
Tight Security Bounds for Triple Encryption

Jooyoung Lee

Faculty of Mathematics and Statistics
Sejong University, Seoul, Korea 143-747

jlee05@sejong.ac.kr

Abstract. In this paper, we revisit the long-standing open problem asking the exact provable
security of triple encryption in the ideal cipher model. For a blockcipher with key length κ and

block size n, triple encryption is known to be provably secure up to 2κ+
1
2
min{κ,n} queries, while

the best attack requires 2κ+min{κ,n
2
} query complexity. So there has been a gap between the

upper and lower bounds for the security of triple encryption. We close this gap by proving the
security up to 2κ+min{κ,n

2
} query complexity. With the DES parameters, triple encryption is

secure up to 282.4 queries, greater than the current bound of 278.3 and comparable to 283.5 for
2-XOR-cascade [10].
We also analyze the security of two-key triple encryption, where the first and the third keys
are identical. We prove that two-key triple encryption is secure up to 2κ+min{κ,n

2
} blockcipher

queries and 2min{κ,n
2
} construction queries. For the DES parameters, this result is interpreted as

the security of two-key triple encryption up to 232 plaintext-ciphertext pairs and 281.1 blockcipher
encryptions.

1 Introduction

A blockcipher is said to be secure if there is no known attack faster than exhaustive key
search. On the other hand, without utilizing any weakness of a blockcipher, one can recover
its secret key simply by trying all possible keys over a small number of plaintext-ciphertext
pairs. So the key length of a blockcipher can be viewed as the maximum level of security
that the blockcipher is able to provide. However the key length providing a sufficient level of
security might change over time. For example, the Data Encryption Standard (DES) [1] using
56-bit keys was one of the most predominant algorithms for encryption of data. No feasible
attacks faster than exhaustive key search have been proposed (as most of them require a huge
amount of data), while the availability of increasing computational power made the brute-
force attack itself practical. As a result, DES was replaced by a new standard algorithm
AES [4]. On the other hand, in order to protect legacy applications based on DES, there
has been considerable research on constructing DES-based encryption schemes which employ
longer keys. This approach is called key-length extension, for which Triple-DES [2, 3, 5] and
DESX (due to Rivest) are the most popular constructions.

The Triple-DES approach transforms a κ-bit key n-bit blockcipher E into an encryption
scheme that accepts three κ-bit keys k1, k2, k3 ∈ {0, 1}κ and encrypts an n-bit message block
u as v = Ek3(Ek2(Ek1(u))) as seen in Figure 1.1 Bellare and Rogaway [6] proved its security

up to 2κ+
1
2
min{n,κ} query complexity assuming E is an ideal blockcipher, and later Gaži and

Maurer [9] fixed some flaws of the original proof.

The DESX approach transforms a κ-bit key n-bit blockcipher E into an encryption scheme
that accepts a κ-bit key k ∈ {0, 1}κ and additional n-bit whitening keys ki, ko ∈ {0, 1}n and

1 In the standards, the second key is applied to the decryption algorithm, while it makes no difference in our
security proof for triple encryption and its two-key variant.

u
EE

v
E

k1 k2 k3

Fig. 1. Triple encryption

encrypts an n-bit message block u as v = ko⊕Ek(ki⊕u). Killan and Rogaway [11] proved its

security up to 2
κ+n
2 query complexity. In order to improve the security, Gaži and Tessaro [10]

proposed a cascade of two DESX schemes with some refinement (called 2-XOR-cascade), and
proved its security up to 2κ+

n
2 query complexity.

Our Contribution. In this paper, we revisit the long-standing open problem asking the
exact provable security of triple encryption in the ideal cipher model. Since the best informa-
tion theoretic attack requires 2κ+min{κ,n

2
} query complexity [12](see also Appendix A), there

has been a gap between the upper and lower bounds for the security of triple encryption.
We close the gap by proving the security up to 2κ+min{κ,n

2
} query complexity, improving over

the currently known bound 2κ+
1
2
min{κ,n}. With the DES parameters and the threshold dis-

tinguishing advantage 1/2, triple encryption is secure up to 282.4 queries, greater than the
current bound 278.3 and comparable to 283.5 for 2-XOR-cascade [10].

In order to save key materials, the standards define an alternative keying option: k1 and
k2 are independent, and k3 = k1. However this variant, called two-key triple encryption, is
vulnerable to the classic meet-in-the-middle attack making approximately 2κ queries to the
underlying blockcipher and 2κ queries to the outer permutation. This attack was refined
in [7] into a trade-off between time and data: given qP plaintext-ciphertext pairs one can find
the secret key by making 2κ+n/qP queries to the underlying blockcipher. So these attacks
naturally raise the question if the two-key triple encryption is secure with data complexity
limited to a certain bound. We answer this question affirmatively, proving that two-key triple
encryption is secure up to 2κ+min{κ,n

2
} blockcipher queries and 2min{κ,n

2
} construction queries.

For the DES parameters, this result is interpreted as the security of two-key triple encryption
up to 232 plaintext-ciphertext pairs and 281.1 blockcipher encryptions. Table 2 compares upper
bounds on distinguishing advantage for three-key and two-key triple encryption with the DES
parameters κ = 56 and n = 64.

Proof Techniques. Our security proof is based on the combinatorial interpretation of Gaži
and Maurer’s random system framework. We define a transcript, the set of all query-response
pairs that a distinguisher obtains by the interaction with the underlying blockcipher and the
construction, and consider a directed graph defined by this information (see Section 3.2). The
problem of security proof is reduced to limiting adversarial capability of constructing many
number of long paths in this graph representation.

In the security proof of triple encryption, we need to restrict the number of directed
paths of length 3. In [6, 9], they fixed the first and the third edges and probabilistically upper
bounded the number of the second edges that connect them. Since each query generates a
single edge in the graph, this estimation basically gives the upper bound on the number of
3-paths that is not smaller than q2, where q denotes the number of blockcipher queries. In this
paper, we take a different approach: we classify the set of 3-paths into two subsets according

(a) Left to right: (1) triple encryption [6, 9] (2) triple
encryption (this paper) (3) 2-XOR-cascade [10]. The
number of construction queries is set to be the maxi-
mum 2n.

(b) Left to right: (1-3) two-key triple encryption with
the number of construction queries qP = 240, 232, 224,
respectively (4) three-key triple encryption (this pa-
per).

