180 research outputs found

    Symmetries of Monocoronal Tilings

    Get PDF
    The vertex corona of a vertex of some tiling is the vertex together with the adjacent tiles. A tiling where all vertex coronae are congruent is called monocoronal. We provide a classification of monocoronal tilings in the Euclidean plane and derive a list of all possible symmetry groups of monocoronal tilings. In particular, any monocoronal tiling with respect to direct congruence is crystallographic, whereas any monocoronal tiling with respect to congruence (reflections allowed) is either crystallographic or it has a one-dimensional translation group. Furthermore, bounds on the number of the dimensions of the translation group of monocoronal tilings in higher dimensional Euclidean space are obtained.Comment: 26 pages, 66 figure

    Decompositions of a polygon into centrally symmetric pieces

    Get PDF
    In this paper we deal with edge-to-edge, irreducible decompositions of a centrally symmetric convex (2k)(2k)-gon into centrally symmetric convex pieces. We prove an upper bound on the number of these decompositions for any value of kk, and characterize them for octagons.Comment: 17 pages, 17 figure

    Determinant Formulae for some Tiling Problems and Application to Fully Packed Loops

    Full text link
    We present determinant formulae for the number of tilings of various domains in relation with Alternating Sign Matrix and Fully Packed Loop enumeration

    Topological mechanics in quasicrystals

    Full text link
    We study topological mechanics in two-dimensional quasicrystalline parallelogram tilings. Topological mechanics has been studied intensively in periodic lattices in the past a few years, leading to the discovery of topologically protected boundary floppy modes in Maxwell lattices. In this paper we extend this concept to quasicrystalline parallelogram tillings and we use the Penrose tiling as our example to demonstrate how these topological boundary floppy modes arise with a small geometric perturbation to the tiling. The same construction can also be applied to disordered parallelogram tilings to generate topological boundary floppy modes. We prove the existence of these topological boundary floppy modes using a duality theorem which relates floppy modes and states of self stress in parallelogram tilings and fiber networks, which are Maxwell reciprocal diagrams to one another. We find that, due to the unusual rotational symmetry of quasicrystals, the resulting topological polarization can exhibit orientations not allowed in periodic lattices. Our result reveals new physics about the interplay between topological states and quasicrystalline order, and leads to novel designs of quasicrystalline topological mechanical metamaterials.Comment: 16 pages, 8 figure
    • 

    corecore