network security and privacy.

Martı́n Barrère received his PhD degree in Computer Science from the
University of Lorraine, France, in 2014. He is currently a Research As-
sociate at the Department of Computing at Imperial College London. His
main research interests include network and cloud security, autonomic
computing, vulnerability management and digital forensics.

Emil C. Lupu leads the Academic Centre of Excellence in Cyber
Security Research at Imperial College London. His work focuses on
the engineering of resilient, adaptive and trustworthy systems across a
broad range of systems ranging from IoT to Cloud environments. His
prior work includes many contributions on policy-based network and
systems management and security.