Fig. 2. Upper bounds on distinguishing advantage for three-key and two-key triple encryption. Given as func-
tions of log2 q where q is the number of queries made to the underlying blockcipher.

to the direction of the query by which the second edge has been obtained and upper bound
the size of each subset. For example, in order to upper bound the number of 3-paths whose
second edge has been obtained by a forward query, we fix the third edge from q possibilities.
For each edge, we can probabilistically upper bound the number of edges coming into it by
forward queries approximately by q

2n . Since each of the possible second edges has again 2κ

possible edges coming into it, we can upper bound the number of 3-paths by 2κ−nq2, which
is smaller than q2 when κ < n.

2 Preliminaries

2.1 General Notation

For an integer n ≥ 1, let In = {0, 1}n be the set of binary strings of length n. The set of
all permutations on In will be denoted Pn. For integers 1 ≤ s ≤ t, we will write (t)s =
t(t− 1) · · · (t− s+ 1) and (t)0 = 1 by convention.

2.2 The Ideal Cipher Model

A blockcipher is a function family E : {0, 1}κ×{0, 1}n → {0, 1}n such that for all k ∈ {0, 1}κ
the mapping E(k, ·) is a permutation on {0, 1}n. We write BC(κ, n) to mean the set of all such
blockciphers. In the ideal cipher model, a blockcipher E is chosen from BC(κ, n) uniformly at
random. It allows for two types of oracle queries E(k, x) and E−1(k, y) for x, y ∈ {0, 1}n and
k ∈ {0, 1}κ.2 The response to an inverse query E−1(k, y) is x ∈ {0, 1}n such that E(k, x) = y.
Throughout this paper, we will write K = 2κ and N = 2n.

2.3 Indistinguishability

Let C be an n-bit encryption scheme that employs λ-bit keys and makes oracle queries to a
blockcipher E ∈ BC(κ, n). So each key k ∈ {0, 1}λ and a blockcipher E ∈ BC(κ, n) define a
permutation Ck[E] on In. In the indistinguishability framework (in the ideal cipher model),

2 We interchangeably use both representations E(k, x) and Ek(x), and similarly E−1(k, y) and E−1
k (y).

Ck[E] uses a random secret key k and makes oracle queries to an ideal blockcipher E, while
a permutation P is chosen uniformly at random from Pn. A distinguisher D would like to tell
apart two worlds (Ck[E], E) and (P,E) by adaptively making forward and backward queries
to the permutation and the blockcipher. Formally, D’s distinguishing advantage is defined by

AdvPRP
C (D) = Pr

[
P

$← Pn, E
$← BC(κ, n) : D[P,E] = 1

]
−Pr

[
k

$← {0, 1}λ, E $← BC(κ, n) : D[Ck[E], E] = 1
]
.

For qP , qE > 0, we define

AdvPRP
C (qP , qE) = max

D
AdvPRP

C (D)

where the maximum is taken over all distinguishers D making exactly qP queries to the outer
permutation and exactly qE queries to the underlying blockcipher.

Combinatorial Framework. We assume that a distinguisher D makes qP forward and/or
backward queries to the permutation oracle and records a query history

QP = (uj , vj)1≤j≤qP

where (uj , vj) represents the evaluation obtained by the j-th query to the permutation oracle.
So according to the instantiation, it implies either Ck[E](uj) = vj or P (uj) = vj . By making
qE queries to the underlying blockcipher E, D also records the second query history

QE = (xj , kj , yj)1≤j≤qE

where (xj , kj , yj) represents the evaluation E(kj , xj) = yj obtained by the j-th query to the
blockcipher. Sometimes we need to record the direction in which a blockcipher query has been
made. If the j-th query has been made in a forward direction, the evaluation might be denoted
as (xj , kj , yj ,+). If it is obtained by a backward query, it is denoted as (xj , kj , yj ,−).3 The
pair of the query histories

T = (QP ,QE)

is called the transcript of the attack; it contains all the information that D has obtained at
the end of the attack. In this work, we will only consider information theoretic distinguishers.
Therefore we can assume that a distinguisher is deterministic without making any redundant
queries, and hence the output of D can be regarded as a function of T , denoted D(T) or
D(QP ,QE).

If a permutation Ck[E](resp. P) is consistent with QP , i.e., Ck[E](uj) = vj(resp. P (uj) =
vj) for every j = 1, . . . , qP , then we will write Ck[E] ` QP (resp. P ` QP). Similarly, if a
blockcipher E ∈ BC(κ, n) is consistent with QE (i.e., E(kj , xj) = yj for j = 1, . . . , qE), then
we will write E ` QE . Using these notations, we have

AdvPRP
C (D) =

∑
D(QP ,QE)=1

Pr
[
P

$← Pn, E
$← BC(κ, n) : P ` QP ∧ E ` QE

]
−

∑
D(QP ,QE)=1

Pr
[
k

$← {0, 1}λ, E $← BC(κ, n) : Ck[E] ` QP ∧ E ` QE
]

3 The sign of each query in QE is uniquely defined assuming that D is deterministic.

where the sum is taken over all the possible transcripts T = (QP ,QE) such that D(QP ,QE) =
1. Here we only consider “valid” transcripts that D might produce by communicating with a
permutation P ∈ Pn and a blockcpher E ∈ BC(κ, n). Precisely, a transcript T = (QP ,QE)
is called valid if and only if

Pr
[
P

$← Pn, E
$← BC(κ, n) : P ` QP ∧ E ` QE

]
6= 0.

2.4 Main Lemma

Let C be an n-bit encryption scheme that employs λ-bit keys and makes oracle queries to a
blockcipher E ∈ BC(κ, n). We will call C perfect secure against construction queries if for
each key k ∈ Iλ, Ck[E] becomes a truly random permutation on In over a random choice of
E ∈ BC(κ, n). For example, triple encryption and its two-key variant are all perfect secure
against construction queries. In this section, we give a combinatorial lemma that can be
applied to any encryption scheme that is perfect secure against construction queries.

In order to state the lemma, we need to define a certain set of bad transcripts, denoted
BadT. The probability that a distinguisher obtains a bad transcript in the ideal world is
assumed to be small. Specifically, for any distinguisher D making qP queries to the outer
permutation and qE queries to the underlying blockcipher, let

Pr
[
P

$← Pn, E
$← BC(κ, n) : D produces (QP ,QE) ∈ BadT

]
≤ ε1

for a small ε1 > 0. For each transcript (QP ,QE) /∈ BadT, we also define a certain (small) set
of bad keys, denoted BadK.4 Suppose that

Pr
[
k

$← Iλ : k ∈ BadK
]
≤ ε2

for any transcript (QP ,QE) /∈ BadT. With this setting, we can state the following lemma.

