101 research outputs found

    Adaptive waveform design for SAR in a crowded spectrum

    Get PDF
    This thesis concerns the development of an adaptive waveform design scheme for synthetic aperture radar (SAR) to support its operation in the increasingly crowded radio frequency (RF) spectrum, focusing on mitigating the effects of external RF interference. The RF spectrum is a finite resource and the rapid expansion of the telecommunications industry has seen radar users face a significant restriction in the range of available operational frequencies. This crowded spectrum scenario leads to increased likelihood of RF interference either due to energy leakage from neighbouring spectral users or from unlicensed transmitters. SAR is a wide bandwidth radar imaging mode which exploits the motion of the radar platform to form an image using multiple one dimensional profiles of the scene of interest known as the range profile. Due to its wideband nature, SAR is particularly vulnerable to RF interference which causes image impairments and overall reduction in quality. Altering the approach for radar energy transmission across the RF spectrum is now imperative to continue effective operation. Adaptive waveforms have recently become feasible for implementation and offer the much needed flexibility in the choice and control over radar transmission. However, there is a critically small processing time frame between waveform reception and transmission, which necessitates the use of computationally efficient processing algorithms to use adaptivity effectively. This simulation-based study provides a first look at adaptive waveform design for SAR to mitigate the detrimental effects of RF interference on a pulse-to-pulse basis. Standard SAR systems rely on a fixed waveform processing format on reception which restricts its potential to reap the benefits of adaptive waveform design. Firstly, to support waveform design for SAR, system identification techniques are applied to construct an alternative receive processing method which allows flexibility in waveform type. This leads to the main contribution of the thesis which is the formation of an adaptive spectral waveform design scheme. A computationally efficient closed-form expression for the waveform spectrum that minimizes the error in the estimate of the SAR range profile on a pulse to pulse basis is derived. The range profile and the spectrum of the interference are estimated at each pulse. The interference estimate is then used to redesign the proceeding waveform for estimation of the range profile at the next radar platform position. The solution necessitates that the energy is spread across the spectrum such that it competes with the interferer. The scenario where the waveform admits gaps in the spectrum in order to mitigate the effects of the interference is also detailed and is the secondary major thesis contribution. A series of test SAR images demonstrate the efficacy of these techniques and yield reduced interference effects compared to the standard SAR waveform

    Interference Mitigation for FMCW Radar With Sparse and Low-Rank Hankel Matrix Decomposition

    Full text link
    In this paper, the interference mitigation for Frequency Modulated Continuous Wave (FMCW) radar system with a dechirping receiver is investigated. After dechirping operation, the scattered signals from targets result in beat signals, i.e., the sum of complex exponentials while the interferences lead to chirp-like short pulses. Taking advantage of these different time and frequency features between the useful signals and the interferences, the interference mitigation is formulated as an optimization problem: a sparse and low-rank decomposition of a Hankel matrix constructed by lifting the measurements. Then, an iterative optimization algorithm is proposed to tackle it by exploiting the Alternating Direction of Multipliers (ADMM) scheme. Compared to the existing methods, the proposed approach does not need to detect the interference and also improves the estimation accuracy of the separated useful signals. Both numerical simulations with point-like targets and experiment results with distributed targets (i.e., raindrops) are presented to demonstrate and verify its performance. The results show that the proposed approach is generally applicable for interference mitigation in both stationary and moving target scenarios.Comment: 12 pages, 8 figure

    Iterative synthetic aperture radar imaging algorithms

    Get PDF
    Synthetic aperture radar is an important tool in a wide range of civilian and military imaging applications. This is primarily due to its ability to image in all weather conditions, during both the day and the night, unlike optical imaging systems. A synthetic aperture radar system contains a step which is not present in an optical imaging system, this is image formation. This is required because the acquired data from the radar sensor does not directly correspond to the image. Instead, to form an image, the system must solve an inverse problem. In conventional scenarios, this inverse problem is relatively straight forward and a matched lter based algorithm produces an image of suitable image quality. However, there are a number of interesting scenarios where this is not the case. Scenarios where standard image formation algorithms are unsuitable include systems with data undersampling, errors in the system observation model and data that is corrupted by radio frequency interference. Image formation in these scenarios will form the topics of this thesis and a number of iterative algorithms are proposed to achieve image formation. The motivation for these proposed algorithms is primarily from the eld of compressed sensing, which considers the recovery of signals with a low-dimensional structure. The rst contribution of this thesis is the development of fast algorithms for the system observation model and its adjoint. These algorithms are required by large-scale gradient based iterative algorithms for image formation. The proposed algorithms are based on existing fast back-projection algorithms, however, a new decimation strategy is proposed which is more suitable for some applications. The second contribution is the development of a framework for iterative near- eld image formation, which uses the proposed fast algorithms. It is shown that the framework can be used, in some scenarios, to improve the visual quality of images formed from fully sampled data and undersampled data, when compared to images formed using matched lter based algorithms. The third contribution concerns errors in the system observation model. Algorithms that correct these errors are commonly referred to as autofocus algorithms. It is shown that conventional autofocus algorithms, which work as a post-processor on the formed image, are unsuitable for undersampled data. Instead an autofocus algorithm is proposed which corrects errors within the iterative image formation procedure. The proposed algorithm is provably stable and convergent with a faster convergence rate than previous approaches. The nal contribution is an algorithm for ultra-wideband synthetic aperture radar image formation. Due to the large spectrum over which the ultra-wideband signal is transmitted, there is likely to be many other users operating within the same spectrum. These users can produce signi cant radio frequency interference which will corrupt the received data. The proposed algorithm uses knowledge of the RFI spectrum to minimise the e ect of the RFI on the formed image

