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ABSTRACT 

FOCUSED IMAGE SEARCH IN THE SOCIAL WEB 

Zhiyong Zhang 

December 15th, 2008 

Recently, social multimedia-sharing websites, which allow users to upload, 

annotate, and share online photo or video collections, have become increasingly 

popular. The user tags or annotations constitute the new multimedia "meta-data". 

We present an image search system that exploits both image textual and visual 

information. First, we use focused crawling and DOM Tree based web data 

extraction methods to extract image textual features from social networking image 

collections. Second, we propose the concept of visual words to handle the image's 

visual content for fast indexing and searching. We also develop several user friendly 

search options to allow users to query the index using words and image feature 

descriptions (visual words). The developed image search system tries to bridge the 

gap between the scalable industrial image search engines, which are based on 

keyword search, and the slower content based image retrieval systems developed 

mostly in the academic field and designed to search based on image content only. 

We have implemented a working prototype by crawling and indexing over 16,056 

images from flickr. com, one of the most popular image sharing websites. Our 

experimental results on a working prototype confirm the efficiency and effectiveness 

of the methods, that we proposed. 
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CHAPTER I 

Introduction 

1 Keyword Based Image Search and CBIR 

1.1 Problem with Keyword Based Image Search 

Current large scale image search engines like Google Image Search 1, and 

Yahoo Image Search 2, provide only keyword based search functionality. 

AdY .... ced!rna e'eweh 

FIn • .-1II 

Size 

Fllelypes 

Coloration 

related to ... of the words 

related to the eud ,..,_ 

related to ..., of the words 

. .. ...... to the words 

Return images that are 

Return only image files formatted as 

Return only images in 

Domain Return images from the site or domain 

I 
I 
I 
L 

SafeSearch ONo fine ring SUse moderate finering OUse strict fine ring 

I Google Search 

I 
J 
J 

l any size S 
1 any filetype 3 
1 any colors EI 

C!2{Xl) Google 

Figure 1: Google Advanced Image Search Functionalities. 

Figure 1 shows the search functionalit ies provided by Google advanced image 

search. For Coloration options, it has "any colors", "black and white", "grayscale", 

and "full color", options, which are not sufficient to differentiate between different 

images. 

1 http://images.google.com/ 
2http://images.search .yahoo.com/ 
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(a) Flickr Search Results (b) Google Search Results On Flickr 

Figure 2: First page of returned results of the query "tiger". 

Figure 2 shows the search results of using Flickr 's image search and Google 

image search on Flickr. We can see that the search results contain too many 

concepts and the above search interfaces provide no functionality to filter through 

different concepts. Given that any popular search keyword will return tens of 

thousands of image search results, it then becomes the users ' burden to scan 

through several pages of image search results to find the right image. The user 

could also input more keywords to narrow the search. However, narrowing the 

search results by adding more keywords can result in reduced coverage because of 

the insufficiency of annotations. 

1.2 Content Based Image Retrieval to the Rescue 

Research in CBIR has illustrated the merits of exploiting low level image 

features for image retrieval. If we can provide a simple interface to help users sift 

through images by using image content, we may be able to lower the coverage lost 

while improving the precision at the same time. However, on large scale Web 

repositories, most CBIR systems' performance may become questionable from a 

scalability point of view. Moreover, they generally do not provide keyword based 
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search functionalities which may be useful in certain search scenarios. 

1.3 Integrating Keyword Search and CBIR 

TABLE 1 

Comparison of Keyword and Content Based Search 

Type Framework Weakness Strength 

Keyword Search Information Expr- Well-Developed Text Retrieval 

Based Engines ession Difficulties Methods;Scalability;Easy to Use 

Content CBIR Semantic Gap Ability to express the user's 

Based and Scalability information need using CQntf;'nt 

As can be seen from Table 1, CBIR and commercial keyword based image 

search tend to complement each other. Thus, combining them together could tap on 

the strengths of a wealth of well-developed text retrieval techniques and on the 

robustness and scalability of current Search Engine technologies to handle image 

search without being blind to the wealth of information within an image's 

"content". A combined tool also promises to alleviate the weaknesses of either type 

of search working in isolation. 

2 Social Networking 

As social networking has recently begun to gain increasing popularity, photo 

sharing and video sharing sites such as Flickr, Youtube, etc, have started attracting 

more and more users. Generally, social networking sites contain certain conceptual 

social structure, such as user profiles, users' groups, users' uploaded photos, and 

users' comments. By integrating the collaborative annotations together with low 

level image features in a seamless way for searching, we may be able to present users 

with a powerful tool to control and manage these huge image collections. 
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3 Vertical Search and Focused Crawling 

Vertical search engines have been proposed to handle specialized search 

demands. Comparing to the "all-in-one" style "whole-web" search, they can provide 

more accurate and customized results in specialized fields. Given a model of a few 

specific topics (for example, important keywords from a certain category), a focused 

web crawler can automatically acquire the web pages of specified topics and discard 

irrelevant topics when crawling. By indexing the crawling results acquired by the 

focused crawler, we can then build realize a vertical search engine on some specified 

topics. This combination not only provides users with more accurate specialized 

results, but also helps alleviate the scalability burden of crawling and indexing the 

entire world wide web. 

4 Contributions 

This proposal mainly focuses on focused crawling and searching of images 

with both textual tags and content information. For this purpose, we have 

implemented a preliminary prototype with promising results. The prototype can be 

accessed at http://webmining.spd.louisville.edu:8080/isearchj. In this research 

work, we have made the following contributions. 

1. We propose the DOM Tree Path String (DTPS) web data extraction method. 

This extraction method is simple, intuitive and quite effective according to our 

preliminary tests. It can readily be expanded to structured or semi-structured 

web data extraction. 

2. We design and build a focused crawler based on our proposed two-stage 

crawling scheme. We focus our crawling study on the photo-sharing site 

Flickr.com. For this site, we propose profile-based best-first-crawl and 

crawl-list expansion through image co-tagging. The proposed methods can be 

easily expanded to other photo-sharing or social networking sites. 

3. We devise a framework for the seamless integration of keyword and content 
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based image search. This mixed search provides users with a powerful tool to 

search large image collections on the web. Compared with "keyword-only" 

based image search, we provide more functionalities by integrating 

"content-based" image retrieval techniques. Compared with traditional CBIR, 

we use more scalable and efficient indexing and searching techniques. We also 

present some analytical and empirical analysis and methods to ensure the 

optimality of the integrated inverted index. 

4. We provide innovative indexing and ranking schemes both for keyword based 

image search and content based image search. More specifically, for keyword 

based image search, we integrate many "social information" aspects in 

photo-sharing sites such as tags, groups, and comments. For content based 

image search, we expanded the inverted file indexing scheme to handle image 

content and to differentiate the importance of different "spatial" regions 

within an image. 

5. Based on image segmentation and image gridding, we can analyze and index 

an image based on the "spatial distribution" of its content. Segmenting the 

image into parts has additional benefits since it helps increase the sparseness 

of our color or texture thesaurus, making our inverted-file indexing structure 

more justified and scalable. In our case, we will only consider segmentation by 

image color, because texture features are too expensive to be included in the 

segmentation stage. 

6. Our codebook design techniques for image color and texture rely on scalable 

data mining techniques, and also take into account the various scalability and 

quality "constraints" of text-based indexing and retrieval. 
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CHAPTER II 

Background and Literature Review 

In this chapter, we will review topics that are related to focused image 

crawling and content based image search. As we cover the methods and techniques 

that are currently being used, we will discuss general web image text extraction 

methods, focused crawling and web data extraction, image ranking schemes, 

relevant image processing techniques including diffusion, segmentation, and 

gridding; the indexing schemes including R-trees, VA-files, and inverted index; the 

Generalized Lloyd Algorithm for image codebook generation, and end with a review 

of current content based image search systems. These will form the basis for our 

further exploration. 

