1,481 research outputs found

    Tight Security Bounds for Triple Encryption

    Get PDF
    In this paper, we revisit the old problem asking the exact provable security of triple encryption in the ideal cipher model. For a blockcipher with key length k and block size n, triple encryption is known to be secure up to 2^{k+min{k/2,n/2}} queries, while the best attack requires 2^{k+min{k,n/2}} query complexity. So there is a gap between the upper and lower bounds for the security of triple encryption. We close this gap by proving the security up to 2^{k+min{k,n/2}} query complexity. With the DES parameters, triple encryption is secure up to 2^{82.5} queries, greater than the current bound of 2^{78.3} and comparable to 2^{83.5} for 2-XOR-cascade. We also analyze the security of two-key triple encryption, where the first and the third keys are identical. We prove that two-key triple encryption is secure up to 2^{k+min{k,n/2}} queries to the underlying blockcipher and 2^{min{k,n/2}} queries to the outer permutation. For the DES parameters, this result is interpreted as the security of two-key triple encryption up to 2^{32} plaintext-ciphertext pairs and 2^{81.7} blockcipher encryptions

    Security of signed ELGamal encryption

    Get PDF
    Assuming a cryptographically strong cyclic group G of prime order q and a random hash function H, we show that ElGamal encryption with an added Schnorr signature is secure against the adaptive chosen ciphertext attack, in which an attacker can freely use a decryption oracle except for the target ciphertext. We also prove security against the novel one-more-decyption attack. Our security proofs are in a new model, corresponding to a combination of two previously introduced models, the Random Oracle model and the Generic model. The security extends to the distributed threshold version of the scheme. Moreover, we propose a very practical scheme for private information retrieval that is based on blind decryption of ElGamal ciphertexts

    Random Oracles in a Quantum World

    Get PDF
    The interest in post-quantum cryptography - classical systems that remain secure in the presence of a quantum adversary - has generated elegant proposals for new cryptosystems. Some of these systems are set in the random oracle model and are proven secure relative to adversaries that have classical access to the random oracle. We argue that to prove post-quantum security one needs to prove security in the quantum-accessible random oracle model where the adversary can query the random oracle with quantum states. We begin by separating the classical and quantum-accessible random oracle models by presenting a scheme that is secure when the adversary is given classical access to the random oracle, but is insecure when the adversary can make quantum oracle queries. We then set out to develop generic conditions under which a classical random oracle proof implies security in the quantum-accessible random oracle model. We introduce the concept of a history-free reduction which is a category of classical random oracle reductions that basically determine oracle answers independently of the history of previous queries, and we prove that such reductions imply security in the quantum model. We then show that certain post-quantum proposals, including ones based on lattices, can be proven secure using history-free reductions and are therefore post-quantum secure. We conclude with a rich set of open problems in this area.Comment: 38 pages, v2: many substantial changes and extensions, merged with a related paper by Boneh and Zhandr

    Preventing False Discovery in Interactive Data Analysis is Hard

    Full text link
    We show that, under a standard hardness assumption, there is no computationally efficient algorithm that given nn samples from an unknown distribution can give valid answers to n3+o(1)n^{3+o(1)} adaptively chosen statistical queries. A statistical query asks for the expectation of a predicate over the underlying distribution, and an answer to a statistical query is valid if it is "close" to the correct expectation over the distribution. Our result stands in stark contrast to the well known fact that exponentially many statistical queries can be answered validly and efficiently if the queries are chosen non-adaptively (no query may depend on the answers to previous queries). Moreover, a recent work by Dwork et al. shows how to accurately answer exponentially many adaptively chosen statistical queries via a computationally inefficient algorithm; and how to answer a quadratic number of adaptive queries via a computationally efficient algorithm. The latter result implies that our result is tight up to a linear factor in n.n. Conceptually, our result demonstrates that achieving statistical validity alone can be a source of computational intractability in adaptive settings. For example, in the modern large collaborative research environment, data analysts typically choose a particular approach based on previous findings. False discovery occurs if a research finding is supported by the data but not by the underlying distribution. While the study of preventing false discovery in Statistics is decades old, to the best of our knowledge our result is the first to demonstrate a computational barrier. In particular, our result suggests that the perceived difficulty of preventing false discovery in today's collaborative research environment may be inherent

    IST Austria Thesis

    Get PDF
    In this thesis we discuss the exact security of message authentications codes HMAC , NMAC , and PMAC . NMAC is a mode of operation which turns a fixed input-length keyed hash function f into a variable input-length function. A practical single-key variant of NMAC called HMAC is a very popular and widely deployed message authentication code (MAC). PMAC is a block-cipher based mode of operation, which also happens to be the most famous fully parallel MAC. NMAC was introduced by Bellare, Canetti and Krawczyk Crypto’96, who proved it to be a secure pseudorandom function (PRF), and thus also a MAC, under two assumptions. Unfortunately, for many instantiations of HMAC one of them has been found to be wrong. To restore the provable guarantees for NMAC , Bellare [Crypto’06] showed its security without this assumption. PMAC was introduced by Black and Rogaway at Eurocrypt 2002. If instantiated with a pseudorandom permutation over n -bit strings, PMAC constitutes a provably secure variable input-length PRF. For adversaries making q queries, each of length at most ` (in n -bit blocks), and of total length σ ≤ q` , the original paper proves an upper bound on the distinguishing advantage of O ( σ 2 / 2 n ), while the currently best bound is O ( qσ/ 2 n ). In this work we show that this bound is tight by giving an attack with advantage Ω( q 2 `/ 2 n ). In the PMAC construction one initially XORs a mask to every message block, where the mask for the i th block is computed as τ i := γ i · L , where L is a (secret) random value, and γ i is the i -th codeword of the Gray code. Our attack applies more generally to any sequence of γ i ’s which contains a large coset of a subgroup of GF (2 n ). As for NMAC , our first contribution is a simpler and uniform proof: If f is an ε -secure PRF (against q queries) and a δ - non-adaptively secure PRF (against q queries), then NMAC f is an ( ε + `qδ )-secure PRF against q queries of length at most ` blocks each. We also show that this ε + `qδ bound is basically tight by constructing an f for which an attack with advantage `qδ exists. Moreover, we analyze the PRF-security of a modification of NMAC called NI by An and Bellare that avoids the constant rekeying on multi-block messages in NMAC and allows for an information-theoretic analysis. We carry out such an analysis, obtaining a tight `q 2 / 2 c bound for this step, improving over the trivial bound of ` 2 q 2 / 2 c . Finally, we investigate, if the security of PMAC can be further improved by using τ i ’s that are k -wise independent, for k > 1 (the original has k = 1). We observe that the security of PMAC will not increase in general if k = 2, and then prove that the security increases to O ( q 2 / 2 n ), if the k = 4. Due to simple extension attacks, this is the best bound one can hope for, using any distribution on the masks. Whether k = 3 is already sufficient to get this level of security is left as an open problem. Keywords: Message authentication codes, Pseudorandom functions, HMAC, PMAC

