106 research outputs found

    Benchmarking: More Aspects of High Performance Computing

    Full text link

    Cooperative Interval Caching in Clustered Multimedia Servers

    Get PDF
    In this project, we design a cooperative interval caching (CIC) algorithm for clustered video servers, and evaluate its performance through simulation. The CIC algorithm describes how distributed caches in the cluster cooperate to serve a given request. With CIC, a clustered server can accommodate twice (95%) more number of cached streams than the clustered server without cache cooperation. There are two major processes of CIC to find available cache space for a given request in the cluster: to find the server containing the information about the preceding request of the given request; and to find another server which may have available cache space if the current server turns out not to have enough cache space. The performance study shows that it is better to direct the requests of the same movie to the same server so that a request can always find the information of its preceding request from the same server. The CIC algorithm uses scoreboard mechanism to achieve this goal. The performance results also show that when the current server fails to find cache space for a given request, randomly selecting a server works well to find the next server which may have available cache space. The combination of scoreboard and random selection to find the preceding request information and the next available server outperforms other combinations of different approaches by 86%. With CIC, the cooperative distributed caches can support as many cached streams as one integrated cache does. In some cases, the cooperative distributed caches accommodate more number of cached streams than one integrated cache would do. The CIC algorithm makes every server in the cluster perform identical tasks to eliminate any single point of failure, there by increasing availability of the server cluster. The CIC algorithm also specifies how to smoothly add or remove a server to or from the cluster to provide the server with scalability

    Striping Doesn't Scale: How to Achieve Scalability for Continuous Media Servers with Replication

    Get PDF
    Multimedia applications place high demands for QoS, performance, and reliability on storage servers and communication networks. These, often stringent, requirements make design of cost-effective and scalable continuous media (CM) servers difficult. In particular, the choice of data placement techniques can have a significant effect on the scalability of the CM server and its ability to utilize resources efficiently. In the recent past, a great deal of work has focused on ``wide'' data striping as a technique which ``implicitly'' solves load balancing problems; although, it does suffer from multiple shortcomings. Another approach to dealing with load imbalance problems is replication. The main focus of this paper is a study of scalability characteristics of CM servers as a function of tradeoffs between striping and replication. More specifically, striping is a good approach to load balancing while replication is a good approach to ``isolating'' nodes from being dependent on other system resources. The appropriate compromise between the degree of striping and the degree of replication is key to the design of a scalable CM server. This is the topic of our work. Also cross-referenced as UMIACS-TR-99-4

    ImageNet Large Scale Visual Recognition Challenge

    Get PDF
    The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the five years of the challenge, and propose future directions and improvements.Comment: 43 pages, 16 figures. v3 includes additional comparisons with PASCAL VOC (per-category comparisons in Table 3, distribution of localization difficulty in Fig 16), a list of queries used for obtaining object detection images (Appendix C), and some additional reference

    Focused image search in the social Web.

    Get PDF
    Recently, social multimedia-sharing websites, which allow users to upload, annotate, and share online photo or video collections, have become increasingly popular. The user tags or annotations constitute the new multimedia meta-data . We present an image search system that exploits both image textual and visual information. First, we use focused crawling and DOM Tree based web data extraction methods to extract image textual features from social networking image collections. Second, we propose the concept of visual words to handle the image\u27s visual content for fast indexing and searching. We also develop several user friendly search options to allow users to query the index using words and image feature descriptions (visual words). The developed image search system tries to bridge the gap between the scalable industrial image search engines, which are based on keyword search, and the slower content based image retrieval systems developed mostly in the academic field and designed to search based on image content only. We have implemented a working prototype by crawling and indexing over 16,056 images from flickr.com, one of the most popular image sharing websites. Our experimental results on a working prototype confirm the efficiency and effectiveness of the methods, that we proposed