1 General Web Image Text Extraction Methods 

To extract textual annotations for images in the World Wide Web, several 

methods have been explored. Associated text such as image file names, captions, 

alternate text, hyperlinks, HTML titles, etc are analyzed to build an image search 

system [20]. The problem of how to associate this text with the images has also 

been explored. In [26], text from one-step links (surrounding text in the same page 

except image captions) and two-step links (in-link or out-link pages) were used for 

image indexing and retrieval. The normalized cumulative term weights for these 

textual documents are used for ranking the result images with respect to given 

keywords. In [55], the weight ChainNet method, which is based on lexical chains 

and is claimed to differentiate the importance of different texts by assigning 

different lexical chain names to image title, alt, caption and page title, was proposed 

and a list space model was later used for similarity matching. Later in [22], different 
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terms such as TM (page oriented text), LT (link oriented text), and BT (caption 

oriented text) were used to differentiate different types of associated texts and 

several heuristics were explored for term weighting. 

2 Extracting Data from Structured Websites 

Research about extracting data from structured web sites has always been 

important. As most web sites would use web page templates and databases to 

generate pages automatically, the problem becomes the template deduction. 

RoadRunner [13] [23], takes one HTML page as the initial wrapper, and uses 

Union-Free Regular Expression (UFRE) method and Align, Collapse under 

Mismatch, and Extract (ACME) matching techniques to generalize the wrapper 

under mismatch when parsing the other HTML pages with the wrapper. Several 

heuristics such as Terminal- Tag Search, Recursion, Backtracking, were used to 

handle mismatches for wrapper generalization. However, as pointed by [4], the 

union-free assumption of the "grammar" of the template is not valid for many 

collections of pages that do contain disjunctive items and the scalability concern of 

the search heuristics used for solving mismatches is also not well addressed in 

RoadRunner. The authors in [4] then developed the EXALG extracting system, 

which is mainly based on extracting LFEQs (Large and Frequently occurring 

EQuivalence classes) and differentiating roles of tokens using dtokens to deduce the 

template and extract data values. The basic assumption of this method is that two 

tokens rarely occur in a large number of pages with the same frequency by chance. 

The "back-end" reason for this same frequency occurrence is that they are generated 

by the same template. Compared to RoadRunner, this method allows disjunctions. 

Later in [69], a tree similarity matching method was proposed to extract web data, 

where a tree edit distance method and a Partial Tree Alignment mechanism were 

used for aligning tags in the HTML tag tree. This was an improvement over the 

previous MDR [38] method by the same authors. This method is based on the 

observation that a data region usually contains a list of similar data records such as 

search engine results. But their method won't be able to detect single occurrence 
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data records such as the title or the uploader of an image in image sharing sites. 

Research in extracting web record data has widely used a web page' structure 

[37] and a web page's visual perception pattern. In [24], the authors proposed 

several filter rules to extract content based on the Document Object Model (DOM) 

tree. They developed a human interaction interface through which users were able 

to customize which type of DOM-nodes are to be filtered. While their target was for 

general HTML content and not for web record, neither did they suit their methods 

to structured data record extraction. In [72], [73], and [74], the authors proposed to 

use the tag tree structure and visual perception pattern to extract data from search 

engine results. They used several heuristics to model the visual display pattern that 

a search engine results page would usually look like, and combined this with tag 

path. Compared with their tag path method, our Path String approach keeps track 

of all the parent-child relationship of the DOM nodes in addition to keeping the 

parent-first-child-next-sibling pattern originally used in the DOM tree. We also 

include the node property in the Path String generation process. Another work that 

used visual perception information to extract data records is ViPER [57], which 

used region weighting and data alignment. 

Wrapper generation and template detection are closely related to each other. 

In [75], the authors proposed a method for joint optimization of wrapper generation 

and template detections. They proposed to group pages together based on their 

DOM-tree structure similarity, and then to do template detection on these same 

types of pages. Our D RP (Detail Record Page) identification process shares the 

same motivation, while our method was able to cover pages from different web sites. 

The degree of human intervention has always been a factor to consider when 

developing a wrapper. In [30], the authors developed a semi-automatic wrapper to 

minimize human intervention, while in [29], the authors proposed several heuristics 

for title extraction from HTML documents. In [62], the authors presented 

"C-repeated pattern" methods for data extraction and label assignment. Attribute 

labeling was also addressed in [78]. 
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3 Focused Crawling 

Focused crawling was introduced by [10], in which three components, a 

classifier, a distiller, and a crawler, were combined to achieve focused crawling. 

They used a Bayes rule-based classifier [9], which was based on both texts and 

hyperlinks. The distillation process involves link analysis similar to hub and 

authority method. In [43], the authors presented a comparison of different crawling 

strategies such as breadth-fist, best-first, pagerank, and shark-search. Further in 

[48], the authors presented a comparison of different classification schemes used in 

focused crawling and concluded that Naive Bayes was a weak choice when compared 

with Support Vector Machines or Neural Networks. 

In [3] [2], the authors presented a probabilistic model for focused crawling 

based on the combination of several learning methods. These learning methods 

include content based learning, URL token based learning, link based learning, and 

sibling based learning. Their assumption is that pages which share similar topics 

tend to link each other. On the other side, authors of [15] [28] explored using 

context graph for building a focused crawling system. The two-layer context graph 

and Bayes Rule based probabilistic models were used in both systems. 

Instead of using page content or link context, another work by Vidal et al [61J 

explored the page structure for focused crawling. This structure-driven method 

shares the same motivation with our work in trying to explore specific page-layouts 

or structure. In their work, each page was traversed twice: the first pass for 

generating the navigation pattern, and the second pass for actual crawling. In 

addition, some works [79J [51J for focused crawling used meta-search methods, that 

is, they based their method on taking advantage of current search engines. Among 

these two works, Zhuang et al [79J used search engine results to locate the home 

pages of an author and then used a focused crawler to acquire missing documents of 

the author. Qin et al [51 J used the search results of several search engines to 

diversify the crawling seeds. and This puts the accuracy of their system at the 

mercy of other related search engines. 
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In [1], the authors used cash and credit history to simulate the page 

importance and implemented an OPIC (Online Page Importance Computation) 

strategy based on the web pages linking structure (cash flow). 

4 Image Ranking 

Current commercial image search engines tend to inherit the traditional text 

search ranking methods. Several object-level ranking schemes were introduced in 

recent years. In [47], Poprank was introduced. Several heuristics such as 

authored-by, cited-by, published-by, etc, were adopted to rank web objects such as 

books, commercial products, etc. In [70], Zhang et al presented methods to build a 

vertical image search engine for searching high quality photos. BM25 ranking and 

score fusion methods were used. Web spam poses serious challenge to normal 

ranking schemes. To combat spam, [68] introduced Topical TrustRank, which is an 

improvement over TrustRank, and [6] introduced hilltop experts-target ranking 

method. 

5 Image Pre-processing Tasks Relevant to Search 

For those working in the data mining field, data pre-processing is a very 

familiar term. Through the crucial KDD (Knowledge Discovery in Data) step of 

data pre-processing, we achieve the objective of removing noise and extracting 

useful features that can help improve the results of the data mining task. Image 

pre-processing shares some similar characteristics with data pre-processing, and can 

be used to obtain cleaner data for better feature extraction. Here, we will discuss 

several image processing techniques that are relevant to our work. These include 

image anisotropic diffusion, image segmentation, and image gridding. 

5.1 Image Anisotropic Diffusion 

In order to obtain a better image segmentation, it is desirable to first smooth 

the image to remove noise. However we don't want to blur the image so that we end 
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up missing the edge boundaries. In [49], Perona et al proposed anisotropic diffusion, 

which encourages intra-region smoothing while inhibiting inter-region smoothing. 