Lemma 1. Let qP , qE, δ > 0. Assume that for any transcript (QP ,QE) /∈ BadT such that
|QP | = qP and |QE | = qE,

p1(QE |QP ∧ ¬BadK) ≥ (1− δ)p2(QE |QP ∧ ¬BadK)

where

p1(QE |QP ∧ ¬BadK) = Pr

[
k

$← Iλ, E
$← BC(κ, n) : E ` QE |Ck[E] ` QP ∧ k /∈ BadK

]
,

p2(QE |QP ∧ ¬BadK) = Pr

[
k

$← Iλ, P
$← Pn, E

$← BC(κ, n) : E ` QE |P ` QP ∧ k /∈ BadK

]
.

Then we have

AdvPRP
C (qP , qE) ≤ δ + ε1 + ε2.

4 This set might depend on the transcript T = (QP ,QE), but we will hide the parameter in the notation.

Proof. For a transcript T = (QP ,QE) /∈ BadT, define

p1(QP ∧ ¬BadK) = Pr
[
k

$← Iλ, E
$← BC(κ, n) : Ck[E] ` QP ∧ k /∈ BadK

]
,

p2(QP ∧ ¬BadK) = Pr
[
k

$← Iλ, P
$← Pn : P ` QP ∧ k /∈ BadK

]
,

p1(QP ∧QE ∧ ¬BadK) = Pr
[
k

$← Iλ, E
$← BC(κ, n) : Ck[E] ` QP ∧ E ` QE ∧ k /∈ BadK

]
= p1(QE |QP ∧ ¬BadK)p1(QP ∧ ¬BadK),

p2(QP ∧QE ∧ ¬BadK) = Pr
[
k

$← Iλ, P
$← Pn, E

$← BC(κ, n) : P ` QP ∧ E ` QE ∧ k /∈ BadK
]

= p2(QE |QP ∧ ¬BadK)p2(QP ∧ ¬BadK).

Since C is perfect secure against construction queries, we have

p1(QP ∧ ¬BadK) = p2(QP ∧ ¬BadK).

In the following estimation, we will also use inequalities

∑
D(QP ,QE)=1
(QP ,QE)∈BadT

Pr
[
k

$← Iλ, P
$← Pn, E

$← BC(κ, n) : P ` QP ∧ E ` QE
]

≤ Pr
[
P

$← Pn, E
$← BC(κ, n) : D produces (QP ,QE) ∈ BadT

]
≤ ε1

and

∑
D(QP ,QE)=1
(QP ,QE)/∈BadT

Pr
[
k

$← Iλ, P
$← Pn, E

$← BC(κ, n) : P ` QP ∧ E ` QE ∧ k ∈ BadK
]

≤
∑

D(QP ,QE)=1
(QP ,QE)/∈BadT

Pr

[
k

$← Iλ, P
$← Pn, E

$← BC(κ, n) : k ∈ BadK |P ` QP ∧ E ` QE
]

×Pr
[
P

$← Pn, E
$← BC(κ, n) : P ` QP ∧ E ` QE

]
≤ ε2

∑
D(QP ,QE)=1
(QP ,QE)/∈BadT

Pr
[
P

$← Pn, E
$← BC(κ, n) : P ` QP ∧ E ` QE

]
≤ ε2

that hold for any distinguisher D making qP queries to the outer permutation and qE queries
to the underlying blockcipher. Then for any such distinguisher D, we have

AdvPRP
C (D) ≤

∑
D(QP ,QE)=1
(QP ,QE)/∈BadT

Pr
[
k

$← Iλ, P
$← Pn, E

$← BC(κ, n) : P ` QP ∧ E ` QE
]

−
∑

D(QP ,QE)=1
(QP ,QE)/∈BadT

Pr
[
k

$← Iλ, E
$← BC(κ, n) : Ck[E] ` QP ∧ E ` QE

]

+
∑

D(QP ,QE)=1
(QP ,QE)∈BadT

Pr
[
k

$← Iλ, P
$← Pn, E

$← BC(κ, n) : P ` QP ∧ E ` QE
]

≤
∑

D(QP ,QE)=1
(QP ,QE)/∈BadT

p2(QP ∧QE ∧ ¬BadK)−
∑

D(QP ,QE)=1
(QP ,QE)/∈BadT

p1(QP ∧QE ∧ ¬BadK)

+
∑

D(QP ,QE)=1
(QP ,QE)/∈BadT

Pr
[
k

$← Iλ, P
$← Pn, E

$← BC(κ, n) : P ` QP ∧ E ` QE ∧ k ∈ BadK
]

+ ε1

≤
∑

D(QP ,QE)=1
(QP ,QE)/∈BadT

p2(QE |QP ∧ ¬BadK)p2(QP ∧ ¬BadK)

−
∑

D(QP ,QE)=1
(QP ,QE)/∈BadT

p1(QE |QP ∧ ¬BadK)p1(QP ∧ ¬BadK) + ε2 + ε1

≤
∑

D(QP ,QE)=1
(QP ,QE)/∈BadT

p2(QE |QP ∧ ¬BadK)p2(QP ∧ ¬BadK)

− (1− δ)
∑

D(QP ,QE)=1
(QP ,QE)/∈BadT

p2(QE |QP ∧ ¬BadK)p2(QP ∧ ¬BadK) + ε2 + ε1

≤ δ
∑

D(QP ,QE)=1
(QP ,QE)/∈BadT

p2(QP ∧QE ∧ ¬BadK) + ε2 + ε1 ≤ δ + ε1 + ε2. ut

3 Security of Triple Encryption

In this section, we prove the security of triple encryption using a κ-bit key n-bit blockcipher.
The triple encryption will be denoted as TE. So given the underlying blockcipher E ∈ BC(κ, n)
and a key k = (k1, k2, k3) ∈ I3κ, then

TEk[E](u) = Ek3(Ek2(Ek1(u)))

for each u ∈ In. Our goal is to prove the security of TE far beyond N queries, so we will
assume that a distinguisher makes all possible N queries to the outer permutation. Let q
denote the number of queries made to the underlying blockcipher.

