2,918 research outputs found

    Elastic Time Reversal Mirror Experiment in a Mesoscopic Natural Medium at the Low Noise Underground Laboratory of Rustrel, France

    Get PDF
    A seismic time reversal experiment based on Time Reversal Mirror (TRM) technique was conducted in the mesoscopically scaled medium at the LSBB Laboratory, France. Two sets of 50 Hz geophones were distributed at one meter intervals in two horizontal and parallel galleries 100 m apart, buried 250 m below the surface. The shot source used was a 4 kg sledgehammer. Analysis shows that elastic seismic energy is refocused in space and time to the shot locations with good accuracy. The refocusing ability of seismic energy to the shot locations is roughly achieved for the direct field, and with excellent quality, for the early and later coda. Hyper-focussing is achieved at the shot points as a consequence of the fine scale randomly heterogeneous medium between the galleries. TRM experiment is sensitive to the roughness of the mirror used. Roughness induces a slight experimental discrepancy between recording and re-emitting directions degrading the quality of the reversal process.Comment: 7 pages, 7 figures - This paper aimed at describing time reversal mirror method applied at mesoscopic scale to a natural medium in the frame of an active seismic experiment. The results confirm the hyper-focusing process in an anelastic medium and the efficiency of scattered waves within the coda to refocus at the source using the time reversal mirro

    Statistical stability in time reversal

    Full text link
    When a signal is emitted from a source, recorded by an array of transducers, time reversed and re-emitted into the medium, it will refocus approximately on the source location. We analyze the refocusing resolution in a high frequency, remote sensing regime, and show that, because of multiple scattering, in an inhomogeneous or random medium it can improve beyond the diffraction limit. We also show that the back-propagated signal from a spatially localized narrow-band source is self-averaging, or statistically stable, and relate this to the self-averaging properties of functionals of the Wigner distribution in phase space. Time reversal from spatially distributed sources is self-averaging only for broad-band signals. The array of transducers operates in a remote-sensing regime so we analyze time reversal with the parabolic or paraxial wave equation

    Role of scattering in virtual source array imaging

    Full text link
    We consider imaging in a scattering medium where the illumination goes through this medium but there is also an auxiliary, passive receiver array that is near the object to be imaged. Instead of imaging with the source-receiver array on the far side of the object we image with the data of the passive array on the near side of the object. The imaging is done with travel time migration using the cross correlations of the passive array data. We showed in [J. Garnier and G. Papanicolaou, Inverse Problems {28} (2012), 075002] that if (i) the source array is infinite, (ii) the scattering medium is modeled by either an isotropic random medium in the paraxial regime or a randomly layered medium, and (iii) the medium between the auxiliary array and the object to be imaged is homogeneous, then imaging with cross correlations completely eliminates the effects of the random medium. It is as if we imaged with an active array, instead of a passive one, near the object. The purpose of this paper is to analyze the resolution of the image when both the source array and the passive receiver array are finite. We show with a detailed analysis that for isotropic random media in the paraxial regime, imaging not only is not affected by the inhomogeneities but the resolution can in fact be enhanced. This is because the random medium can increase the diversity of the illumination. We also show analytically that this will not happen in a randomly layered medium, and there may be some loss of resolution in this case.Comment: 22 pages, 4 figure

    Semiclassical Theory of Time-Reversal Focusing

    Full text link
    Time reversal mirrors have been successfully implemented for various kinds of waves propagating in complex media. In particular, acoustic waves in chaotic cavities exhibit a refocalization that is extremely robust against external perturbations or the partial use of the available information. We develop a semiclassical approach in order to quantitatively describe the refocusing signal resulting from an initially localized wave-packet. The time-dependent reconstructed signal grows linearly with the temporal window of injection, in agreement with the acoustic experiments, and reaches the same spatial extension of the original wave-packet. We explain the crucial role played by the chaotic dynamics for the reconstruction of the signal and its stability against external perturbations.Comment: 4 pages, 1 figur

    Time-Reversal of Nonlinear Waves - Applicability and Limitations

    Get PDF
    Time-reversal (TR) refocusing of waves is one of fundamental principles in wave physics. Using the TR approach, "Time-reversal mirrors" can physically create a time-reversed wave that exactly refocus back, in space and time, to its original source regardless of the complexity of the medium as if time were going backwards. Lately, laboratory experiments proved that this approach can be applied not only in acoustics and electromagnetism but also in the field of linear and nonlinear water waves. Studying the range of validity and limitations of the TR approach may determine and quantify its range of applicability in hydrodynamics. In this context, we report a numerical study of hydrodynamic TR using a uni-directional numerical wave tank, implemented by the nonlinear high-order spectral method, known to accurately model the physical processes at play, beyond physical laboratory restrictions. The applicability of the TR approach is assessed over a variety of hydrodynamic localized and pulsating structures' configurations, pointing out the importance of high-order dispersive and particularly nonlinear effects in the refocusing of hydrodynamic stationary envelope solitons and breathers. We expect that the results may motivate similar experiments in other nonlinear dispersive media and encourage several applications with particular emphasis on the field of ocean engineering.Comment: 14 pages, 17 figures ; accepted for publication in Phys. Rev. Fluid

    Enhanced nonlinear imaging through scattering media using transmission matrix based wavefront shaping

    Full text link
    Despite the tremendous progresses in wavefront control through or inside complex scattering media, several limitations prevent reaching practical feasibility for nonlinear imaging in biological tissues. While the optimization of nonlinear signals might suffer from low signal to noise conditions and from possible artifacts at large penetration depths, it has nevertheless been largely used in the multiple scattering regime since it provides a guide star mechanism as well as an intrinsic compensation for spatiotemporal distortions. Here, we demonstrate the benefit of Transmission Matrix (TM) based approaches under broadband illumination conditions, to perform nonlinear imaging. Using ultrashort pulse illumination with spectral bandwidth comparable but still lower than the spectral width of the scattering medium, we show strong nonlinear enhancements of several orders of magnitude, through thicknesses of a few transport mean free paths, which corresponds to millimeters in biological tissues. Linear TM refocusing is moreover compatible with fast scanning nonlinear imaging and potentially with acoustic based methods, which paves the way for nonlinear microscopy deep inside scattering media
    corecore