The basic idea is to apply heat diffusion concepts to an image. By setting the 

conduction coefficient to 1 in the interior of each region, and to 0 at the region 

boundaries, the blurring of images would then take place separately in each region 

with no interaction between regions. The anisotropic diffusion filtering process is 

given by the following transformation. 

(1) 

where 1; is a discretely sampled image, 1;+1 is the diffusion result, 5 denotes the 

pixel position in a discrete, two-dimensional (2-D) grid, and t denotes discrete time 

steps (iterations). The constant A E ~+ is a scalar that determines the rate of 

diffusion, 'lls represents the spatial neighborhood of pixel 5, and 17]81 is the number of 

neighbors (usually four, except at the image boundaries). The image gradient 

(magnitude) in a particular direction is given by: 

P E 7]8. (2) 

while g(.) is the edge stopping function. By defining 1/;(x) = p'(x) = g(x)x, Black et 

al [7] relate the anisotropic diffusion to the robust estimation problem in robust 

statistics. They formalize the problem to finding an image I that satisfies the 

optimization criterion: 

mr l: l: p(Ip - Is, 0") (3) 
sEI pErys 

where p(.) is a robust error norm and 0" is a "scale" parameter. They showed that 

an appropriate choice of the p-function can minimize the effect of the outliers, or 

(Ip - Is), at the boundaries between piecewise constant image regions. Equation 3 

can be further solved by gradient descent 

where 1/;(.) = p'(.). Equation (4) turns out to be the same as Equation (1). They 

then discussed several choices of the robust error norms or p-functions. 
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• Lorentzian error norm: 

It has the same format as one of the functions discussed in [49]. 

• Huber's minimax norm: 

{ 

x 2 /21J + 17/2 
p(x,lJ) = 

lxi, 

• Tukey's biweight norm: 

Ixl ~ 17, 

Ixl > 17 
'l/J(x, (7) = 

{ 
x/IJ, 

sign(x), 

Ixl ~ 17, 

Ixl > 17 

(5) 

(6) 

Ixl ~ 17, 

Ixl > 17 
(7) 

By comparing these three norms, Black et al [7] found out that Tukey norm 

produced sharper boundaries. The Tukey biweight norm was adopted in [50] for 

image retrieval. For these reasons, we will adopt the Tukey biweight norm for our 

image anisotropic diffusion process. 

5.2 Image Segmentation 

It is typically desired to segment an image into several parts: a background 

part, and one (or several) object part(s). This corresponds to our human's visual 

perception process: when we look at our surroundings, our visual system will 

segment the object(s) from the background subconsciously, and even without our 

knowledge, while in the image processing field, segmenting an image remains a quite 

challenging task and is still an open and active research field. 

One significant breakthrough in image segmentation is the Normalized Cut or 

Ncut [56] method. In [56], Shi et al used spectral graph theory to partition the 

image into different segments. While Shi et al provided sound theoretical 

background for their minimum normalized cut method, they didn't give a solution 

for computing the minimum normalized cut effectively and efficiently for practical 
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use. Later in [17], Pedro et al developed an efficient method for graph based 

segmentation, which uses a Kruskal's algorithm style method for greedily merging 

different components (image regions), thus having the computation complexity of 

O( nlog( n) for n image pixels. In our work, we will use the spectral graph method 

mentioned above given in [56] and [17]. 

5.3 Image Gridding and Image Tiles 

Dividing an image into small grids or sub-blocks is another way of 

partitioning an image. In [14] [52], etc. Dagli et aI, and Rahman et al all divide the 

image into 4 X 4 sub-blocks or 16 x 16 sub-grids for further processing and analysis. 

Dividing the image into grids not only implements a coarse image segmentation, but 

also helps users to extract Regions of Interest (ROI)s of the image. 

6 Indexing Schemes 

In this section, we will first review an algorithm that is closely related to our 

indexing method: the GLA (Generalized LLoyd Algorithm) or K-means algorithm, 

then we will study several indexing schemes including R-trees, VA-files, and inverted 

index methods. 

6.1 GLA (K-means algorithm) 

In order to build an inverted index, we need to transform the image content 

features into textual words. One way to achieve this goal is to use some Vector 

Quantization (VQ) methods. A simple and intuitive way of quantization method is 

to use a Uniform Quantizer, as was already implemented in a prior version of our 

image indexing and search system [71]. Since there are several advantages of using 

Nonuniform Quantization such as an improved Signal to Noise Ratio (SNR) (see 

[21]), we will try the Nonuniform Quantization method. Among the Nonuniform 

Quantization methods, The Generalized Lloyd Algorithm (GLA), also known as 

k-means algorithm in clustering domain or LBG algorithm in the data compression 
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literature, is widely used for generating image codebooks for indexing or retrieval. 

See [41] [58] [32] and [44]. 

The GLA algorithm, as described in [21], is given below. 

Step 1. Begin with an initial codebook C 1• set m = 1. 

Step 2. Given a codebook, Cm = {Yi; i = 1, ... , N}, find the optimal partition 

into quantization cells, that is, use the Nearest Neighbor Condition to form 

the nearest neighbor cells: 

Ri = {x: d(X,Yi) < d(x,Yj);all j =J i}. (8) 

If x yields a tie for distortion, e.g., if d(x, Yi) = d(x, Yj) for one or more j =J i, 

then assign x to the set Rj for which j is smallest. 

Step 3. Using the Centroid Condition, find Cm +1 = {cent(R); i = 1, ... , N}, 

the optimal reproduction alphabet (codebook) for the cells just found. 

Step 4. Compute the average distortion for Cm +1. If it has changed by a small 

enough amount since the last iteration, then stop. Otherwise set m + 1 ---+ m 

and go to Step 2 

In [40], Ma et al give a clustering-like method by sequentially increasing the 

number of colors to cluster the colors in that region until either (a): the number of 

colors has reached the maximum number of colors allowed; or (b): the mean squared 

error of the color clustering is below a pre-defined threshold. This approach will 

guarantee that the number of colors in the codebook extracted from any image is 

optimally small and further guarantee the sparseness of the image colors in the 

codebook, but the computation cost may be too expensive. In this method, the 

mapping relation is not fixed, which means that the same pixel value may be 

mapped to one codeword for one image while it may be mapped to another 

codeword for another image. 
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6.2 Trees, VA-files, and Inverted files 

QBIC [19], Blobworld [8], WALRUS [46], and WBllS [64], which uses the 

QBIC system, all use R*-trees [5] for indexing. The R*-tree is a variant of the 

R-tree by Guttman [25]. Besides R*-tree, there are other tree-based methods like 

SR-tree [36] and M-tree [11] etc. All claim to have good performance for nearest 

neighbor or similarity search. This is understandable because these tree-based 

methods tend to organize the data into similar partitions or clusters. Thus the 

nearest neighbor search can avoid traversing many branches of the tree, and so it is 

efficient. Figure 3 shows the basic R-tree indexing structure. 

The curse of dimensionality spells potential trouble for all the above 

tree-based methods. In [65], Weber et al showed that the performance of these 

tree-based methods degrades significantly as the number of dimensions increases 

and is even outperformed by a sequential scan whenever the dimensionality is above 

10. Weber et al then proposed a scheme named vector approximation file (or 

'VA-file') and demonstrated that VA-file can offer better performance for high 

dimensional similarity search. An OVA-file (Ordered VA-file) structure, which 

places approximations that are close to each other in close positions for later fast 

access, was later used in [39] for video retrieval. Figure 4 gives the basic VA-file 

indexing structure. 
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Figure 3: R tree indexing structure. 

The VA-file structure adopts a signature-file like filtering method, thus trying 

to build a mechanism for fast scanning for nearest neighbors search. Other 

signature-file based indexing systems include work by Essam et al [16]. 
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Figure 4: VA-File indexing structure. 