3.1 Graph Representation

When we define a certain type of bad keys, we will use a graph representation of a transcript.
Given a transcript T = (QP ,QE), we will define a graph G on In as follows.

1. If (u, v) ∈ QP , then G contains an edge v → u (with no label and the direction inversed).

2. If (x, k, y, σ) ∈ QE , then G contains an edge x
(k,σ)−→ y, where σ ∈ {+,−} denotes the sign.

Sometimes we will drop the sign for simplicity.

3.2 Bad Transcripts

In order to apply Lemma 1, we define a set of bad transcripts BadT(L) parameterized by a
certain parameter L > 0. Specifically, a transcript T = (QP ,QE) is defined to be bad if either

max
y∗∈In

|{(x, k, y∗,+) ∈ QE}| > L

or

max
x∗∈In

|{(x∗, k, y,−) ∈ QE}| > L.

So a bad transcript means an L-multi-collision on the blockcipher obtained by only forward
queries or only backward queries. We can upper bound the probability that a distinguisher
obtains a bad transcript in the ideal world as follows.

Lemma 2. Let L = L′ + 2q/N for L′ > 0 and let D be a distinguisher making all possible
N queries to the outer permutation and exactly q queries to the underlying blockcipher. Then
we have

Pr
[
P

$← Pn, E
$← BC(κ, n) : D produces (QP ,QE) ∈ BadT(L)

]
≤ N

2

(
2eq

L′N

)L′
. (1)

Proof. We will say a blockcipher query is a super query if D has already made N/2 queries
with the same key before the blockcipher query. Otherwise, the blockcipher query is called
normal. During the interaction, D would make at most 2q/N super queries. Therefore in order
for D to produce a transcript in BadT(L′+2q/N), D would have to obtain an L′-multi-collision
by using only normal queries. Since the response to each normal query is chosen from more
than N/2 possibilities, we have

Pr
[
P

$← Pn, E
$← BC(κ, n) : D produces (QP ,QE) ∈ BadT(L)

]
≤
(
q

L′

)(
2

N

)L′−1
≤ N

2

(
2eq

L′N

)L′
. ut

3.3 Bad Keys

Given a transcript T = (QP ,QE) /∈ BadT(L), we define three types of bad keys.

Colliding Keys. Let

Co = {(k1, k2, k3) ∈ I3κ : either k1 = k2 or k1 = k3 or k2 = k3}

denote the set of “colliding” keys. We have

Pr
[
k

$← I3κ : k ∈ Co
]
≤ 3

K
.

Heavy Keys. For a fixed parameter M > 0, we say a key k = (k1, k2, k3) ∈ I3κ is heavy if

|{ki : (x, ki, y) ∈ QE}| > M,

for some i = 1, 2, 3. Let He(M) denote the set of heavy keys. Since the number of keys that
are queried more than M times is at most q/M , we have

Pr
[
k

$← I3κ : k ∈ He(M)
]
≤ 3q

KM
.

Keys Making Bad Paths. We will define keys producing paths of length 3 or 4 in G to be
bad. Specifically, let

Pa(0,+) = {(k1, k2, k3) ∈ I3κ : there is a path u
k1−→ x

(k2,+)−→ y
k3−→ v in G},

Pa(0,−) = {(k1, k2, k3) ∈ I3κ : there is a path u
k1−→ x

(k2,−)−→ y
k3−→ v in G},

Pa(1,+) = {(k1, k2, k3) ∈ I3κ : there is a path x
k2−→ y

(k3,+)−→ v −→ u
k1−→ z in G},

Pa(1,−) = {(k1, k2, k3) ∈ I3κ : there is a path x
k2−→ y

(k3,−)−→ v −→ u
k1−→ z in G},

Pa(2,+) = {(k1, k2, k3) ∈ I3κ : there is a path y
k3−→ v −→ u

(k1,+)−→ z
k2−→ w in G},

Pa(2,−) = {(k1, k2, k3) ∈ I3κ : there is a path y
k3−→ v −→ u

(k1,−)−→ z
k2−→ w in G}

and let
Pa = Pa(0,+) ∪ Pa(0,−) ∪ Pa(1,+) ∪ Pa(1,−) ∪ Pa(2,+) ∪ Pa(2,−).

We can upper bound the size of Pa(0,+) by the number of paths of form u
k1−→ x

(k2,+)−→ y
k3−→ v.

For a node x ∈ In, let din(x) and dout(x) denote the in-degree and the out-degree of x,
respectively, with respect to the edges defined by QE . If a transcript T = (QP ,QE) is not

contained in BadT(L), then the number of paths of form u
k1−→ x

(k2,+)−→ y
k3−→ v, and hence

the size of Pa(0,+) is upper bounded by

KL
∑
y∈In

dout(y) ≤ KLq

since for each y ∈ In the number of (k2,+)-labeled edges coming into y is at most L, and

for each x ∈ In such that there exists an edge x
(k2,+)−→ y in G, we have din(x) ≤ K. Applying

similar arguments to the other types of paths, we have |Pa| ≤ 6KLq, and hence

Pr
[
k

$← I3κ : k ∈ Pa
]
≤ 6Lq

K2
.

Summary. We define the total set of bad keys BadK(M) = Co ∪ He(M) ∪ Pa. Then

Pr
[
k

$← I3κ : k ∈ BadK(M)
]
≤ 3

K
+

3q

KM
+

6Lq

K2
. (2)

3.4 Comparing p1(QE|QP ∧ ¬BadK(M)) and p2(QE|QP ∧ ¬BadK(M))

In this section, we compute a small δ satisfying the condition of Lemma 1. First, we fix a
transcript T = (QP ,QE) /∈ BadT(L). Then for each key k = (k1, k2, k3) /∈ BadK(M), we
decompose the blockcipher query history QE as

QE = Qk1E ∪Q
k2
E ∪Q

k3
E ∪Q

∗
E

where
QkiE = {(x, k, y) ∈ QE : k = ki}

for i = 1, 2, 3, and Q∗E is the set of the remaining queries. Let

p∗(k) = Pr
[
E

$← BC(κ, n) : E ` Q∗E
]

and let hi = |QkiE | for i = 1, 2, 3. Then we have

p2(QE |QP ∧ ¬BadK(M)) = Pr
[
E

$← BC(κ, n) : E ` QE
]

=
p∗(k)