    ATOM : a distributed system for video retrieval via ATM networks

    Get PDF
    The convergence of high speed networks, powerful personal computer processors and improved storage technology has led to the development of video-on-demand services to the desktop that provide interactive controls and deliver Client-selected video information on a Client-specified schedule. This dissertation presents the design of a video-on-demand system for Asynchronous Transfer Mode (ATM) networks, incorporating an optimised topology for the nodes in the system and an architecture for Quality of Service (QoS). The system is called ATOM which stands for Asynchronous Transfer Mode Objects. Real-time video playback over a network consumes large bandwidth and requires strict bounds on delay and error in order to satisfy the visual and auditory needs of the user. Streamed video is a fundamentally different type of traffic to conventional IP (Internet Protocol) data since files are viewed in real-time, not downloaded and then viewed. This streaming data must arrive at the Client decoder when needed or it loses its interactive value. Characteristics of multimedia data are investigated including the use of compression to reduce the excessive bit rates and storage requirements of digital video. The suitability of MPEG-1 for video-on-demand is presented. Having considered the bandwidth, delay and error requirements of real-time video, the next step in designing the system is to evaluate current models of video-on-demand. The distributed nature of four such models is considered, focusing on how Clients discover Servers and locate videos. This evaluation eliminates a centralized approach in which Servers have no logical or physical connection to any other Servers in the network and also introduces the concept of a selection strategy to find alternative Servers when Servers are fully loaded. During this investigation, it becomes clear that another entity (called a Broker) could provide a central repository for Server information. Clients have logical access to all videos on every Server simply by connecting to a Broker. The ATOM Model for distributed video-on-demand is then presented by way of a diagram of the topology showing the interconnection of Servers, Brokers and Clients; a description of each node in the system; a list of the connectivity rules; a description of the protocol; a description of the Server selection strategy and the protocol if a Broker fails. A sample network is provided with an example of video selection and design issues are raised and solved including how nodes discover each other, a justification for using a mesh topology for the Broker connections, how Connection Admission Control (CAC) is achieved, how customer billing is achieved and how information security is maintained. A calculation of the number of Servers and Brokers required to service a particular number of Clients is presented. The advantages of ATOM are described. The underlying distributed connectivity is abstracted away from the Client. Redundant Server/Broker connections are eliminated and the total number of connections in the system are minimized by the rule stating that Clients and Servers may only connect to one Broker at a time. This reduces the total number of Switched Virtual Circuits (SVCs) which are a performance hindrance in ATM. ATOM can be easily scaled by adding more Servers which increases the total system capacity in terms of storage and bandwidth. In order to transport video satisfactorily, a guaranteed end-to-end Quality of Service architecture must be in place. The design methodology for such an architecture is investigated starting with a review of current QoS architectures in the literature which highlights important definitions including a flow, a service contract and flow management. A flow is a single media source which traverses resource modules between Server and Client. The concept of a flow is important because it enables the identification of the areas requiring consideration when designing a QoS architecture. It is shown that ATOM adheres to the principles motivating the design of a QoS architecture, namely the Integration, Separation and Transparency principles. The issue of mapping human requirements to network QoS parameters is investigated and the action of a QoS framework is introduced, including several possible causes of QoS degradation. The design of the ATOM Quality of Service Architecture (AQOSA) is then presented. AQOSA consists of 11 modules which interact to provide end-to-end QoS guarantees for each stream. Several important results arise from the design. It is shown that intelligent choice of stored videos in respect of peak bandwidth can improve overall system capacity. The concept of disk striping over a disk array is introduced and a Data Placement Strategy is designed which eliminates disk hot spots (i.e. Overuse of some disks whilst others lie idle.) A novel parameter (the B-P Ratio) is presented which can be used by the Server to predict future bursts from each video stream. The use of Traffic Shaping to decrease the load on the network from each stream is presented. Having investigated four algorithms for rewind and fast-forward in the literature, a rewind and fast-forward algorithm is presented. The method produces a significant decrease in bandwidth, and the resultant stream is very constant, reducing the chance that the stream will add to network congestion. The C++ classes of the Server, Broker and Client are described emphasizing the interaction between classes. The use of ATOM in the Virtual Private Network and the multimedia teaching laboratory is considered. Conclusions and recommendations for future work are presented. It is concluded that digital video applications require high bandwidth, low error, low delay networks; a video-on-demand system to support large Client volumes must be distributed, not centralized; control and operation (transport) must be separated; the number of ATM Switched Virtual Circuits (SVCs) must be minimized; the increased connections caused by the Broker mesh is justified by the distributed information gain; a Quality of Service solution must address end-to-end issues. It is recommended that a web front-end for Brokers be developed; the system be tested in a wide area A TM network; the Broker protocol be tested by forcing failure of a Broker and that a proprietary file format for disk striping be implemented

    An architecture for an ATM network continuous media server exploiting temporal locality of access

    Get PDF
    With the continuing drop in the price of memory, Video-on-Demand (VoD) solutions that have so far focused on maximising the throughput of disk units with a minimal use of physical memory may now employ significant amounts of cache memory. The subject of this thesis is the study of a technique to best utilise a memory buffer within such a VoD solution. In particular, knowledge of the streams active on the server is used to allocate cache memory. Stream optimised caching exploits reuse of data among streams that are temporally close to each other within the same clip; the data fetched on behalf of the leading stream may be cached and reused by the following streams. Therefore, only the leading stream requires access to the physical disk and the potential level of service provision allowed by the server may be increased. The use of stream optimised caching may consequently be limited to environments where reuse of data is significant. As such, the technique examined within this thesis focuses on a classroom environment where user progress is generally linear and all users progress at approximately the same rate for such an environment, reuse of data is guaranteed. The analysis of stream optimised caching begins with a detailed theoretical discussion of the technique and suggests possible implementations. Later chapters describe both the design and construction of a prototype server that employs the caching technique, and experiments that use of the prototype to assess the effectiveness of the technique for the chosen environment using `emulated' users. The conclusions of these experiments indicate that stream optimised caching may be applicable to larger scale VoD systems than small scale teaching environments. Future development of stream optimised caching is considered

    Design of Scalable Continuous Media Servers with Dynamic Replication

    Get PDF
    Multimedia applications place high demands for quality-of-service (QoS), performance, and reliability on systems. These stringent requirements make design of cost-effective and scalable systems difficult. Therefore efficient adaptive and dynamic resource management techniques in conjunction with data placement techniques can be of great help in improving performance, scalability and reliability of such systems. In this paper, we first focus on data placement. In the recent past, a great deal of work has focused on "wide" data striping as a way of dealing with load imbalance problems caused by skews in data access patterns. Another approach to dealing with load imbalance problems is replication. The appropriate compromise between the degree of striping and the degree of replication is key to the design of scalable continuous media (CM) servers. In this work we focus on evaluation of this compromise in the context of a hybrid CM server design. Changes in data access patterns lead to other questions: (1) when should the system alter the number of copies of a CM object, and (2) how to accomplish this change. We address (1) through an adaptive threshold-based approach, and we use dynamic replication policies in conjunction with a mathematical model of user behavior to address (2). We do this without any knowledge of data access patterns and with provisions for full use of VCR functionality. Through a performance study, we show that not only does the use of this mathematical model in conjunction with dynamic resource management policies improves the system's performance but that it also facilitates reduced sensitivity to changes in:(a) workload characteristics, (b) skewness of data access patterns, and (c) frequency of changes in data access patterns. We believe that not only is this a desirable property for a CM server, in general, but that furthermore, it suggests the usefulness of these techniques across a wide range of continuous media applications. (Cross-referenced as UMIACS-TR-2001-21
    • …
    corecore