VA-File 

1100 

10 11 

0001 

00 11 

01 10 

However, in [67] [80], Zobel et al showed that signature files are distinctly 

inferior to inverted files as data structure methods for indexing. Although their 
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performance evaluations were mainly based on Boolean queries, their test data were 

for text indexing, and they didn't address the similarity query or the nearest 

neighbor query, the success of inverted files on textual search engines has recently 

started attracting the attention of researchers. Figure 5 shows an inverted file 

indexing structure. 

spy 

spy agent 

agent Bond spy 

agent 

Bond 

agent Bond 

dictionary inverted Ust document map 

Figure 5: Inverted File Indexing Structure. 

Although there is no corroborative evidence showing that the inverted-file 

methods should be expanded to multimedia retrieval area, scalability concerns have 

drawn attention to the potential of using inverted files for multimedia indexing. The 

Viper [59] system had attempted to use inverted files for indexing image databases 

and their experimental results showed that their inverted indexing scheme had 

better performance than the vector space system used before by the same authors. 

In [33], Jing et al tried to use a modified inverted file for image indexing and showed 

through experiments that inverted file indexing is much more efficient than 

sequential search without much loss in accuracy. However, their modification is 

more akin to a query expansion style in the query phase rather than a substantial 

modification in the indexing phase. In [52], Rahman et al also used inverted files for 

image indexing and observed comparable accuracy results for inverted file indexing 

and sequential search. 

17 



7 Existing Query By Image Content Systems 

7.1 Query by Image Color 

Querying by image color has been gaining popularity both in the academic 

and commercial domains. More and more systems claim to have or plan to have the 

query-by-image-color functionality. In the academic field , a few Web prototypes and 

small scale museum art work search portals allow users to search by image color. 

Retrievr 1, based on [31], allows users to query by sketch and by image. For the 

sketch query, users can select the color of the sketch from a color palette, which 

contains 12 colors in the first level and 72 different grades for each color in the 

second level. The QBIC system has also found its application in Museum Digital 

collection search 2, where users can search by choosing colors from a palette and 

assigning color proportions. Another search system for fine art 3 also allows 

search-by-color , although the color query can not be combined with other types of 

queries. In the commercial field, some websites, especially some stock photo sites, 

have begun to integrate color search to gain more profit . Fotolia 4, iStockphoto 5, 

and yotophoto 6 all have search-by-color functionality. Comparing with works in the 

academic domain, these sites allow users to combine keywords and colors for search 

on collections that are of much larger scales than traditional CBIR. Thus their 

objectives and scale are inline with our proposed work. 

fotolia 
1J' 71 577 - 1321 

$g<ch by cat.gory 0 
Sg!d! by Cdery 0 

fotolia 
'It 718 577 - 1321 

kush by QtworY 0 
kflSh by ..... a 0 
S-rc!tbyoolor 

•• •• • 

Figure 6: fotolia. 

1 http: //labs.systemone.at/ retrievr / 
2http://www.hermitage.ru/fcgi-bin/ db2www/ qbicColor.mac/ qbic?selLang=English 
3http: //www.artsugar.com/search/search_page 
4http:j / www.fotolia.com/ 
5http:j / www.istockphoto.com/ 
6http://yotophoto.com/ 
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Figure 8: yotophoto. 

7.2 Query by Example Images 

Most current CBIR systems have QBE (Query By Examples) functionality, 

where the user uploads an "image" and expects results that are similar. This 

includes some CBIR systems in the academic field including QBIC, SIMPLIcity, 

CIRES, IKONA 7 , Retrievr, MARS 8 , etc. In the commercial area, Tiltomo 9 and 

Riya 10 also have image search by example functionality. Because query by example 

alone is barely sufficient for most search scenarios in real life, some researchers have 

tried to combine QBE (Query By Example ) with QBK (Qu ery By K eyword) 

together to obtain systems that combine keywords and visual features together for 

7 www-rocq.inria.fr/cgi-bin/ imedia/ ikona 
8http:j / www.ifp.uiuc.edu/ qitian/ MARS.html 
9http://www.tiltomo.com/ 

lOhttp:j / www.riya.com/ 
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described in section 5, and in the data extraction process described section 6. 

2 Structured Organization of Photo-sharing Sites 

As discussed in chapter II , the general methods for extracting web image text 

information struggle to differentiate different types of text by assigning 

corresponding weight to different types, and they miss one important issue of the 

whole problem: the noisy web environment. Here, noise refers to the fact that the 

surrounding text contains too much information which is irrelevant to the embedded 

images. 
Red & green 

Add your comment 

... Up!oIded on Januety 17. 2001 -.. -
.... manganrte s photo51ream 

Flower ~croilrnlPt."S' 
- eomment on (Pool) 

This photo also belOngs 10 

+ O"""an) (Sot) 

+ lJ1m(Pool) 

Th. World Through My E~as 

20,490 
pn .... 
Vlow .. -

+ Post2/COmmentAny 1 (pool) 

Kns Krca Contaas (OUAUTY & 
+ Comment on any 2) (Pool) 

Tags 

turopt 
1: german1 

nrw 
herten 

Figure 9: Flickr Image Textual Information. 

It is very hard to extract accurate textual annotations when faced with 

significant noise in the web environment. Moreover, if we use similar methods to 

deal with images in photo-sharing sites, we would miss the important photo 

organizing structures of these sites. For example, if we take a closer look at a typical 

Flickr image page, as shown in Figure 9, it is not hard for us to discern certain 

patterns. For instance, the image title has a bigger font than image tags; image 

tags, sets and groups (pools) are clickable and aligned in parallel; etc. 

Similarly, in some other photo-sharing sites, we can find certain patterns. 

This page display pattern does not occur only in one page. Many other pages 

25 



(actually all the detailed image pages) look similar. This phenomenon is not 

accidental. It is due to the way by which these web pages are designed and 

maintained. All these pages are generated by one single template with different data 

being inserted in fixed positions, it would thus be strange if they don't show similar 

layout patterns. This give us an important hint to exploit to improve accuracy. The 

motivation is to deduce the hidden template from the web page layout . In the 

following , we will relate this problem to the problem of extracting data from 

structured or semi-structured websites and set this problem of structured web data 

extraction from photo-sharing sites to the more general problem of DRP (Detail 

Record Page) information extraction, which is defined and explained below. 

3 Problem Definition 

To make our problem clear, we will first give a definition of our object term: 

DRP (Detail Record Page). 

Definition: A DRP {Detail Record Page is a web page that contains only 

one record with detailed descriptions of the record. 

Book 

*·Autonomous Categories 
With an Appendix by Po+fsiano Olu 
Book Series Lecture Notes in Mathemabcs 
Pubfisher Sprinoer Berlin I Heidetbero 
ISSN 0075·B434 (Print) 1617·9692 (Online) 
Volume Volume 752/1979 
001 10.1007/BFb0064579 
COpyriQht 1979 
ISBN 978·3·540.{)9563·7 
SOOject COledion M~abcs and statistics 
Sprinoerti1k Date Wednesday, November 15, 2006 

Figure 10: Springer Book Page. 

A DRP can be a book or an article page in a digital library, a product page 

in an e-commerce site, or an image or video page in a social media sharing site, etc. 

For example, Figure 10 give an example DRP. 

Problem Statement: Our purpose for the data extraction is to: (1) 
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Identify DRPs in the Web pages automatically with minimum human intervention; 

(2) Deduce web-site-dependent schemas for DRPs and use the schemas for accurate 

and efficient detail record data extraction. 

The first step, page identification, of our work, paves the way for the second 

step, schema generation. Once the we have deduced the schema, we will use it to 

reinforce the page identification process, which further play a verification role of the 

page identification and hence the schema itself. 