(N)h1(N)h2(N)h3
(3)

for any key k /∈ BadK(M) since the choice of the key and a random permutation P is
independent of E. On the other hand, let

p1(k) = Pr

[
E

$← BC(κ, n) : E ` QE |TEk[E] ` QP
]

for each k /∈ BadK(M). Since Pr
[
E

$← BC(κ, n) : TEk[E] ` QP
]

is the same for every k /∈
BadK(M), we have

p1(QE |QP ∧ ¬BadK(M)) =
1

|I3κ \ BadK(M)|
∑

k/∈BadK(M)

p1(k). (4)

Since each key defines an independent random permutation in the ideal cipher model, we have

p1(k) = p∗(k) ·Pr

[
E

$← BC(κ, n) : E ` Qk1E ∪Q
k2
E ∪Q

k3
E |TEk[E] ` QP

]
= p∗(k) ·Pr

[
P1, P2, P3

$← Pn : P1 ` Q
k1
E ∧ P2 ` Q

k2
E ∧ P3 ` Q

k3
E |P3 ◦ P2 ◦ P1 ` QP

]
= p∗(k) ·Pr

[
P1, P2, P

$← Pn : P1 ` Q
k1
E ∧ P2 ` Q

k2
E ∧ P ◦ P−11 ◦ P−12 ` Qk3E |P ` QP

]
where QkiE =

{
(x, y) : (x, ki, y) ∈ QkiE

}
for i = 1, 2, 3. The conditional probability appearing

in the last line is the probability of event

E : P1 ` Q
k1
E ∧ P2 ` Q

k2
E ∧ P∗ ◦ P−11 ◦ P−12 ` Qk3E

over random choice of P1 and P2, where P∗ is the unique permutation that is consistent with
QP . Let

V =
{
v ∈ In : there exists y

k3−→ v in G
}

V ′ =
{
v ∈ In : there exists x

k2−→ y
k3−→ v in G

}
.

Then event E requires that P1 satisfy the following.

1. P1(u) = x for (u, x) ∈ Qk1E .

2. P1(P
−1
∗ (v)) = x for v ∈ V ′ and x such that x

k2−→ y
k3−→ v in G.

3. P1(P
−1
∗ (v)) 6= x for v ∈ V \ V ′ and x such that x

k2−→ y in G.

In order to lower bound the probability that a random permutation P1 satisfies the above
three conditions, we need to note the following properties.

– For any v ∈ V ′ and x such that x
k2−→ y

k3−→ v in G, neither P1(P
−1
∗ (v)) nor P−11 (x) is

determined by Qk1E since k /∈ Pa(0,+) ∪ Pa(0,−) ∪ Pa(1,+) ∪ Pa(1,−).

– For any v ∈ V \V ′, if x = P1(P
−1
∗ (v)) is determined by Qk1E , then there is no edge x

k2−→ y
in G since k /∈ Pa(2,+) ∪ Pa(2,−).

By these properties, the probability of a random permutation P1 satisfying the three condi-
tions is lower bounded by (

1− α2h2
N − h1 − α1

)
1

(N)h1+α1

where α1 = |V ′| and α2 = |V \ V ′| = h3 − α1. Once P1 is determined, E requires that P2

satisfy the following.

1. P2(x) = y for (x, y) ∈ Qk2E .

2. P2(P1(P
−1
∗ (v))) = y for v ∈ V \ V ′ and y such that y

k3−→ v in G.

For any v ∈ V \V ′, P2(P1(P
−1
∗ (v))) is not determined by Qk2E since k /∈ Pa(2,+)∪Pa(2,−) and by

the third condition on the choice of P1. Therefore the probability that a random permutation
P2 satisfies the above two conditions is given by 1

(N)h2+α2
. Since h1, h2, h3 ≤ M for each

k /∈ BadK(M), we have

Pr [E] ≥
(

1− α2h2
N − h1 − α1

)
1

(N)h1+α1(N)h2+α2

≥
(

1− M2

N − 2M

)
1

(N)h1+α1(N)h2+α2

.

Furthermore, since

(N)h1(N)h2(N)h3
(N)h1+α1 · (N)h2+α2

=
(N)h3

(N − h1)α1 · (N − h2)α2

=
(N)α1

(N − h1)α1

· (N − α1)α2

(N − h2)α2

≥ (N − α1)α2

(N)α2

≥
(

1− α1

N − α2 + 1

)α2

≥ 1− M2

N −M + 1

and by (3) and (4), we have

p1(QE |QP ∧ ¬BadK(M)) =
1

|I3κ \ BadK(M)|
∑

k/∈BadK(M)

p1(k)

=
1

|I3κ \ BadK(M)|
∑

k/∈BadK(M)

p∗(k)Pr [E]

≥
(

1− M2

N − 2M

)
p2(QE |QP ∧ ¬BadK(M))

|I3κ \ BadK(M)|
∑

k/∈BadK(M)

(N)h1(N)h2(N)h3
(N)h1+α1(N)h2+α2

≥
(

1− M2

N − 2M

)(
1− M2

N −M + 1

)
p2(QE |QP ∧ ¬BadK(M))

≥
(

1− 2M2

N − 2M

)
p2(QE |QP ∧ ¬BadK(M)).

3.5 Putting the Pieces Together

By applying Lemma 1 with

δ =
2M2

N − 2M

and (1) and (2) for ε1 and ε2, we obtain the following theorem.

Theorem 1. For q, L′,M > 0, we have

AdvPRP
TE (N, q) ≤ 2M2

N − 2M
+
N

2

(
2eq

L′N

)L′
+

3

K
+

3q

KM
+

6L′q

K2
+

12q2

K2N
.

Optimizing Parameters. By setting M2

N = q
KM , let

M =

(
Nq

K

) 1
3

.

Let L′ = max{4eqN , 2n}. Then we have

N

2

(
2eq

LN

)L
≤ 1

2N
.

Assuming N − 2M ≥ 2N
3 or equivalently q ≤ KN2

216 , we have our final result.

Corollary 1. For q > 0, we have

AdvPRP
TE (2n, q) ≤ 6

(
q2

22κ+n

) 1
3

+
1

2n+1
+

3

2κ
+

12q2

22κ+n
+ max

{
24eq2

22κ+n
,
12nq

22κ

}
.

In other words, triple encryption is secure if

q � min

{
2κ+

n
2

√
24e

,
22κ

12n

}
.

