327 research outputs found

    Performance Comparison of Dual Connectivity and Hard Handover for LTE-5G Tight Integration

    Full text link
    Communications at frequencies above 10 GHz (the mmWave band) are expected to play a major role for the next generation of cellular networks (5G), because of the potential multi-gigabit, ultra-low latency performance of this technology. mmWave frequencies however suffer from very high isotropic pathloss, which may result in cells with a much smaller coverage area than current LTE macrocells. High directionality techniques will be used to improve signal quality and extend coverage area, along with a high density deployment of mmWave base stations (BS). However, when propagation conditions are hard and it is difficult to provide high quality coverage with mmWave BS, it is necessary to rely on previous generation LTE base stations, which make use of lower frequencies (900 MHz - 3.5 GHz), which are less sensitive to blockage and experience lower pathloss. In order to provide ultra-reliable services to mobile users there is a need for network architectures that tightly and seamlessly integrate the LTE and mmWave Radio Access Technologies. In this paper we will present two possible alternatives for this integration and show how simulation tools can be used to assess and compare their performance.Comment: This paper was accepted for presentation at the ninth EAI SIMUtools 2016 conference, August 22 - 23, 2016, Prague, Czech Republi

    Performance Comparison of Dual Connectivity and Hard Handover for LTE-5G Tight Integration in mmWave Cellular Networks

    Get PDF
    MmWave communications are expected to play a major role in the Fifth generation of mobile networks. They offer a potential multi-gigabit throughput and an ultra-low radio latency, but at the same time suffer from high isotropic pathloss, and a coverage area much smaller than the one of LTE macrocells. In order to address these issues, highly directional beamforming and a very high-density deployment of mmWave base stations were proposed. This Thesis aims to improve the reliability and performance of the 5G network by studying its tight and seamless integration with the current LTE cellular network. In particular, the LTE base stations can provide a coverage layer for 5G mobile terminals, because they operate on microWave frequencies, which are less sensitive to blockage and have a lower pathloss. This document is a copy of the Master's Thesis carried out by Mr. Michele Polese under the supervision of Dr. Marco Mezzavilla and Prof. Michele Zorzi. It will propose an LTE-5G tight integration architecture, based on mobile terminals' dual connectivity to LTE and 5G radio access networks, and will evaluate which are the new network procedures that will be needed to support it. Moreover, this new architecture will be implemented in the ns-3 simulator, and a thorough simulation campaign will be conducted in order to evaluate its performance, with respect to the baseline of handover between LTE and 5G.Comment: Master's Thesis carried out by Mr. Michele Polese under the supervision of Dr. Marco Mezzavilla and Prof. Michele Zorz

    Temporal and spatial combining for 5G mmWave small cells

    Get PDF
    This chapter proposes the combination of temporal processing through Rake combining based on direct sequence-spread spectrum (DS-SS), and multiple antenna beamforming or antenna spatial diversity as a possible physical layer access technique for fifth generation (5G) small cell base stations (SBS) operating in the millimetre wave (mmWave) frequencies. Unlike earlier works in the literature aimed at previous generation wireless, the use of the beamforming is presented as operating in the radio frequency (RF) domain, rather than the baseband domain, to minimise power expenditure as a more suitable method for 5G small cells. Some potential limitations associated with massive multiple input-multiple output (MIMO) for small cells are discussed relating to the likely limitation on available antennas and resultant beamwidth. Rather than relying, solely, on expensive and potentially power hungry massive MIMO (which in the case of a SBS for indoor use will be limited by a physically small form factor) the use of a limited number of antennas, complimented with Rake combining, or antenna diversity is given consideration for short distance indoor communications for both the SBS) and user equipment (UE). The proposal’s aim is twofold: to solve eroded path loss due to the effective antenna aperture reduction and to satisfy sensitivity to blockages and multipath dispersion in indoor, small coverage area base stations. Two candidate architectures are proposed. With higher data rates, more rigorous analysis of circuit power and its effect on energy efficiency (EE) is provided. A detailed investigation is provided into the likely design and signal processing requirements. Finally, the proposed architectures are compared to current fourth generation long term evolution (LTE) MIMO technologies for their anticipated power consumption and EE