One naive way to extract DRP data from the web is to enumerate a list of 

popular websites and manually deduce a schema for each one. However, the fast 

growth of the web record pages would outpace any such manual schema deduction 

attempts. Also, the popularity of different web sites changes quickly and 

dramatically. To this end, an automatic page identification and schema deduction 

tool with minimum human intervention is needed. 

4 DOM Tree Path String 

To begin the discussion of our extraction methods, let's illustrate the basic 

term that we will use for both page identification and data extraction, DTPS (DOM 

Tree Path String), which we will define soon. 

4.1 Path String, Perceptual Group, and Semantic Group 

The DOM (Document Object Model) defines a hierarchy of Node objects. 

Among the different types of nodes, Element Node, and Text Node are mostly used 

by us. Figure 11 give a figure 9's DOM tree representation. 
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Figure 11: Dom Tree of Figure 9 (different color corresponds to different Semantic 

Groups. 

In Figure 11, the whole DOM tree can be seen as a Document Node, whose 

child is the Element Node <html>, which further has two children <head> and 

<body>, both Element Nodes, etc. The Element Nodes are all marked with <> in 

Figure 11. At the bottom of the tree, there are a couple of Text Nodes. In the DOM 

Structure Model, the Text Nodes are not allowed to have children, so they are 

always the leaf nodes of the DOM tree. There are other types of nodes such as 

CDATASection Nodes and Comment Nodes that can be leaf nodes. Element Nodes 

can also be leaf nodes. Element Nodes may have properties. For example, 

"< T Dclass = "TagList" >" is an Element Node "< T D >" with property 

"class = "Tag List"" . Readers may refer to http)/www.w3.org/DOM/ for a 

detailed specification. 

Definition 1: A Path String of a node is the string concatenation from the 

node's immediate parent all the way to the tree root . If a node in the path has 
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properties, then all the display properties should also be included in the 

concatenation. We use "-" to concatenate a property name and "/" to concatenate 

a property value. 

For example, in Figure 11, the Path Strings for "europe" and for "herten" are 

"<axdivxdivxdiv-class/TagList> <td-class/ RHS><trx ... xbodyxhtml>" , 

and the Path String for "Red & Green" is "<hlxtdxtrx ... xbodyxhtml>" . 

Note when we concatenate the property DOM node into Path Strings, we only 

concatenate the display property. A display property is a property that has an effect 

on the node's outside display. Such properties include "font size", "align", "class", 

etc. Some properties such as "href", "src", "id", etc., are not display properties as 

they generally do not affect the appearance of the node. Thus, including them in 

the Path String will make the Path String over-specified. For this reason, we will 

not concatenate these properties in the Path String generation process. 

Definition 2: A Perceptual Group of a web page is a group of text that look 

similar in the page layout. For example, "germany (Set)" and "Kris Kros '" (Pool)" 

are in the same Perceptual Group in Figure 9; and "europe" and "herten" are also 

in the same Perceptual Group. 

Definition 3: A Semantic Group of a web page is a group of text that share 

the same category of meanings. For example, "europe" and "herten" are in the 

same Semantic Group as they all belong to the image's tags, while "germany (Set)" 

and "Kris Kros ... (Pool)" are in different Semantic Groups as they belong to "Set" 

and "Pool" respectively. 

4.2 Path String Observations 

We propose to use the Path String for page identification and schema 

generation as it has the following benefits. 

Path String Efficiency 

First, when we extract Path Strings from the DOM tree, we save lot of space, 

since we do not need to save a Path String for every Text Node. For example, we 
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only need one Path String to represent all different "tags" in Figure 11, as all these 

"tags" share the same Path String. Second, transforming the tree structure into 

linear string representation will reduce the computation complexity. We will explain 

this more in our data extraction process. 

Path String Differentiability 

Now let's have a closer examination of the DOM tree in Figure 11. Using our 

Path String definition, we know that Text Nodes "europe" and "herten" share the 

same Path String. Interestingly, they share a similar appearance when displayed to 

users as an HTML page, thus we say that they are in the same Perceptual Group. 

Moreover, their display property (Perceptual Group) is different from that of "Red 

& green" or "manganite!", which have different Path Strings. Generally, different 

Path Strings correspond to different Perceptual Groups as the back-end DOM tree 

structure decides how the front-end page layout looks. In other words, there is a 

unique mapping between Path Strings and Perceptual Groups. Such observations 

encourage us to make a bold statement: Path String may be able to differentiate 

different Semantic Groups. That is, for different Text Nodes, if their Path Strings 

are different, they are in different Semantic Groups (have different categories of 

meanings). We can even generate a one-to-one mapping between the Path Strings 

and the Semantic Groups. 

If different Perceptual Groups correspond to different Semantic Groups, such 

a statement is obvious. However, this is not true for general web pages. For 

instance, a Perceptual Group in a web news portal may contain too many different 

items, which are in very different Semantic Groups. But if we limit our attention to 

only DRPs, then such a statement may be partially true for the structured or 

semi-structured web pages, which raises the possibility of using Path Strings to 

identify different Semantic Groups. When we tested this on several structured web 

sites, we found that for some web sites, different Path Strings mostly correspond to 

different semantic groups. For example, for social media-sharing sites such as Flickr, 

in any DRPs (as shown in Figure 9), different semantic groups such as "Tags", 

30 



"Titles", "Comments", "Uploaders" all correspond to different Path Strings, and 

different "Tags" in the same DRP share the same Path String. There is a small 

exception of "Sets" and "Pools". Although they have the same Path String, they 

are in different Semantic Groups. 

In another group of web sites that we tested, we found that the Path String 

itself is not enough to differentiate semantic groups. For example in Figure 10, the 

book's "Publisher" and "ISBN" are in different Semantic Groups, but they happen 

to share the same Path String. In this case, there is no unique mapping between a 

Path String and Semantic Groups. However, we will use several heuristics to 

identify the feature pairs, and this will allow us to extract different features 

accurately using Path Strings plus some additional information from the DOM tree. 

We will explain the feature pairs in section 5. 

4.3 Path String and Path String Node Value Pair 

Before we discuss DRP identification and data extraction, we need to define 

two more terms. 

Definition 4: A Path String Node Value (PSNV) pair P(ps, nv) is a pair of 

two text strings, the Path String ps, and the Node Value nv whose Path String is 

ps. For example, in Figure 11, "<h1xtdxtrx ... xbodyxhtml>" and "Red & 

green" are a PSNV pair. 

Definition 5: We say that a Path String, ps, or a PSNV pair, P(ps, nv), is 

unique, if it occurs only once in a web page's DOM tree. 

With these terms and definitions, we are ready to discuss our DRP (Detail 

Record Page) identification process and data extraction procedure. 

5 DRP Identification 

As stated in section 3, we are trying to find the pages that are DRPs. Our 

identification procedure is based on record title and record features. 
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5.1 Record Title Uniqueness and Cohesiveness 

Our first heuristic for DPR identification is based on the record title and the 

following two observations. 

Observation 1: A record title's corresponding Path String, Tps , is unique, 

that is, there is one unique non-empty text node value, Tnv, whose Path String is 

T ps , and Tnv is the record title. 

This observation is based on the fact that we are only interested in DRPs 

that contain one data record. That data record's title must be very prominent for 

web browsers to identify, and its display pattern will not be repeated by other Text 

Nodes, otherwise it will not be a DRP. Hence the record title constitutes one unique 

Perceptual Group and Semantic Group. In this case, this in a one-to-one mapping 

between the title Path String and the title Semantic Group. 

Observation 2: A web page title and record title share high similarity in 

DRPs. 

This observation can be verified empirically from many popular web sites. For 

example, in Figure 11, the page title is "Red & green on Flickr" , while the record 

title is "Red & green". However, in Figure 10, if we consider the record title as the 

book's name, then the record title is not similar to page title, but if we consider the 

record title as "Book Chapter", then it has high similarity with the web page's title. 

