1,061 research outputs found

    Stable Principal Component Pursuit

    Get PDF
    In this paper, we study the problem of recovering a low-rank matrix (the principal components) from a high-dimensional data matrix despite both small entry-wise noise and gross sparse errors. Recently, it has been shown that a convex program, named Principal Component Pursuit (PCP), can recover the low-rank matrix when the data matrix is corrupted by gross sparse errors. We further prove that the solution to a related convex program (a relaxed PCP) gives an estimate of the low-rank matrix that is simultaneously stable to small entrywise noise and robust to gross sparse errors. More precisely, our result shows that the proposed convex program recovers the low-rank matrix even though a positive fraction of its entries are arbitrarily corrupted, with an error bound proportional to the noise level. We present simulation results to support our result and demonstrate that the new convex program accurately recovers the principal components (the low-rank matrix) under quite broad conditions. To our knowledge, this is the first result that shows the classical Principal Component Analysis (PCA), optimal for small i.i.d. noise, can be made robust to gross sparse errors; or the first that shows the newly proposed PCP can be made stable to small entry-wise perturbations.Comment: 5-page paper submitted to ISIT 201

    Consistent Basis Pursuit for Signal and Matrix Estimates in Quantized Compressed Sensing

    Get PDF
    This paper focuses on the estimation of low-complexity signals when they are observed through MM uniformly quantized compressive observations. Among such signals, we consider 1-D sparse vectors, low-rank matrices, or compressible signals that are well approximated by one of these two models. In this context, we prove the estimation efficiency of a variant of Basis Pursuit Denoise, called Consistent Basis Pursuit (CoBP), enforcing consistency between the observations and the re-observed estimate, while promoting its low-complexity nature. We show that the reconstruction error of CoBP decays like M−1/4M^{-1/4} when all parameters but MM are fixed. Our proof is connected to recent bounds on the proximity of vectors or matrices when (i) those belong to a set of small intrinsic "dimension", as measured by the Gaussian mean width, and (ii) they share the same quantized (dithered) random projections. By solving CoBP with a proximal algorithm, we provide some extensive numerical observations that confirm the theoretical bound as MM is increased, displaying even faster error decay than predicted. The same phenomenon is observed in the special, yet important case of 1-bit CS.Comment: Keywords: Quantized compressed sensing, quantization, consistency, error decay, low-rank, sparsity. 10 pages, 3 figures. Note abbout this version: title change, typo corrections, clarification of the context, adding a comparison with BPD

    Unicity conditions for low-rank matrix recovery

    Get PDF
    Low-rank matrix recovery addresses the problem of recovering an unknown low-rank matrix from few linear measurements. Nuclear-norm minimization is a tractible approach with a recent surge of strong theoretical backing. Analagous to the theory of compressed sensing, these results have required random measurements. For example, m >= Cnr Gaussian measurements are sufficient to recover any rank-r n x n matrix with high probability. In this paper we address the theoretical question of how many measurements are needed via any method whatsoever --- tractible or not. We show that for a family of random measurement ensembles, m >= 4nr - 4r^2 measurements are sufficient to guarantee that no rank-2r matrix lies in the null space of the measurement operator with probability one. This is a necessary and sufficient condition to ensure uniform recovery of all rank-r matrices by rank minimization. Furthermore, this value of mm precisely matches the dimension of the manifold of all rank-2r matrices. We also prove that for a fixed rank-r matrix, m >= 2nr - r^2 + 1 random measurements are enough to guarantee recovery using rank minimization. These results give a benchmark to which we may compare the efficacy of nuclear-norm minimization

    RIPless compressed sensing from anisotropic measurements

    Full text link
    Compressed sensing is the art of reconstructing a sparse vector from its inner products with respect to a small set of randomly chosen measurement vectors. It is usually assumed that the ensemble of measurement vectors is in isotropic position in the sense that the associated covariance matrix is proportional to the identity matrix. In this paper, we establish bounds on the number of required measurements in the anisotropic case, where the ensemble of measurement vectors possesses a non-trivial covariance matrix. Essentially, we find that the required sampling rate grows proportionally to the condition number of the covariance matrix. In contrast to other recent contributions to this problem, our arguments do not rely on any restricted isometry properties (RIP's), but rather on ideas from convex geometry which have been systematically studied in the theory of low-rank matrix recovery. This allows for a simple argument and slightly improved bounds, but may lead to a worse dependency on noise (which we do not consider in the present paper).Comment: 19 pages. To appear in Linear Algebra and its Applications, Special Issue on Sparse Approximate Solution of Linear System

    A probabilistic and RIPless theory of compressed sensing

    Full text link
    This paper introduces a simple and very general theory of compressive sensing. In this theory, the sensing mechanism simply selects sensing vectors independently at random from a probability distribution F; it includes all models - e.g. Gaussian, frequency measurements - discussed in the literature, but also provides a framework for new measurement strategies as well. We prove that if the probability distribution F obeys a simple incoherence property and an isotropy property, one can faithfully recover approximately sparse signals from a minimal number of noisy measurements. The novelty is that our recovery results do not require the restricted isometry property (RIP) - they make use of a much weaker notion - or a random model for the signal. As an example, the paper shows that a signal with s nonzero entries can be faithfully recovered from about s log n Fourier coefficients that are contaminated with noise.Comment: 36 page
    • …
    corecore