4 Security of Two-Key Triple Encryption

In this section, we prove the security of triple encryption where the first and the third keys
are identical. We will denote the two-key triple encryption by TE∗. So given the underlying
blockcipher E ∈ BC(κ, n) and a key k = (k1, k2) ∈ I2κ, then

TE∗k[E](u) = Ek1(Ek2(Ek1(u)))

for each u ∈ In. Suppose that a distinguisher D makes qP queries to the outer permutation
and qE queries to the underlying blockcipher. The proof strategy is similar to the three-key
triple encryption, based on the same graph representation G defined by a query history.

Bad Transcripts. Bad transcripts are defined as for the three-key triple encryption: a
transcript T = (QP ,QE) is defined to be bad if either

max
y∗∈In

|{(x, k, y∗,+) ∈ QE}| > L or max
x∗∈In

|{(x∗, k, y,−) ∈ QE}| > L

where L = L′ + 2q
N for some L′ > 0. The set of bad transcripts will be denoted as BadT(L).

Bad Keys. Given a transcript T = (QP ,QE) /∈ BadT(L), sets of bad keys Co and He(M)
are defined as similar to the three-key triple encryption.

Co = {(k1, k2) ∈ I2κ : k1 = k2},
He(M) = {(k1, k2) ∈ I2κ : |{k1 : (x, k1, y) ∈ QE}| > M ∨ |{k2 : (x, k2, y) ∈ QE}| > M}

for a parameter M > 0. We also define

Pa(0,+) = {(k1, k2) ∈ I2κ : there is a path u
k1−→ x

(k2,+)−→ y
k1−→ v in G},

Pa(0,−) = {(k1, k2) ∈ I2κ : there is a path u
k1−→ x

(k2,−)−→ y
k1−→ v in G},

Pa(1,+) = {(k1, k2) ∈ I2κ : there is a path x
k2−→ y

(k1,+)−→ v −→ u in G},

Pa(1,−) = {(k1, k2) ∈ I2κ : there is a path x
k2−→ y

(k1,−)−→ v −→ u in G},

Pa(2,+) = {(k1, k2) ∈ I2κ : there is a path v −→ u
(k1,+)−→ x

k2−→ y in G},

Pa(2,−) = {(k1, k2) ∈ I2κ : there is a path v −→ u
(k1,−)−→ x

k2−→ y in G}

and

Pa = Pa(0,+) ∪ Pa(0,−) ∪ Pa(1,+) ∪ Pa(1,−) ∪ Pa(2,+) ∪ Pa(2,−).

In order to upper bound the size of Pa(0,+), consider the number of 2-paths of form x
(k2,+)−→

y
k1−→ v. This number is upper bounded by

L
∑
y∈In

dout(y) ≤ LqE

since the number of nodes coming into y by forward queries is at most L. Each of such 2-paths

is uniquely extended to a 3-path u
k1−→ x

(k2,+)−→ y
k1−→ v since the first and the third keys are

identical. Since the number of paths of form u
k1−→ x

(k2,+)−→ y
k1−→ v upper bounds the size of

Pa(0,+), we have |Pa(0,+)| ≤ LqE . A similar analysis applies to Pa(0,−), Pa(1,−) and Pa(2,+).

On the other hand, in order to restrict the size of Pa(1,+), consider 2-paths of form y
(k1,+)−→

v −→ u. The number of 2-paths of this form is at most LqP . Each of these paths is extended

to x
k2−→ y

(k1,+)−→ v −→ u with K possible keys k2. Therefore the size of Pa(1,+) is upper
bounded by LqPK, and a similar analysis applies to Pa(2,−). Overall, the size of Pa is upper
bounded by

4LqE + 2LqPK.

Finally, we define the total set of bad keys BadK(M) = Co ∪ He(M) ∪ Pa. Then we have

Pr
[
k

$← I2κ : k ∈ BadK(M)
]
≤ 1

K
+

2qE
KM

+
4LqE
K2

+
2LqP
K

. (5)

Comparing p1(QE |QP∧¬BadK(M)) and p2(QE |QP∧¬BadK(M)). In order to use Lemma 1,
we need to lower bound the ratio of p1(QE |QP∧¬BadK(M)) to p2(QE |QP∧¬BadK(M)). First,

we fix a transcript T = (QP ,QE) /∈ BadT(L). Then for each key k = (k1, k2) /∈ BadK(M), we
decompose the blockcipher query history QE as

QE = Qk1E ∪Q
k2
E ∪Q

∗
E

where QkiE = {(x, k, y) ∈ QE : k = ki} for i = 1, 2, and Q∗E is the set of the remaining queries.
Then we have

p2(QE |QP ∧ ¬BadK(M)) =
p∗(k)

(N)h1(N)h2
(6)

where h1 = |Qk1E |, h2 = |Qk2E | and p∗(k) = Pr
[
E

$← BC(κ, n) : E ` Q∗E
]
.

On the other hand, let

p1(k) = Pr

[
E

$← BC(κ, n) : E ` QE |TE∗k[E] ` QP
]

for each k /∈ BadK(M). Then we have

p1(QE |QP ∧ ¬BadK(M)) =
1

|I2κ \ BadK(M)|
∑

k/∈BadK(M)

p1(k). (7)

By replacing TE∗k[E] by a truly random permutation P , we have

p1(k) = p∗(k) ·Pr

[
P1, P

$← Pn : P1 ` Q
k1
E ∧ P−11 ◦ P ◦ P−11 ` Qk2E |P ` QP

]
where QkiE =

{
(x, y) : (x, ki, y) ∈ QkiE

}
for i = 1, 2. Let

X = {x ∈ In : x
k2−→ y ∈ G for some y ∈ In},

Y = {y ∈ In : x
k2−→ y ∈ G for some x ∈ In}

be the sets of end nodes of k2-labeled edges. We decompose X as a disjoint union of X1, X2

and X3, where

X2 = {x ∈ In : x
k2−→ y

k1−→ z ∈ G for some y, z ∈ In}

X3 = {x ∈ In : w
k1−→ x

k2−→ y ∈ G for some w, y ∈ In}

and X1 = X \ (X2 ∪X3). Accordingly, we define

Yi = {y ∈ In : x
k2−→ y ∈ G for some x ∈ Xi}

for i = 1, 2, 3. Assuming P1 ` Q
k1
E and P ` QP , we will determine v = P1(y) for y ∈ Y1 by

lazy sampling, where we would like to avoid the following conditions on the value v.