The web page title is very easy to extract as the title's immediate parent 

node in the DOM tree is always "< title >". However, a record's title is hard to 

extract because we don't even know whether the page, P, is a DRP or not. 

Our first algorithm will determine the maximum Jaccard similarity between a 

page P's title and all the Text Nodes with Unique Path Strings. 
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algorithm 1 Extract Max Similarity Value Feature. 
Input: DOM tree T of Page W 

Output: Max Similarity between Page Title and all 

other Text Node Values with Unique PS; 

Steps 

1 Get Page Title Title(W) from T 

2 Travs T, get all PSNV pairs, Pi(ps,nv),i=1, ... ,n 

3 From Pi(ps,nv),i=1, ... ,n, get all PSNV pairs 

4 with Unique PS, PUj(ps, nv), j=1, ... ,m 

5 Max 0 

6 for k=1 to m do 

7 Sim(k)=Jaccard(NV(k) and Title(W)) 

8 if Sim(k»Max 

9 then Max=Sim(k) 

10 return Max; 

In Algorithm 1, getting the PSNV pairs in line 2 is linear to the number of 

nodes, N, in the tree, or O(N). If we use a hash table [12], then getting the PSNV 

pairs with Unique PS in line 3-4 is linear to the number of PSNV pairs, n. Line 5-8 

calculate the similarity between the page title and all text nodes with unique PS 

and record the maximum value. It is linear in the number of such text nodes, Tn, if 

we consider calculating the Jaccard similarity of short strings as constant-time 

complexity, then in total, the complexity is O(N). 

Our intuition is that if the maximum similarity value returned by Algorithm 

1 is very high, then there is a good chance that the node is the record title node and 

the page is a DRP. On the other hand if the maximum similarity value is very low, 

say even zero, there is a high chance that the page is not a DRP. This intuition is 

based on the above mentioned observation. 

However, if the record title is very short and the page title is rather long, 

then the maximum similarity will be low, but we can not rule out that the page is a 
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DR? To address the insufficiency of this heuristic and improve accuracy, we use 

another heuristic, Feature Pair, to deal with the description part of a DRP. 

5.2 Record Feature Pairs 

First we will give the definition of a Feature Pair. 

Definition 6: A Feature Pair is a pair of strings, P(l, j), with feature 

description labell, and feature description f. 

For record description or features of a DRP, we have the following 

observations. 

Observation 3: A DRP have listed descriptions. These descriptions' 

corresponding Path Strings or Perceptual Groups have multiple non~empty 

corresponding text nodes. Each of these text nodes corresponds to one specification 

of the record. For example, a media (image or video) may have multiple tags. A 

book or an article in a Digital Library may have multiple descriptors (ISBN, 

Publisher, Authors, etc), or references. A product in an e~commerce site may have a 

list of features. Then how do we identify these descriptions? To this end, we have 

another observation. 

Observation 4: On a DRP, a Semantic Group of listed descriptions will 

have only one description label. The description label's PSNV (Path String Node 

Value) pair is unique in the DR? For instance, image or video tags may have 

"Tags" as their description label and that label's PSNV pair is unique in the DRP. 

Product description may have "features", "item~specifics", "product details", etc, as 

their description label. Books or articles in Digital Libraries may have "references", 

"related items", etc., as description label and these labels' PSNV pairs are all 

unique, because otherwise, we would have multiple such labels, meaning that they 

are not DRPs, and they may be record list pages instead. 

More specifically, we have two modes of occurrences of Feature Pairs as 

shown in Figure 12. Mode 1 is characterized by a feature label followed by a group 

of different feature descriptions, while Mode 2 is characterized by a feature label 

followed by one feature description. 
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Figure 12: Two Modes of Feature Pairs. 
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Figure 13: Example Feature Pairs 

Figure 13 gives the Feature Pair occurrence modes of an eBay product page. 

In Figure 13, both modes occur. 

With the two types of Feature Pair occurrence modes available, we are now 

ready to present Algorithm 2, whose subroutine getFeaturepairsWithPS is shown 

in Algorithm 3, 
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algorithm 2 Extract Feature Pairs Feature. 
Input: DOM tree T of Page W 

Output: Feature Pairs FPi(l,f), i = 1, ... ,n 

Steps 

1 Travs T, get all PSNV pairs, Pi(ps,nv),i=1, ... ,n 

2 From all PSNV pairs, get all PSNV pairs whose PS 

3 corresponds to multi NVs, PMj(ps, nv), j=1, ... ,m 

4 for k=1 to m do 

5 FPk(l,f) = getFeaturepairsWithPS(T, PMj.PS) 

6 return FPi(l,f), i=1, ... ,n 

In Algorithm 2, lines 2-3 get all the Path Strings which correspond to 

multiple node values. This is due to the fact that record features seldom occur 

alone. They often occur multiple times in a DRP. Line 4-5 call a subroutine 

getFeaturepairsWithPS to get Feature Pairs given these Path Strings that have 

multiple text nodes, or PSM. 

First we define two general rules for feature labels, then we will explain the 

subroutine Algorithm 3. 

Rule 1: Feature label can not be page title. 

Rule 2: There cannot exist other non-empty node blocks between features 

and feature labels. We only extract the first pair in case that several features 

share the same label (mode 1 in Figure 12, as other pairs can be easily 

deducted. 

For a given PSM, not necessarily all the text nodes that correspond to the 

PSM are description features. Only text nodes that satisfy the two modes shown in 

Figure 12 and observation 3 and 4 are considered as description features. 
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algorithm 3 Subroutine getFeaturepairsWithPS. 
Input: DOM tree T of Page W, PathString PS 

Output: Feature Pairs FPj(l,f), j = 1, ... ,m 

Steps 

1 for each Txt Node Ni in T with PS(Ni)=PS do 

2 Node Pa=Ni, Ch=Ni 

3 while Pa != NULL and Pa != Root(T) do 

4 Node Ul=Pa.getPrevSiblingNode 

5 while Ul!=NULL and Ul.numOfChildren()=1 

6 do Ul=Ul.getChildNode() Iitraverse down 

7 if Ul=NULL 

8 then Pa=Pa.getParentNode() 

9 continue Ilgo to upper level 

10 if Ul.numOfChildren(»1 

11 then break Iino feature label 

12 if Ul=textNode and 

13 Ul.getPathString()!=Ch.getPathString() 

13 then if PSNV(Ul, PS(Ul)) is Unique 

14 then add FP(Ul,Ch) to the Results 

15 else break 

16 Pa=Pa.getParenNode() 

17 return Results 

Subroutine getFeaturepairsWithPS in Algorithm 3 is to traverse upward 

and downward to find the Feature Pairs. In Algorithm 3, the while loop in line 3-16 

do the actual work. Line 4 is to try to find current text node's previous sibling or 

current node's parent's previous sibling (uncle). Once we find an uncle that satisfies 

observation 4 and rule 2 (numOfChildren = 1 in line 5), we traverse down the tree 

to get the feature label (line 6). Line 10-11, and line 15 are all to satisfy observation 

4 and rule 2. If the current node's uncle node does not exist (line 7), or we could 
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not find the unique PSNV pairs in current level (line 12-13), then we traverse up 

one level (line 8, 9, and 16) until we are exhausted up to the tree root. The 

complexity of subroutine Algorithm 3 depends on the back-track (upward) and 

forward track (downward) to find the feature labels, with the average complexity 

Log( N) (the worst case is to traverse two times the tree height). If we set some 

extra rules such as traverse past at most two "< table >" labels, we can save more 

time, as generally a description label would not be two "< table >"s away from the 

description. Thus the total complexity for Algorithm 2 is O(N + M x Log(N). 

In this part, we get another feature Feature Pairs. Together with the title 

heuristic, we are ready to use a classifier to classify a page. 