    On Improving Communication Complexity in Cryptography

    Get PDF
    Cryptography grew to be much more than "the study of secret writing". Modern cryptography is concerned with establishing properties such as privacy, integrity and authenticity in protocols for secure communication and computation. This comes at a price: Cryptographic tools usually introduce an overhead, both in terms of communication complexity (that is, number and size of messages transmitted) and computational efficiency (that is, time and memory required). As in many settings communication between the parties involved is the bottleneck, this thesis is concerned with improving communication complexity in cryptographic protocols. One direction towards this goal is scalable cryptography: In many cryptographic schemes currently deployed, the security degrades linearly with the number of instances (e.g. encrypted messages) in the system. As this number can be huge in contexts like cloud computing, the parameters of the scheme have to be chosen considerably larger - and in particular depending on the expected number of instances in the system - to maintain security guarantees. We advance the state-of-the-art regarding scalable cryptography by constructing schemes where the security guarantees are independent of the number of instances. This allows to choose smaller parameters, even when the expected number of instances is immense. - We construct the first scalable encryption scheme with security against active adversaries which has both compact public keys and ciphertexts. In particular, we significantly reduce the size of the public key to only about 3% of the key-size of the previously most efficient scalable encryption scheme. (Gay,Hofheinz, and Kohl, CRYPTO, 2017) - We present a scalable structure-preserving signature scheme which improves both in terms of public-key and signature size compared to the previously best construction to about 40% and 56% of the sizes, respectively. (Gay, Hofheinz, Kohl, and Pan, EUROCRYPT, 2018) Another important area of cryptography is secure multi-party computation, where the goal is to jointly evaluate some function while keeping each party’s input private. In traditional approaches towards secure multi-party computation either the communication complexity scales linearly in the size of the function, or the computational efficiency is poor. To overcome this issue, Boyle, Gilboa, and Ishai (CRYPTO, 2016) introduced the notion of homomorphic secret sharing. Here, inputs are shared between parties such that each party does not learn anything about the input, and such that the parties can locally evaluate functions on the shares. Homomorphic secret sharing implies secure computation where the communication complexity only depends on the size of the inputs, which is typically much smaller than the size of the function. A different approach towards efficient secure computation is to split the protocol into an input-independent preprocessing phase, where long correlated strings are generated, and a very efficient online phase. One example for a useful correlation are authenticated Beaver triples, which allow to perform efficient multiplications in the online phase such that privacy of the inputs is preserved and parties deviating the protocol can be detected. The currently most efficient protocols implementing the preprocessing phase require communication linear in the number of triples to be generated. This results typically in high communication costs, as the online phase requires at least one authenticated Beaver triple per multiplication. We advance the state-of-the art regarding efficient protocols for secure computation with low communication complexity as follows. - We construct the first homomorphic secret sharing scheme for computing arbitrary functions in NC 1 (that is, functions that are computably by circuits with logarithmic depth) which supports message spaces of arbitrary size, has only negligible correctness error, and does not require expensive multiplication on ciphertexts. (Boyle, Kohl, and Scholl, EUROCRYPT, 2019) - We introduce the notion of a pseudorandom correlation generator for general correlations. Pseudorandom correlation generators allow to locally extend short correlated seeds into long pseudorandom correlated strings. We show that pseudorandom correlation generators can replace the preprocessing phase in many protocols, leading to a preprocessing phase with sublinear communication complexity. We show connections to homomorphic secret sharing schemes and give the first instantiation of pseudorandom correlation generators for authenticated Beaver triples at reasonable computational efficiency. (Boyle, Couteau, Gilboa, Ishai, Kohl, and Scholl, CRYPTO, 2019

    Polynomial-Time, Semantically-Secure Encryption Achieving the Secrecy Capacity

    Get PDF
    In the wiretap channel setting, one aims to get information-theoretic privacy of communicated data based only on the assumption that the channel from sender to receiver is noisier than the one from sender to adversary. The secrecy capacity is the optimal (highest possible) rate of a secure scheme, and the existence of schemes achieving it has been shown. For thirty years the ultimate and unreached goal has been to achieve this optimal rate with a scheme that is polynomial-time. (This means both encryption and decryption are proven polynomial time algorithms.) This paper finally delivers such a scheme. In fact it does more. Our scheme not only meets the classical notion of security from the wiretap literature, called MIS-R (mutual information security for random messages) but achieves the strictly stronger notion of semantic security, thus delivering more in terms of security without loss of rate
    • …
    corecore