1. G contains an edge v
k2−→ y for some y ∈ In.

2. G contains a 2-path v −→ u
k1−→ y for some u, y ∈ In.

3. G contains an edge v −→ u for some u ∈ In such that x
k2−→ u for some x ∈ In.

Let E1 denote the event that v = P1(y) satisfies one of the above three conditions for some

y ∈ Y1. Then the probability of E1 under condition P1 ` Q
k1
E ∧ P ` QP is upper bounded as

follows.

Pr

[
P1, P

$← Pn : E1 |P1 ` Q
k1
E ∧ P ` QP

]
≤ (h1 + 2h2)h2

N − h1
≤ 3M2

N −M
. (8)

By avoiding the first condition, each evaluation P1(y) does not generate an edge coming into
x ∈ X1∪X2. By avoiding the second condition, P1(y) does not generate any 4-path. We allow
the node v to be connected with some node u by QP , while P1(y) will not determine P1(u)
for any other node y in Y1 ∪ Y3 since we exclude the third condition.

Assuming that P1(y) has been determined for every y ∈ Y1 avoiding the above conditions,

and under the conditions P1 ` Q
k1
E and P ` QP , we evaluate P−1 at P1(y) for y ∈ Y1 ∪ Y2 if

not determined, and evaluate P at P−11 (x) for x ∈ X3, where P−11 (x) is determined by Qk1E .
In this evaluation, we would like to avoid the following conditions.

1. P−1(P1(y)) ∈ Y3 for some y ∈ Y1 ∪ Y2.
2. P (P−11 (x)) ∈ X1 ∪X2 for some x ∈ X3.

Let E2 denote the event that one of the two conditions holds for some x ∈ X3 or y ∈ Y1 ∪ Y2.
Then the probability of E2 under condition ¬E1 ∧ P1 ` Q

k1
E ∧ P ` QP is upper bounded as

follows.

Pr

[
P1, P

$← Pn : E2 |¬E1 ∧ P1 ` Q
k1
E ∧ P ` QP

]
≤ h22
N − qP

≤ M2

N − qP
. (9)

Finally, under condition ¬E2 ∧ ¬E1 ∧ P1 ` Q
k1
E ∧ P ` QP , we would like to upper bound

the probability of P−11 ◦ P ◦ P−11 ` Qk2E . Assume that P−1(P1(y)) and P (P−11 (x)) have been

determined for y ∈ Y1 ∪ Y2 and x ∈ X3 respectively. Then the event P−11 ◦ P ◦ P−11 ` Qk2E
implies the evaluations

1. P1(P
−1(P1(y)) = x for each y ∈ Y1 ∪ Y2 and x such that x

k2−→ y ∈ G,

2. P1(y) = P (P−11 (x)) for each y ∈ Y3 and x such that x
k2−→ y ∈ G.

Since P1-evaluations at the points P−1(P1(y)), y ∈ Y1 ∪ Y2, and y ∈ Y3 are all free and
independent, we have

Pr

[
P1, P

$← Pn : P−11 ◦ P ◦ P−11 ` Qk2E |¬E2 ∧ ¬E1 ∧ P1 ` Q
k1
E ∧ P ` QP

]
≥ 1

(N)h2
. (10)

By (8), (9), (10), we have

p1(k) ≥ p∗(k) ·Pr

[
P1, P

$← Pn : ¬E2 ∧ ¬E1 ∧ P1 ` Q
k1
E ∧ P−11 ◦ P ◦ P−11 ` Qk2E |P ` QP

]
= p∗(k) ·Pr

[
P1, P

$← Pn : P−11 ◦ P ◦ P−11 ` Qk2E |¬E2 ∧ ¬E1 ∧ P1 ` Q
k1
E ∧ P ` QP

]
×Pr

[
P1, P

$← Pn : ¬E2 |¬E1 ∧ P1 ` Q
k1
E ∧ P ` QP

]
×Pr

[
P1, P

$← Pn : ¬E1 |P1 ` Q
k1
E ∧ P ` QP

]
×Pr

[
P1, P

$← Pn : P1 ` Q
k1
E |P ` QP

]
≥ p∗(k)

(N)h2
·
(

1− M2

N − qP

)
·
(

1− 3M2

N −M

)
· 1

(N)h1
,

and then by (6) and (7)

p1(QE |QP ∧ ¬BadK(M)) =
1

|I3κ \ BadK(M)|
∑

k/∈BadK(M)

p1(k)

≥ 1

|I3κ \ BadK(M)|
∑

k/∈BadK(M)

p∗(k)

(N)h1(N)h2

(
1− M2

N − qP

)(
1− 3M2

N −M

)

=

(
1− M2

N − qP

)(
1− 3M2

N −M

)
p2(QE |QP ∧ ¬BadK(M))

≥
(

1− M2

N − qP
− 3M2

N −M

)
p2(QE |QP ∧ ¬BadK(M)).

Summary. Applying Lemma 1 with (1) and (5), we have the following theorem.

Theorem 2. For qP , qE, L
′, M > 0, we have

AdvPRP
TE∗ (qP , qE) ≤ M2

N − qP
+

3M2

N −M
+
N

2

(
2eqE
L′N

)L′
+

1

K
+

2qE
KM

+
4L′qE
K2

+
8q2E
K2N

+
2L′qP
K

+
4qP qE
KN

.

Let M =
(
NqE
4K

) 1
3

and let L = max{4eqEN , 2n}. Assuming M , qP ≤ N
2 , we also have the

following corollary.

Corollary 2. For qP , qE > 0, we have

AdvPRP
TE∗ (qP , qE) ≤ 16

(
q2E

16 · 22κ+n

) 1
3

+
1

2n+1
+

1

2κ
+

8q2E
22κ+n

+
4qP qE
2κ+n

+ max

{
16eq2E
22κ+n

+
8eqP qE
2κ+n

,
8nqE
22κ

+
4nqP

2κ

}
.

We can interpret this result in two ways.

1. Two-key triple encryption is secure if qP � 2κ

4n , qE � min
{

2κ+
n
2

4
√
e
, 2

2κ

8n

}
and qP qE � 2κ+n

8e .

2. Two-key triple encryption is secure if qP � min
{

2κ

4n ,
2
n
2

2
√
e

}
and qE � min

{
2κ+

n
2

4
√
e
, 2

2κ

8n

}
.