5.3 DRP page classifier 

Up to now, given a web page, P, we have obtained the following features: (1) 

The maximum similarity between the page's title and all of its Unique Path String 

text nodes, maLsim. (2) The number of Feature Pairs, fp_num. Because DRPs 

from different web sites may have different number of Feature Pairs, we normalize 

this feature by the total number of non-unique PSNV pairs, thus the feature 

becomes, fp_norm = fp_num/(NpsNV - N uniq ). At the same time, we will use 

three other features to form the input for a page classifier as follows. (3) The ratio 

between the total number of Path Strings and the total number of PSNV pairs, 

pSJatio = Nps/NpSNV. (4) The ratio between the number of Unique Path Strings 

and the number of total Path Strings, uniqJatio = Nuniq / Ntotal (5) Finally, the 

maximum number of Text Nodes a Path String corresponds to, maLnum. The 

reason for adding feature (3), (4), and (5) is to help between detail pages and list 

pages. 

With these 5 input features, we train a C4.5 decision tree classifier to classify 

DRPs. 
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6 DRP Data Extraction Based on Path String 

In section 5, we used several heuristics to identify DRPs, now we move our 

attention to how to extract useful data from DRPs. 

6.1 Structured Organization of DRPs 

We have discussed the structured organization of DRPs for different web 

sites. For example, if we visit FlickLcom, we will find that all the detail image pages 

are organized in a similar fashion: One big image, with image title, image uploader, 

and image tags, etc. Moreover, all these features are in the same fixed position in a 

specific detail page. This phenomenon is not accidental. It is due to the way by 

which these web pages are designed and maintained. All these pages are generated 

by one single template with different data being inserted to fixed positions, it would 

thus be strange if they did not show similar layout patterns. 

6.2 Path String based Data Extraction 

In chapter II, we reviewed several methods for extracting data from 

structured web sites. All these methods use very complicated steps and heuristics, 

struggling to deduce the whole template of the web pages accurately. One thing 

that needs to be pointed out is that the ultimate purpose of accurate template 

deduction is extracting the target data. As long as we can extract our target data 

accurately, we don't even need to deduce the whole template into such details as to 

single character matching. In the following, we will present our Path String based 

method for data extraction from structured web sites. 

Depending on how much accuracy we want and how our target website is 

organized, we have two scenarios. 

Scenario 1: Single Specific Website DRP Extraction 

This scenario works for a single specific website, say, if we only want to 

extract image or video textual information from flickr or youtube. In this scenario, 
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we use human manual assignment, which is very simple, to name feature groups 

that we desire. This scenario works in the following way: first, we manually select a 

training page (DRP) from the target website, such as the page shown in Figure 9. 

Then, we use the system to output all the Path Strings that correspond to all the 

Text Nodes in the DRP. After that, we manually identify the nodes for the 

attributes we want to extract and use their Path Strings to build the template 

schema. Finally, we use this schema to parse all the other DRP pages. For example, 

in the Flickr image page case, using our extraction rules and after validation, we find 

that the Path String for image title is: 'k:.hlxtdxtrxtablexdivxbodyxhtml>". 

We will use this Path String setting to parse all the remaining image detail pages. 

In the parsing process, we will categorize any Text Node whose Path String is 

'k:.hlxtdxtrxtablexdivxbodyxhtml>" as title node. We apply a similar 

procedure to other attributes such as image uploader, tags, comments, etc. 

Special Cases for Scenario 1 

1) Optional Data U sing this method, the question of optional data is trivial. If 

an item is optional and does not occur in one specific page, the method for 

retrieving that type of Text Nodes with the path string of the same type will return 

null. For example, some pages may have comments while others do not, when a 

page doesn't have any comments, we would get a null when using comments path 

string to retrieve the comments in that page. All we need to do is to enlist all the 

attributes of our interest and extract path strings for them regardless of whether 

they are optional. 

2) Disjunction For the case of disjunctions, we need a step further to differentiate 

specific types. For instance, for Flickr image page, the group (pool) and set 

attributes have the same Path Strings. They can be thought of as a generalization of 

disjunctions as they can both occur, both not occur or occur exclusively in the same 

page. We can use the textual information of the items to differentiate these two 

types (A pool contains the keyword " pool" while set contains the keyword "set"). 
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3) Template Text Some texts occur in almost every page and form frequent 

pattern texts. Generally, we don't need to worry about these texts as there is little 

chance that they share the same path string with the target texts that we need to 

extract. But in case there is an overlap of path strings between that of the frequent 

pattern texts and that of the target texts, we can easily prune such frequent patter'n 

texts solely because their occurrence frequency in the total collection is higher than a 

pre-set threshold. We will discuss this schema generation process later in scenario 2. 

We can see in this scenario that the Path String method can handle these 

special cases without engaging much extra effort. As can be seen from the above 

explanation, compared to methods mentioned in chapter II, our method is very 

straightforward and effective. In the following we will discuss a more involved 

scenario, applying Path String method to the whole web. 

Scenario 2: Scalable Automatic Extraction 

If we want to use our method for many more websites, then the human 

intervention procedure in scenario 1 would no longer scale. For this scenario, instead 

of extracting only useful information actively as in scenario 1, we need to remove 

the template data to achieve useful data extraction. That is, we need to build the 

schema as most data extraction methods would do. For this scenario, the schema 

deduction process is given in Algorithm 4. 

algorithm 4 Deduce Schema from DRPs. 
Input: N DRPs for schema extraction 

Output: schema PSNV-pairs, Pi(nv, PS(nv)), i=1, ... ,n 

Steps 

1 Schema = All PSNV-pairs of Page 1 2. 

2 for i=2 to N 

3 do Temp=All PSNV-pairs of Page i 

4 Schema=intersection(Schema, Temp) 

5 Return Schema. 
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In Algorithm 4, we adopt a simple way of identifying schema data and real 

data. That is, if the data value and its path string pair (PSNV pair) occur in every 

page, we identify it as schema pair, otherwise it is a real data pair. If there is only 

one page as input, then the whole page's path string node value pairs are schema 

data. The for loop of lines 2-4 does a simple intersection operation of the pages. 

Line 5 returns the schema. Note that this is a simple intuitive way of generating 

schema, that can be expanded later, by setting a threshold value. So if a certain 

Path String Node Value pair occurs in a certain percent of the total pages, then it 

will be identified as schema data. In our experiments, we found that with this simple 

approach, we can generate schema which are comparable to other related methods. 

6.3 Case study: applying DTPS methods on Flickr 

Flickr has many features to organize the images. These include: image titles, 

uploaders, tags, sets, groups (pools), comments, etc. As shown in Figure 9, the 

image with title Red fj green belongs to different groups (pools:Kris Kros ... etc.) 

and sets (germany etc). HTML 1 gives the shortened HTML code after removing 

irrelevant content (some img, script, style, and template text etc.) for the fiickr page 

shown in Figure 9. 
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code 1 Sample Flickr Page Code. 
<html><head><title>Red &amp; green on Flickr</title> 

</head><body><div><table><tr> 

<td><hl>Red &amp; green</hl></td> 

<td><div>Uploaded on <a>January 17, 2007</a><br /> 

by<a><b>manganite</b></a> 

</div><div><p>This photo also belongs to:</p> 

<div><table><tr><td><h3><a> 

germany (Set)</a></h3></td></tr></table></div> 

<div><table><tr><td><h3><a> 

flowers (Set)</a></h3></td></tr></table></div> 

<div><table><tr><td><h3><a> 

Utata (Pool)</a></h3></td></tr></table></div> 

<div><table><tr><td><h3><a> 

The World ... (Pool)</a></h3></td></tr></table></div> 

<div><table><tr><td><h3><a> 

Kris Kros ... (Pool)</a></h3></td></tr></table></div> 

</div><div><h4>Tags</h4><div> 

<div><a>europe</a></div> 

<div><a>germany</a></div> 

<div><a>nrw</a></div> 

<div><a>herten</a></div> 

</div></div></td> 

</tr></table></div></body></html> 

Figure 14 gives the DOM tree structure for the page in HTML 1 code. 
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Figure 14: Flickr Image Page DOM tree for Figure 9. 

