5,620 research outputs found

    A chaotic spread spectrum system for underwater acoustic communication

    Get PDF
    The work is supported in part by NSFC (Grant no. 61172070), IRT of Shaanxi Province (2013KCT-04), EPSRC (Grant no.Ep/1032606/1).Peer reviewedPostprin

    Differential Phase Estimation with the SeaMARC II Bathymetric Sidescan Sonar System

    Get PDF
    A maximum-likelihood estimator is used to extract differential phase measurements from noisy seafloor echoes received at pairs of transducers mounted on either side of the SeaMARC II bathymetricsidescan sonar system. Carrier frequencies for each side are about 1 kHz apart, and echoes from a transmitted pulse 2 ms long are analyzed. For each side, phase difference sequences are derived from the full complex data consisting of base-banded and digitized quadrature components of the received echoes. With less bias and a lower variance, this method is shown to be more efficient than a uniform mean estimator. It also does not exhibit the angular or time ambiguities commonly found in the histogram method used in the SeaMARC II system. A figure for the estimation uncertainty of the phasedifference is presented, and results are obtained for both real and simulated data. Based on this error estimate and an empirical verification derived through coherent ping stacking, a single filter length of 100 ms is chosen for data processing application

    Underwater acoustic communication under doppler effects

    Get PDF
    In this thesis we perform a research survey of the three available technologies for wireless underwater communications. We discuss the main features and drawbacks inherent to acoustic, RF, and optical communications. We focus our research on underwater acoustic communications, and we analyze and evaluate the channel frequency response of Arraial do Cabo using data acquired in situ. We further investigate the Doppler effect, a phenomenon that is inherent to underwater acoustic channels. We analyze and justify a compensation algorithm to mitigate the Doppler effects. We propose a simplified algorithm version for minimizing the required number of pilot symbols. We also develop a simple strategy to determine how often our proposed compensation method should be retrained. Our main contribution is the proposal of a new receiver design to deal with Doppler effects. We present the idea of iteratively adapt the correlator filter placed at the receiver side. We show that the adaptation of this filter’s support reduces the inter-symbol interference of the estimated symbols. Besides this idea, we demonstrate that the time-dependent phase-shift component of the received signal should be removed beforehand. That is, we propose a modification in the signal processing sequence blocks for improving the symbol estimation. For testing and comparing this new receiver design, we implement a communication model encompassing physical layer aspects. We perform several numerical simulations for single-carrier and multicarrier systems. Simulation results show that our proposal might provide a reduction in the bit error rate for high signal-to-noise ratios. This performance improvement can be observed for all tested relative movement, and even with dense digital signal constellation.Nesta tese foi realizada uma pesquisa extensa sobre as tecnologias existentes para comunicação sem fio subaquática. Foram analisadas as principais características das comunicações acústicas, RF e ótica. O estudo foi aprofundado na comunicação acústica, e foi realizada uma análise da resposta em frequência do canal de Arraial do Cabo com dados adquiridos no local. O efeito Doppler, um fenômeno inerente aos canais subaquáticos acústicos, foi investigado de forma minuciosa. Dentre as técnicas estudas para compensação deste efeito, foi escolhido um algoritmo adaptativo, o qual foi re-analisado com uma nova abordagem. Uma versão simplificada deste algoritmo foi proposta para reduzir a quantidade de símbolos pilotos. Foi também desenvolvida uma estratégia para determinar a frequência de treinamento deste novo algoritmo. A principal contribuição da tese é a proposta de uma nova estrutura de receptor para compensar o efeito Doppler. Nesta estrutura, é proposta a adaptação de forma iterativa do filtro correlator. A adaptação do suporte temporal deste filtro reduz a interferência inter-simbólica. Além desta ideia, foi demonstrado que a componente de fase do sinal recebido, que é dependente do tempo, deve ser removida em um estágio anterior ao usual. Ou seja, foi proposta uma modificação na sequência do processamento do sinal recebido para melhorar a sua estimativa. Para testar esta nova estrutura do receptor, foi implementado um sistema de comunicação. Foram realizadas simulações numéricas com sistemas de uma única e de múltiplas portadoras. Os resultados das simulações mostram que a nova estrutura pode reduzir a quantidade de erros de bits para altos valores de razão sinal-ruído. A melhora do desempenho pode ser observada em todas as velocidades relativas testadas, e também para constelações densas

    Providing the Third Dimension: High-resolution Multibeam Sonar as a Tool for Archaeological Investigations - An Example from the D-day Beaches of Normandy

    Get PDF
    In general, marine archaeological investigations begin in the archives, using historic maps, coast surveys, and other materials, to define submerged areas suspected to contain potentially significant historical sites. Following this research phase, a typical archaeological survey uses sidescan sonar and marine magnetometers as initial search tools. Targets are then examined through direct observation by divers, video, or photographs. Magnetometers can demonstrate the presence, absence, and relative susceptibility of ferrous objects but provide little indication of the nature of the target. Sidescan sonar can present a clear image of the overall nature of a target and its surrounding environment, but the sidescan image is often distorted and contains little information about the true 3-D shape of the object. Optical techniques allow precise identification of objects but suffer from very limited range, even in the best of situations. Modern high-resolution multibeam sonar offers an opportunity to cover a relatively large area from a safe distance above the target, while resolving the true three-dimensional (3-D) shape of the object with centimeter-level resolution. A clear demonstration of the applicability of highresolution multibeam sonar to wreck and artifact investigations occurred this summer when the Naval Historical Center (NHC), the Center for Coastal and Ocean Mapping (CCOM) at the University of New Hampshire, and Reson Inc., collaborated to explore the state of preservation and impact on the surrounding environment of a series of wrecks located off the coast of Normandy, France, adjacent to the American landing sectors The survey augmented previously collected magnetometer and high-resolution sidescan sonar data using a Reson 8125 high-resolution focused multibeam sonar with 240, 0.5° (at nadir) beams distributed over a 120° swath. The team investigated 21 areas in water depths ranging from about three -to 30 meters (m); some areas contained individual targets such as landing craft, barges, a destroyer, troop carrier, etc., while others contained multiple smaller targets such as tanks and trucks. Of particular interest were the well-preserved caissons and blockships of the artificial Mulberry Harbor deployed off Omaha Beach. The near-field beam-forming capability of the Reson 8125 combined with 3-D visualization techniques provided an unprecedented level of detail including the ability to recognize individual components of the wrecks (ramps, gun turrets, hatches, etc.), the state of preservation of the wrecks, and the impact of the wrecks on the surrounding seafloor

    Underwater Optical Wireless Audio Transceiver

    Get PDF
    Scuba diving carries risks that can endanger lives. Many of these risks are preventable. However, an underwater communication system can increase a diver’s safety. Along with providing safety, an underwater communication device can enhance the scuba diver’s enjoyment. A low cost underwater optical wireless audio transceiver is designed. The project consists of the off-the-shelf parts that uses a microphone and speaker to transmit and receive sound. The project uses the concepts of visible light communications and pulse width modulation to transmit and receive sound. Although sound is commonly transmitted through ultrasound methods, visible light communications has several advantages. Visible light communications have higher bandwidth capability, suffer no electromagnetic interference, and travel at the speed of light. It also has its limitations including short ranges and line of sight. Fortunately, there is a small window in the blue-green region that is not heavily absorbed by water. The final prototype of the project is non-functional. However, there are possible fixes that could improve the project’s performance such as higher powered LEDs and collimating lens to focus the light to the receiver
    • …
    corecore