References

1. FIPS PUB 46: Data Encryption Standard (DES). National Institute of Standards and Technology (1977)
2. ANSI X9.52: Triple Data Encryption Algorithm Modes of Operation (1998)
3. FIPS PUB 46-3: Data Encryption Standard (DES). National Institute of Standards and Technology (1999)
4. FIPS PUB 197: Advanced Encryption Standard (AES). National Institute of Standards and Technology

(2001)
5. NIST ST 800-67: Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher.

National Institute of Standards and Technology (2004)
6. M. Bellare and P. Rogaway: The Security of Triple Encryption and a Framework for Code-Based Game-

Playing Proofs. Eurocrypt 2006, LNCS 4004, pp. 409–426, Springer, Heidelberg (2006)
7. E. Biham, Y. Carmeli, I. Dinur, O. Dunkelman, N. Keller and A. Shamir: Cryptanalysis of Iterated Even-

Mansour Schemes with Tow Keys. IACR Cryptology ePrint Archive, Report 2013/674, 2013. Available at
http://eprint.iacr.org/2013/674

8. P. Gaži: Plain versus Randomized Cascading-Based Key-Length Extension for Block Ciphers. IACR Cryp-
tology ePrint Archive, Report 2013/019, 2013. Available at http://eprint.iacr.org/2013/019

9. P. Gaži and U. Maurer: Cascade Encryption Revisited. Asiacrypt 2009, LNCS 5912, pp. 37–51, Springer,
Heidelberg (2009)

10. P. Gaži and S. Tessaro: Efficient and Optimally Secure Key-Length Extension for Block Ciphers via
Randomized Cascading. Eurocrypt 2012, LNCS 7237, pp. 63–80, Springer, Heidelberg (2012)

11. J. Kilian and P. Rogaway: How to Protect DES Against Exhaustive Key Search (an Analysis of DESX).
Journal of Cryptology 14, pp. 17–35. Springer, Heidelberg (2001)

12. S. Lucks: Attacking Triple Encryption. FSE 1998, LNCS 1372, pp. 239–253. Springer, Heidelberg (1998)

A Matching Attacks on Triple Encryption

A.1 An Attack of 2κ+
n
2 Query Complexity

This attack has been proposed by Lucks [12] and later extended by Gazi [8]. Let S denote
the outer permutation instantiated with either TEk[E] using a random key k ∈ I3κ or a truly
random permutation P . A distinguisher D, parameterized by r > 0, executes the following
steps.

1. Fix two sets S0, S1 ⊂ In such that |S0| = |S1| = rN
1
2 .

(a) For each k ∈ Iκ and x ∈ S0, make a query Ek(x).
(b) For each k′ ∈ Iκ and x ∈ S1, make a query Ek′(x).
(c) For each x ∈ S0, make a query S(x).
(d) For each k′′ ∈ Iκ and x ∈ S0, make a query E−1k′′ (S(x)).

2. For each key k ∈ Iκ, find a subset Uk ⊂ S0 such that |Uk| = r2

2 and Ek(x) ∈ S1 for each
x ∈ Uk. If there are a multiple number of such subsets, fix any of them. If Uk is not found
for any key k ∈ Iκ, then output 1. Otherwise, proceed to the next step.

3. For each key k for which Uk exists, check if there are k′, k′′ ∈ Iκ such that Ek′(Ek(x)) =
E−1k′′ (S(x)) for every x ∈ Uk. If there exists such a key, then output 0. Otherwise, output
1.

Analysis. Let S = TEk[E] with a random key k = (k1, k2, k3) ∈ I3κ. In the ideal cipher model,
|Ek1(S0)∩S1| becomes a random variable that follows the hypergeometric distribution of mean
r2 and variance not greater than r2. Therefore by Chevishev’s inequality, the probability of
|Ek1(S0)∩S1| < r2

2 is at most 4
r2

. Once |Ek1(S0)∩S1| ≥ r2

2 , D moves to the next step, where

D checks that Ek2(Ek1(x)) = E−1k3 (S(x)) for every x ∈ Uk1 , and outputs 0. Therefore we have

Pr
[
k

$← I3κ, E
$← BC(κ, n) : D[TEk[E], E] = 1

]
≤ 4

r2
.

On the other hand, let S = P be a truly random permutation on In. For each key k =
(k1, k2, k3), the probability that Ek2(Ek1(x)) = E−1k3 (S(x)) for every x ∈ Uk1 , assuming

|Ek1(S0) ∩ S1| ≥ r2

2 , is upper bounded by 1/(N)
rN

1
2
. Therefore we have

Pr
[
P

$← Pn, E
$← BC(κ, n) : D[P,E] = 1

]
≥ 1− 1

(N)
rN

1
2

.

We might set S0 = S1. Then D would make 2rKN
1
2 queries to the underlying blockcipher

and rN
1
2 queries to the outer permutation.

A.2 A Meet-in-the-Middle Attack of 22κ Query Complexity

A distinguisher D, parameterized by r > 0, executes the following steps.

1. Fix a set S0 ⊂ In such that |S0| = r.
(a) For each (k, k′) ∈ I2κ and x ∈ S0, make a query Ek′(Ek(x)).
(b) For each x ∈ S0, make a query S(x).
(c) For each k′′ ∈ Iκ and x ∈ S0, make a query E−1k′′ (S(x)).

2. If there is a key k = (k, k′, k′′) such that Ek′(Ek(x)) = E−1k′′ (S(x)) for every x ∈ S0, then
output 0. Otherwise, output 1.

Analysis. Suppose that S = TEk[E] with a random key k = (k1, k2, k3) ∈ I3κ. Since
Ek2(Ek1(x)) = E−1k3 (S(x)) for every x ∈ S0, we have

Pr
[
k

$← I3κ, E
$← BC(κ, n) : D[TEk[E], E] = 1

]
= 0.

On the other hand, let S = P be a truly random permutation on In. For each key k =
(k, k′, k′′), the probability that Ek′(Ek(x)) = E−1k′′ (S(x)) for every x ∈ S0 is upper bounded
by 1/(N)r. Therefore we have

Pr
[
P

$← Pn, E
$← BC(κ, n) : D[P,E] = 1

]
≥ 1− K3

(N)r
.

In the first step, D makes rK + rK2 queries to the underlying blockcipher and r queries to
the outer permutation.