    Waveform Design for 5G and Beyond

    Get PDF
    5G is envisioned to improve major key performance indicators (KPIs), such as peak data rate, spectral efficiency, power consumption, complexity, connection density, latency, and mobility. This chapter aims to provide a complete picture of the ongoing 5G waveform discussions and overviews the major candidates. It provides a brief description of the waveform and reveals the 5G use cases and waveform design requirements. The chapter presents the main features of cyclic prefix-orthogonal frequency-division multiplexing (CP-OFDM) that is deployed in 4G LTE systems. CP-OFDM is the baseline of the 5G waveform discussions since the performance of a new waveform is usually compared with it. The chapter examines the essential characteristics of the major waveform candidates along with the related advantages and disadvantages. It summarizes and compares the key features of different waveforms.Comment: 22 pages, 21 figures, 2 tables; accepted version (The URL for the final version: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119333142.ch2

    Fast-RAT Scheduling in a 5G Multi-RAT Scenario

    Get PDF
    The authors exploit a Fast RAT switch solution to improve QoS metrics of the system by means of efficient RAT scheduling. Analyses presented here show a better understanding concerning which system measurements are most efficient in a mutliple-RAT scenario. More specifically, they present an analysis concerning the metrics that should be used as RAT scheduling criteria and how frequent these switching evaluations should be done

    Multi-Connectivity Management and Orchestration Architecture Integrated With 5g Multi Radio Access Technology Network

    Get PDF
    The significant growth in the number of devices and the tremendous boost in network/user traffic types and volume as well as the efficiency constraints of 4G innovations have encouraged industry efforts and also financial investments towards defining, developing, and releasing systems for the fifth generation. The 5G of mobile broadband wireless networks with multiple Radio Access Technologies (Multi-RATs) have actually been designed to satisfy the system and service requirements of the existing as well as the coming applications. The multi-RAT access network is considered the key enabling technology to satisfy these requirements based on low latency, high throughput. To utilize all available network resources efficiently, research activities have been proposed on multi-connectivity to connect, split, steer, switch, and orchestrate across multiple RATs. Recently, multi-connectivity management and orchestration architecture standardization has just started; therefore, further study and research is needed. This project proposed a multi-connectivity management and orchestration architecture integrated with 5G, Long-Term Evolution (LTE), and Wireless LANs (WLAN) technologies. The simulations experiments conducted to measure the Quality of Experience (QoE) by provisioning network resources efficiently, which are: data rate, latency, bit error rate. The results show that the 5G requirements have been achieved with latency and throughput around 1ms and 200 Mbps, respectively

    Reliable Video Streaming over mmWave with Multi Connectivity and Network Coding

    Full text link
    The next generation of multimedia applications will require the telecommunication networks to support a higher bitrate than today, in order to deliver virtual reality and ultra-high quality video content to the users. Most of the video content will be accessed from mobile devices, prompting the provision of very high data rates by next generation (5G) cellular networks. A possible enabler in this regard is communication at mmWave frequencies, given the vast amount of available spectrum that can be allocated to mobile users; however, the harsh propagation environment at such high frequencies makes it hard to provide a reliable service. This paper presents a reliable video streaming architecture for mmWave networks, based on multi connectivity and network coding, and evaluates its performance using a novel combination of the ns-3 mmWave module, real video traces and the network coding library Kodo. The results show that it is indeed possible to reliably stream video over cellular mmWave links, while the combination of multi connectivity and network coding can support high video quality with low latency.Comment: To be presented at the 2018 IEEE International Conference on Computing, Networking and Communications (ICNC), March 2018, Maui, Hawaii, USA (invited paper). 6 pages, 4 figure
    • …
    corecore