5 research outputs found

    A Temporal Usage Pattern-based Tag Recommendation Approach

    Get PDF
    While social tagging can benefit Internet users managing their resources, it suffers the problems such as diverse and/or unchecked vocabulary and unwillingness to tag. Use of freely new tags and/or reuse of frequent tags have degraded coherence of corresponding resources of each tag that further frustrates people in retrieving information due to cognitive dissonance. Tag recommender systems can recommend users the most relevant tags to the resource they intend to annotate, and drastically transfer the tagging process from generation to recognition to reduce user’s cognitive effort and time. Prior research on tag recommendation has addressed the time-dependence issues of tags by applying a time decaying measure to determine the recurrence probability of a tag according to its recency instead of its usage pattern. In response, this study intends to propose the temporal usage pattern-based tag recommendation technique to consider the usage patterns and temporal characteristic of tags for making recommendations

    Time based tag recommendation using direct and extended users sets

    No full text
    Tagging resources on the Web is a popular activity of standard users. Tag recommendations can help such users assign proper tags and automatically extend the number of annotations available in order to improve, for example, retrieval effectiveness for annotated resources. In this paper we focus on the application of an algorithm designed for Entity Retrieval in the Wikipedia setting. We show how it is possible to map the hyperlink and category structure of Wikipedia to the social tagging setting. The main contribution is a time-based methodology for recommending tags exploiting the structure in the dataset without knowledge about the content of the resources

    Ranking, Labeling, and Summarizing Short Text in Social Media

    Get PDF
    One of the key features driving the growth and success of the Social Web is large-scale participation through user-contributed content – often through short text in social media. Unlike traditional long-form documents – e.g., Web pages, blog posts – these short text resources are typically quite brief (on the order of 100s of characters), often of a personal nature (reflecting opinions and reactions of users), and being generated at an explosive rate. Coupled with this explosion of short text in social media is the need for new methods to organize, monitor, and distill relevant information from these large-scale social systems, even in the face of the inherent “messiness” of short text, considering the wide variability in quality, style, and substance of short text generated by a legion of Social Web participants. Hence, this dissertation seeks to develop new algorithms and methods to ensure the continued growth of the Social Web by enhancing how users engage with short text in social media. Concretely, this dissertation takes a three-fold approach: First, this dissertation develops a learning-based algorithm to automatically rank short text comments associated with a Social Web object (e.g., Web document, image, video) based on the expressed preferences of the community itself, so that low-quality short text may be filtered and user attention may be focused on highly-ranked short text. Second, this dissertation organizes short text through labeling, via a graph- based framework for automatically assigning relevant labels to short text. In this way meaningful semantic descriptors may be assigned to short text for improved classification, browsing, and visualization. Third, this dissertation presents a cluster-based summarization approach for extracting high-quality viewpoints expressed in a collection of short text, while maintaining diverse viewpoints. By summarizing short text, user attention may quickly assess the aggregate viewpoints expressed in a collection of short text, without the need to scan each of possibly thousands of short text items
    corecore