162,522 research outputs found

    Extended-Linking Services: towards a Quality Web

    Get PDF
    A URL takes requesters from a citation to a destination… provided, of course, the URL is still valid. The current chaotic web is wonderful in its way. However, within this chaotic web, we believe there is a need for a high-quality web of vetted information. The emerging OpenURL standard is the cornerstone of a worldwide web with high-quality links that feature properties such as: •Persistence: Increase the probable lifetime of citations. •Multiplicity: Produce a menu of targeted services for each citation. •Context-Sensitivity: Resolve a citation in a manner appropriate to the user and to the context. To encourage the development of extended-linking services, NISO formed a committee to develop a standard OpenURL syntax. Our immediate goal is to serve the scholarly-information community immediately. However, the OpenURL technique is widely applicable, and we expect to serve many other information communities

    Integrating public datasets using linked data: challenges and design principles

    No full text
    The world is moving from a state where there is paucity of data to one of surfeit. These data, and datasets, are normally in different datastores and of different formats. Connecting these datasets together will increase their value and help discover interesting relationships amongst them. This paper describes our experience of using Linked Data to inter-operate these different datasets, the challenges we faced, and the solutions we devised. The paper concludes with apposite design principles for using linked data to inter-operate disparate datasets

    "Whose data is it anyway?" The implications of putting small area-level health and social data online

    Get PDF
    International audienceThe planetary exospheres are poorly known in their outer parts, since the neutral densities are low compared with the instruments detection capabilities. The exospheric models are thus often the main source of information at such high altitudes. We present a new way to take into account analytically the additional effect of the radiation pressure on planetary exospheres. In a series of papers, we present with an Hamiltonian approach the effect of the radiation pressure on dynamical trajectories, density profiles and escaping thermal flux. Our work is a generalization of the study by Bishop and Chamberlain (1989). In this second part of our work, we present here the density profiles of atomic Hydrogen in planetary exospheres subject to the radiation pressure. We first provide the altitude profiles of ballistic particles (the dominant exospheric population in most cases), which exhibit strong asymmetries that explain the known geotail phenomenon at Earth. The radiation pressure strongly enhances the densities compared with the pure gravity case (i.e. the Chamberlain profiles), in particular at noon and midnight. We finally show the existence of an exopause that appears naturally as the external limit for bounded particles, above which all particles are escaping

    Metadata enrichment for digital heritage: users as co-creators

    Get PDF
    This paper espouses the concept of metadata enrichment through an expert and user-focused approach to metadata creation and management. To this end, it is argued the Web 2.0 paradigm enables users to be proactive metadata creators. As Shirky (2008, p.47) argues Web 2.0’s social tools enable “action by loosely structured groups, operating without managerial direction and outside the profit motive”. Lagoze (2010, p. 37) advises, “the participatory nature of Web 2.0 should not be dismissed as just a popular phenomenon [or fad]”. Carletti (2016) proposes a participatory digital cultural heritage approach where Web 2.0 approaches such as crowdsourcing can be sued to enrich digital cultural objects. It is argued that “heritage crowdsourcing, community-centred projects or other forms of public participation”. On the other hand, the new collaborative approaches of Web 2.0 neither negate nor replace contemporary standards-based metadata approaches. Hence, this paper proposes a mixed metadata approach where user created metadata augments expert-created metadata and vice versa. The metadata creation process no longer remains to be the sole prerogative of the metadata expert. The Web 2.0 collaborative environment would now allow users to participate in both adding and re-using metadata. The case of expert-created (standards-based, top-down) and user-generated metadata (socially-constructed, bottom-up) approach to metadata are complementary rather than mutually-exclusive. The two approaches are often mistakenly considered as dichotomies, albeit incorrectly (Gruber, 2007; Wright, 2007) . This paper espouses the importance of enriching digital information objects with descriptions pertaining the about-ness of information objects. Such richness and diversity of description, it is argued, could chiefly be achieved by involving users in the metadata creation process. This paper presents the importance of the paradigm of metadata enriching and metadata filtering for the cultural heritage domain. Metadata enriching states that a priori metadata that is instantiated and granularly structured by metadata experts is continually enriched through socially-constructed (post-hoc) metadata, whereby users are pro-actively engaged in co-creating metadata. The principle also states that metadata that is enriched is also contextually and semantically linked and openly accessible. In addition, metadata filtering states that metadata resulting from implementing the principle of enriching should be displayed for users in line with their needs and convenience. In both enriching and filtering, users should be considered as prosumers, resulting in what is called collective metadata intelligence

    A Framework for Aggregating Private and Public Web Archives

    Full text link
    Personal and private Web archives are proliferating due to the increase in the tools to create them and the realization that Internet Archive and other public Web archives are unable to capture personalized (e.g., Facebook) and private (e.g., banking) Web pages. We introduce a framework to mitigate issues of aggregation in private, personal, and public Web archives without compromising potential sensitive information contained in private captures. We amend Memento syntax and semantics to allow TimeMap enrichment to account for additional attributes to be expressed inclusive of the requirements for dereferencing private Web archive captures. We provide a method to involve the user further in the negotiation of archival captures in dimensions beyond time. We introduce a model for archival querying precedence and short-circuiting, as needed when aggregating private and personal Web archive captures with those from public Web archives through Memento. Negotiation of this sort is novel to Web archiving and allows for the more seamless aggregation of various types of Web archives to convey a more accurate picture of the past Web.Comment: Preprint version of the ACM/IEEE Joint Conference on Digital Libraries (JCDL 2018) full paper, accessible at the DO

    Chemical information matters: an e-Research perspective on information and data sharing in the chemical sciences

    No full text
    Recently, a number of organisations have called for open access to scientific information and especially to the data obtained from publicly funded research, among which the Royal Society report and the European Commission press release are particularly notable. It has long been accepted that building research on the foundations laid by other scientists is both effective and efficient. Regrettably, some disciplines, chemistry being one, have been slow to recognise the value of sharing and have thus been reluctant to curate their data and information in preparation for exchanging it. The very significant increases in both the volume and the complexity of the datasets produced has encouraged the expansion of e-Research, and stimulated the development of methodologies for managing, organising, and analysing "big data". We review the evolution of cheminformatics, the amalgam of chemistry, computer science, and information technology, and assess the wider e-Science and e-Research perspective. Chemical information does matter, as do matters of communicating data and collaborating with data. For chemistry, unique identifiers, structure representations, and property descriptors are essential to the activities of sharing and exchange. Open science entails the sharing of more than mere facts: for example, the publication of negative outcomes can facilitate better understanding of which synthetic routes to choose, an aspiration of the Dial-a-Molecule Grand Challenge. The protagonists of open notebook science go even further and exchange their thoughts and plans. We consider the concepts of preservation, curation, provenance, discovery, and access in the context of the research lifecycle, and then focus on the role of metadata, particularly the ontologies on which the emerging chemical Semantic Web will depend. Among our conclusions, we present our choice of the "grand challenges" for the preservation and sharing of chemical information
    corecore