    Radio astronomical imaging in the presence of strong radio interference

    Get PDF
    Radio-astronomical observations are increasingly contaminated by interference, and suppression techniques become essential. A powerful candidate for interference mitigation is adaptive spatial filtering. We study the effect of spatial filtering techniques on radio astronomical imaging. Current deconvolution procedures such as CLEAN are shown to be unsuitable to spatially filtered data, and the necessary corrections are derived. To that end, we reformulate the imaging (deconvolution/calibration) process as a sequential estimation of the locations of astronomical sources. This not only leads to an extended CLEAN algorithm, the formulation also allows to insert other array signal processing techniques for direction finding, and gives estimates of the expected image quality and the amount of interference suppression that can be achieved. Finally, a maximum likelihood procedure for the imaging is derived, and an approximate ML image formation technique is proposed to overcome the computational burden involved. Some of the effects of the new algorithms are shown in simulated images. Keywords: Radio astronomy, synthesis imaging, parametric imaging, interference mitigation, spatial filtering, maximum likelihood, minimum variance, CLEAN.Comment: 27 pages, 7 figures. Paper with higher resolution color figures at http://cobalt.et.tudelft.nl/~leshem/postscripts/leshem/imaging.ps.g

    RAD - Research and Education 2010

    Get PDF

    Advanced RFI detection, RFI excision, and spectrum sensing : algorithms and performance analyses

    Get PDF
    Because of intentional and unintentional man-made interference, radio frequency interference (RFI) is causing performance loss in various radio frequency operating systems such as microwave radiometry, radio astronomy, satellite communications, ultra-wideband communications, radar, and cognitive radio. To overcome the impact of RFI, a robust RFI detection coupled with an efficient RFI excision are, thus, needed. Amongst their limitations, the existing techniques tend to be computationally complex and render inefficient RFI excision. On the other hand, the state-of-the-art on cognitive radio (CR) encompasses numerous spectrum sensing techniques. However, most of the existing techniques either rely on the availability of the channel state information (CSI) or the primary signal characteristics. Motivated by the highlighted limitations, this Ph.D. dissertation presents research investigations and results grouped into three themes: advanced RFI detection, advanced RFI excision, and advanced spectrum sensing. Regarding advanced RFI detection, this dissertation presents five RFI detectors: a power detector (PD), an energy detector (ED), an eigenvalue detector (EvD), a matrix-based detector, and a tensor-based detector. First, a computationally simple PD is investigated to detect a brodband RFI. By assuming Nakagami-m fading channels, exact closed-form expressions for the probabilities of RFI detection and of false alarm are derived and validated via simulations. Simulations also demonstrate that PD outperforms kurtosis detector (KD). Second, an ED is investigated for RFI detection in wireless communication systems. Its average probability of RFI detection is studied and approximated, and asymptotic closed-form expressions are derived. Besides, an exact closed-form expression for its average probability of false alarm is derived. Monte-Carlo simulations validate the derived analytical expressions and corroborate that the investigated ED outperforms KD and a generalized likelihood ratio test (GLRT) detector. The performance of ED is also assessed using real-world RFI contaminated data. Third, a blind EvD is proposed for single-input multiple-output (SIMO) systems that may suffer from RFI. To characterize the performance of EvD, performance closed-form expressions valid for infinitely huge samples are derived and validated through simulations. Simulations also corroborate that EvD manifests, even under sample starved settings, a comparable detection performance with a GLRT detector fed with the knowledge of the signal of interest (SOI) channel and a matched subspace detector fed with the SOI and RFI channels. At last, for a robust detection of RFI received through a multi-path fading channel, this dissertation presents matrix-based and tensor-based multi-antenna RFI detectors while introducing a tensor-based hypothesis testing framework. To characterize the performance of these detectors, performance analyses have been pursued. Simulations assess the performance of the proposed detectors and validate the derived asymptotic characterizations. Concerning advanced RFI excision, this dissertation introduces a multi-linear algebra framework to the multi-interferer RFI (MI-RFI) excision research by proposing a multi-linear subspace estimation and projection (MLSEP) algorithm for SIMO systems. Having employed smoothed observation windows, a smoothed MLSEP (s-MLSEP) algorithm is also proposed. MLSEP and s-MLSEP require the knowledge of the number of interferers and their respective channel order. Accordingly, a novel smoothed matrix-based joint number of interferers and channel order enumerator is proposed. Performance analyses corroborate that both MLSEP and s-MLSEP can excise all interferers when the perturbations get infinitesimally small. For such perturbations, the analyses also attest that s-MLSEP exhibits a faster convergence to a zero excision error than MLSEP which, in turn, converges faster than a subspace projection algorithm. Despite its slight complexity, simulations and performance assessment on real-world data demonstrate that MLSEP outperforms projection-based RFI excision algorithms. Simulations also corroborate that s-MLSEP outperforms MLSEP as the smoothing factor gets smaller. With regard to advanced spectrum sensing, having been inspired by an F–test detector with a simple analytical false alarm threshold expression considered an alternative to the existing blind detectors, this dissertation presents and evaluates simple F–test based spectrum sensing techniques that do not require the knowledge of CSI for multi-antenna CRs. Exact and asymptotic analytical performance closed-form expressions are derived for the presented detectors. Simulations assess the performance of the presented detectors and validate the derived expressions. For an additive noise exhibiting the same variance across multiple-antenna frontends, simulations also corroborate that the presented detectors are constant false alarm rate detectors which are also robust against noise uncertainty

