4 research outputs found

    Noise Cancellation Employing Adaptive Digital Filters for Mobile Applications

    Get PDF
    The persistent improvement of the hybrid adaptive algorithms and the swift growth of signal processing chip enhanced the performance of signal processing technique exalted mobile telecommunication systems. The proposed Artificial Neural Network Hybrid Back Propagation Adaptive Algorithm (ANNHBPAA) for mobile applications exploits relationship among the pure speech signal and noise corrupted signal in order to estimate of the noise. An adaptive linear system responds for changes in its environment as it is operating. Linear networks are gets adjusted at each time step based on new input and target vectors can find weights and biases that minimize the networks sum squared error for recent input and target vectors. Networks of this kind are quite oftenly used for error cancellation, speech signal processing and control systems.    Noise in an audio signal has become major problem and hence mobile communication systems are demanding noise-free signal. In order to achieve noise-free signal various research communities have provided significant techniques. Adaptive noise cancellation (ANC) is a kind of technique which helps in estimation of un-wanted signal and removes them from corrupted signal. This paper introduces an Adaptive Filter Based Noise Cancellation System (AFNCS) that incorporates a hybrid back propagation learning for the adaptive noise cancellation in mobile applications. An extensive study has been made to explore the effects of different parameters, such as number of samples, number of filter coefficients, step size and noise level at the input on the performance of the adaptive noise cancelling system. The proposed hybrid algorithm consists all the significant features of Gradient Adaptive Lattice (GAL) and Least Mean Square (LMS) algorithms. The performance analysis of the method is performed by considering convergence complexity and bit error rate (BER) parameters along with performance analyzed with varying some parameters such as number of filter coefficients, step size, number of samples and input noise level. The outcomes suggest the errors are reduced significantly when the numbers of epochs are increased. Also incorporation of less hidden layers resulted in negligible computational delay along with effective utilization of memory. All the results have been obtained using computer simulations built on MATLAB platfor

    Self-interference cancellation for full-duplex MIMO transceivers

    Get PDF
    PhD ThesisIn recent years, there has been enormous interest in utilizing the full-duplex (FD) technique with multiple-input multiple-output (MIMO) systems to complement the evolution of fifth generation technologies. Transmission and reception using FD-MIMO occur simultaneously over the same frequency band and multiple antennas are employed in both sides. The motivation for employing FD-MIMO is the rapidly increasing demand on frequency resources, and also FD has the ability to improve spectral efficiency and channel capacity by a factor of two compared to the conventional half-duplex technique. Additionally, MIMO can enhance the diversity gain and enable FD to acquire further degrees of freedom in mitigating the self-interference (SI). The latter is one of the key challenges degrading the performance of systems operating in FD mode due to local transmission which involves larger power level than the signals of interest coming from distance sources that are significantly more attenuated due to path loss propagation phenomena. Various approaches can be used for self-interference cancellation (SIC) to tackle SI by combining passive suppression with the analogue and digital cancellation techniques. Moreover, active SIC techniques using special domain suppression based on zero-forcing and null-space projection (NSP) can be exploited for this purpose too. The main contributions of this thesis can be summarized as follows. Maximum-ratio combining with NSP are jointly exploited in order to increase the signal-to-noise ratio (SNR) of the desired path and mitigate the undesired loop path, respectively, for an equalize-and-forward (EF) relay using FD-MIMO. Additionally, an end-to-end performance analysis of the proposed system is obtained in the presence of imperfect channel state information by formulating mathematically the exact closed-form solutions for the signal-to-interference-plus-noise ratio (SINR) distribution, outage probability, and average symbol-error rate for uncoded M-ary phase-shift keying over Rayleigh fading channels and in the presence of additive white Gaussian noise (AWGN). The coefficients of the EF-relay are designed to attain the minimum mean-square error (MMSE) between the transmission symbols. Comparison of the results obtained with relevant state-of-the-art techniques suggests significant improvements in the SINR figures and system capacity. Furthermore, iterative detection and decoding (IDD) are proposed to mitigate the residual self-interference (SI) remaining after applying passive suppression along with two stages of SI cancellation (SIC) filters in the analogue and digital domains for coded FD bi-directional transceiver based multiple antennas. IDD comprises an adaptive MMSE filter with log-likelihood ratio demapping, while the soft-in soft-out decoder utilizes the maximum a posteriori (MAP) algorithm. The proposed system’s performance is evaluated in the presence of AWGN over non-selective (flat) Rayleigh fading single-input multiple-output (SIMO) and MIMO channels. However, the results of the analyses can be applied to multi-path channels if orthogonal frequency division multiplexing is utilised with a proper length of cyclic prefix in order to tackle the channels’ frequency-selectivity and delay spread. Simulation results are presented to demonstrate the bit-error rate (BER) performance as a function of the SNR, revealing a close match to the SI-free case for the proposed system. Furthermore, the results are validated by deriving a tight upper bound on the performance of rate-1=2 convolutional codes for FD-SIMO and FD-MIMO systems for different modulation schemes under the same conditions, which asymptotically exhibits close agreement with the simulated BER performance.Ministry of Higher Education and Scientific Research (MoHESR), and the University of Mosul and to the Iraqi Cultural Attache in London for providing financial support for my PhD scholarship
    corecore