13 research outputs found

    PREDICCI脫N NO LINEAL Y AN脕LISIS DE SERIES TEMPORALES DE VARIABLES MICROMETEOROL脫GICAS MEDIDAS EN EL PANTANAL MATOGROSSENSE

    Get PDF
    Las variables micrometeorol贸gicas medidas en ecosistemas poseen comportamiento no lineal y representan la din谩mica de los procesos f铆sicos y biol贸gicos que ocurren entre la superficie vegetal y la atm贸sfera. Por lo tanto, el objetivo de este trabajo fue entender el comportamiento micrometeorol贸gico de un bosque estacionalmente inundado en el Pantanal Matogrossense, a partir del an谩lisis de las series temporales de saldo de radiaci贸n, temperatura y humedad del aire (con datos de 15 en 15 minutos), medido sobre el pabell贸n, y hacer predicciones utilizando la teor铆a de los sistemas din谩micos. Fue aplicado el m茅todo de predicci贸n no lineal simple que utiliza una serie medida para estimar una serie prevista, que se comprueba en t茅rminos de correlaci贸n, exactitud y errores dentro del tiempo establecido por el par谩metro de predicci贸n de confianza. Los resultados evidencian la existencia de atractores extra帽os de baja dimensi贸n fractal y sensibles a la estacionalidad, y que el m茅todo de predicci贸n no lineal simple captura la din谩mica general de las series temporales micrometeorol贸gicas medidas

    Enabling virtualization technologies for enhanced cloud computing

    Get PDF
    Cloud Computing is a ubiquitous technology that offers various services for individual users, small businesses, as well as large scale organizations. Data-center owners maintain clusters of thousands of machines and lease out resources like CPU, memory, network bandwidth, and storage to clients. For organizations, cloud computing provides the means to offload server infrastructure and obtain resources on demand, which reduces setup costs as well as maintenance overheads. For individuals, cloud computing offers platforms, resources and services that would otherwise be unavailable to them. At the core of cloud computing are various virtualization technologies and the resulting Virtual Machines (VMs). Virtualization enables cloud providers to host multiple VMs on a single Physical Machine (PM). The hallmark of VMs is the inability of the end-user to distinguish them from actual PMs. VMs allow cloud owners such essential features as live migration, which is the process of moving a VM from one PM to another while the VM is running, for various reasons. Features of the cloud such as fault tolerance, geographical server placement, energy management, resource management, big data processing, parallel computing, etc. depend heavily on virtualization technologies. Improvements and breakthroughs in these technologies directly lead to introduction of new possibilities in the cloud. This thesis identifies and proposes innovations for such underlying VM technologies and tests their performance on a cluster of 16 machines with real world benchmarks. Specifically the issues of server load prediction, VM consolidation, live migration, and memory sharing are attempted. First, a unique VM resource load prediction mechanism based on Chaos Theory is introduced that predicts server workloads with high accuracy. Based on these predictions, VMs are dynamically and autonomously relocated to different PMs in the cluster in an attempt to conserve energy. Experimental evaluations with a prototype on real world data- center load traces show that up to 80% of the unused PMs can be freed up and repurposed, with Service Level Objective (SLO) violations as little as 3%. Second, issues in live migration of VMs are analyzed, based on which a new distributed approach is presented that allows network-efficient live migration of VMs. The approach amortizes the transfer of memory pages over the life of the VM, thus reducing network traffic during critical live migration. The prototype reduces network usage by up to 45% and lowers required time by up to 40% for live migration on various real-world loads. Finally, a memory sharing and management approach called ACE-M is demonstrated that enables VMs to share and utilize all the memory available in the cluster remotely. Along with predictions on network and memory, this approach allows VMs to run applications with memory requirements much higher than physically available locally. It is experimentally shown that ACE-M reduces the memory performance degradation by about 75% and achieves a 40% lower network response time for memory intensive VMs. A combination of these innovations to the virtualization technologies can minimize performance degradation of various VM attributes, which will ultimately lead to a better end-user experience

    Statistical and Dynamical Modeling of Riemannian Trajectories with Application to Human Movement Analysis

    Get PDF
    abstract: The data explosion in the past decade is in part due to the widespread use of rich sensors that measure various physical phenomenon -- gyroscopes that measure orientation in phones and fitness devices, the Microsoft Kinect which measures depth information, etc. A typical application requires inferring the underlying physical phenomenon from data, which is done using machine learning. A fundamental assumption in training models is that the data is Euclidean, i.e. the metric is the standard Euclidean distance governed by the L-2 norm. However in many cases this assumption is violated, when the data lies on non Euclidean spaces such as Riemannian manifolds. While the underlying geometry accounts for the non-linearity, accurate analysis of human activity also requires temporal information to be taken into account. Human movement has a natural interpretation as a trajectory on the underlying feature manifold, as it evolves smoothly in time. A commonly occurring theme in many emerging problems is the need to \emph{represent, compare, and manipulate} such trajectories in a manner that respects the geometric constraints. This dissertation is a comprehensive treatise on modeling Riemannian trajectories to understand and exploit their statistical and dynamical properties. Such properties allow us to formulate novel representations for Riemannian trajectories. For example, the physical constraints on human movement are rarely considered, which results in an unnecessarily large space of features, making search, classification and other applications more complicated. Exploiting statistical properties can help us understand the \emph{true} space of such trajectories. In applications such as stroke rehabilitation where there is a need to differentiate between very similar kinds of movement, dynamical properties can be much more effective. In this regard, we propose a generalization to the Lyapunov exponent to Riemannian manifolds and show its effectiveness for human activity analysis. The theory developed in this thesis naturally leads to several benefits in areas such as data mining, compression, dimensionality reduction, classification, and regression.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    corecore