    Coherent Change Detection Under a Forest Canopy

    Get PDF
    Coherent change detection (CCD) is an established technique for remotely monitoring landscapes with minimal vegetation or buildings. By evaluating the local complex correlation between a pair of synthetic aperture radar (SAR) images acquired on repeat passes of an airborne or spaceborne imaging radar system, a map of the scene coherence is obtained. Subtle disturbances of the ground are detected as areas of low coherence in the surface clutter. This thesis investigates extending CCD to monitor the ground in a forest. It is formulated as a multichannel dual-layer coherence estimation problem, where the coherence of scattering from the ground is estimated after suppressing interference from the canopy by vertically beamforming multiple image channels acquired at slightly different grazing angles on each pass. This 3D SAR beamforming must preserve the phase of the ground response. The choice of operating wavelength is considered in terms of the trade-off between foliage penetration and change sensitivity. A framework for comparing the performance of different radar designs and beamforming algorithms, as well as assessing the sensitivity to error, is built around the random-volume-over-ground (RVOG) model of forest scattering. If the ground and volume scattering contributions in the received echo are of similar strength, it is shown that an L-band array of just three channels can provide enough volume attenuation to permit reasonable estimation of the ground coherence. The proposed method is demonstrated using an RVOG clutter simulation and a modified version of the physics-based SAR image simulator PolSARproSim. Receiver operating characteristics show that whilst ordinary single-channel CCD is unusable when a canopy is present, 3D SAR CCD permits reasonable detection performance. A novel polarimetric filtering algorithm is also proposed to remove contributions from the ground-trunk double-bounce scattering mechanism, which may mask changes on the ground near trees. To enable this kind of polarimetric processing, fully polarimetric data must be acquired and calibrated. Motivated by an interim version of the Ingara airborne imaging radar, which used a pair of helical antennas to acquire circularly polarised data, techniques for the estimation of polarimetric distortion in the circular basis are investigated. It is shown that the standard approach to estimating cross-talk in the linear basis, whereby expressions for the distortion of reflection-symmetric clutter are linearised and solved, cannot be adapted to the circular basis, because the first-order effects of individual cross-talk parameters cannot be distinguished. An alternative approach is proposed that uses ordinary and gridded trihedral corner reflectors, and optionally dihedrals, to iteratively estimate the channel imbalance and cross-talk parameters. Monte Carlo simulations show that the method reliably converges to the true parameter values. Ingara data is calibrated using the method, with broadly consistent parameter estimates obtained across flights. Genuine scene changes may be masked by coherence loss that arises when the bands of spatial frequencies supported by the two passes do not match. Trimming the spatial-frequency bands to their common area of support would remove these uncorrelated contributions, but the bands, and therefore the required trim, depend on the effective collection geometry at each pixel position. The precise dependence on local slope and collection geometry is derived in this thesis. Standard methods of SAR image formation use a flat focal plane and allow only a single global trim, which leads to spatially varying coherence loss when the terrain is undulating. An image-formation algorithm is detailed that exploits the flexibility offered by back-projection not only to focus the image onto a surface matched to the scene topography but also to allow spatially adaptive trimming. Improved coherence is demonstrated in simulation and using data from two airborne radar systems.Thesis (Ph.D.) -- University of Adelaide, School of Electrical & Electronic Engineering, 202

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium
    • 

    corecore