Textual Information 
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Figure 15: Extracting Textual Information from a Flickr Image Page. 

We can see that some semantic groups form the DOM tree structure. For 

example, "europe" and "herten" are in the same semantic group as they all belong 

to tags. Also we can see from the DOM tree that different semantic groups have 

different path strings. For instance, the path string for title "Red & green" is 

different from the path string for image uploader "manganite", which are all 
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different from the path string of image sets "germany", etc. Finally, Figure 15 shows 

the extraction results using our DOM tree path string (DTPS) method. 

7 Summary 

In this chapter, we have presented a simple DOM tree Path String based 

methods for DRP identifications and data extraction. We have adopted several 

heuristics to identify the DRP patterns from web pages based on record title and 

page title similarity and record Feature Pair occurrences. We also presented two 

scenarios for applying our Path String based method for real web record extraction. 

In the following chapters, we are going to incorporate the DRP classification scheme 

and Path String based data extraction method for scalable web image data record 

crawling. 
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CHAPTER IV 

Focused Image Crawling 

1 Introduction 

Social media-sharing web sites, such as Flickr, YouTube, etc., are becoming 

more and more popular. These web sites not only allow users to upload, maintain, 

and annotate images/videos, but also allow them to socialize with other people 

through contacts, groups, and subscribers, etc. Two types of information are 

generated in this process. The first type of information is the rich text, tags and 

multimedia data uploaded and shared in such web sites. The second type of 

information is the users' profile information, which tells what kind of topics interest 

them. Research on how to use the first type of information has been brought into 

attention recently. However, little attention has been paid to effectively exploit the 

second type of information, which are the users' profiles, for improving image search. 

On the other side, the concept of vertical search engine and focused crawling 

has come into focus gradually against popular-based general search engines. 

Comparing with general search engines, as the topical search engines only focus on 

specific areas, they are more likely to become experts in such areas. Although they 

lack the broadness that general search engines have, their depth can win them a 

stand in the competition. 

In this chapter, we are going to explore the applicability of developing a 

focused crawler on social multimedia web sites for better search. More specifically, 

we are going to exploit the users' profile information from social media-sharing web 

sites for developing a focused crawler to better serve people's needs for accurate 

multimedia search. To begin the focused crawling process, we need to first 

accurately identify the right type of pages. To this end, we propose to use a DOM 

46 



path string based method for page classification, which was discussed in the 

previous chapter. Correct identification of the right type of page can not only 

improve crawling efficiency by skipping undesirable types of pages, but also helps 

improve the accuracy of extracting data from these pages. In addition, we use a 

co-tagging method for topic discovery as we think it suits multimedia crawling more 

than the traditional taxonomy methods do (For instance, it is more flexible to new 

topics and new media additions). 

This chapter is organized as follows. In section 2, we define three types of 

pages and discuss our focused crawling motivation. In section 4, we introduce our 

profile-based focused crawling policies. In section 5, we discuss the co-tagging topic 

discovery for the focused crawler. In section 6, we present the focused crawling 

process. 

2 Motivation for Profile-based Focused Crawling 

2.1 Popularity of Member Profile 

In chapter II, we reviewed several focused crawling systems. These 

focused-crawling systems analyze the probability of getting pages that are in their 

crawling topics based on these pages' parent pages or sibling pages. In recent years, 

another kind of information, members' profiles, started looming large in social 

networking and resource-sharing sites, and almost eludes all current focused 

crawling efforts. We will explore the applicability of using such information in our 

focused-crawling system. More specifically, to illustrate our profile-based 

focused-crawling, we will use Flickr as an example. But our method can be easily 

expanded to other social networking sites, photo-sharing sites, or video-sharing 

sites, hence we refer to them as "social multimedia websites". 

2.2 Typical Structure of Social Media-sharing Web sites 

Social media-sharing Websites, such as Flickr and YouTube, are becoming 

more and more popular. Their typical organization structure are through these 
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different types of web pages defined below. 

1. A List Page is a page with many image/video thumbnails and their 

corresponding uploaders (optionally some short descriptions) displayed below 

each image/video. A list page can be considered as a crawling hub page, fro~ 

where we start our crawling. An example list page is shown in Figure 16. 

Explore I Tags I flowers 

Figure 16: An Example List Page on Flickr 

Figure 17: An Example Detail Page on Flickr 

2. A Detail Page is a page with only one major image/video and a list of 

detailed description text such as title, uploader, tags, etc around it. A detail 

page can be considered as a crawling target page, which is our final crawling 

destination. An example detail page is shown in Figure 17. 

3. A Profile Page is a page that describes a media uploader 's information. 

Typical information contained in such a page includes the uploader's 
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image/video sets , tags , groups, and contacts, etc. Further, such information 

can be divided into two categories: inner properties, which describe the 

uploader 's own contributions, such as the uploader's photo tags, sets, 

collections, videos , etc., and inter properties, which describe the uploader 's 

networking with other uploaders, such as the uploader 's friends, contacts, 

groups, subscribers, etc. We will use information extracted from profile pages 

to guide our focused crawling process. 

A list page has many out links that point to detail pages and profile pages. 

The structure is shown in Figure 18, in which two image thumbnails in a list page 

link to two detail pages and corresponding profile pages. 

Figure 18: Typical Structure of List Page, Detail Pages, and Profile Pages. 

2.3 Profile-based Focused-crawling 

Our motivation while crawling is to differentiate the importance of each 

out link or detail page link before we actually retrieve that detail page given a list 

page and a crawling topic. For the case of Figure 18, suppose we are going to crawl 

the topic of flow ers, our intuition would rank the first detail page link, which links to 

a real flower , higher than the second detail page link, which links to a walking girl 

and happened to be also tagged as "flower". The only information available for us 

to use is the photo thumbnails and the photo uploaders such as "U-EET" and 
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"haggard37" , etc. Processing photo thumbnails to recognize which one is more 

conceptually related to the concept of real flowers poses a challenging task and we 

leave it as future work. We will explore the photo uploader information to 

differentiate different concepts. Luckily, most social media-sharing Websites keep 

track of each member's profile. As shown in Figure 18, a member's profile contains 

the member's collections, sets, tags, archives, etc. If we process all this information 

first, we can have a preliminary estimate of which type of photos the member would 

mainly upload and maintain. We can then selectively follow the detail page links 

based on the corresponding uploader profiles extracted. 

3 Path String based Page Classification 

Before we actually do the crawling, we need to identify the type of a page. In 

this section, we will discuss our page classification strategy based on DOM path 

string method. Using such method, we are able to identify whether a page is a list 

page, detail page, profile page, or none of the above. 

3.1 Classifying Pages based on Real Data Path Strings 

Note same types of pages have the same perceptual groups and further same 

path strings. We then can use whether a page contains a certain set of path strings 

to decide whether this page belongs to a certain type of pages. For example, as we 

already know that all list pages contain the path string that corresponds to uploader 

names, and almost all detail pages contain the path string that corresponds to tags, 

we can then use these two different types of path strings to identify list pages and 

detail pages. Algorithm 5 gives the procedure of extracting characteristic path 

strings for a type of pages. 
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algorithm 5 Extract Page Path Strings. 
Input: N Pages of the same type 

for page type path strings extraction 

Output: A Set of Path Strings, PSi, i=l, ... ,n 

Steps 

1 Set = All Path Strings of Page 1 - Schema PSs. 

2 for i=2 to N 

3 do Temp=All PSs of Page i-Schema PSs 

4 Set=intersection(Set, Temp) 

5 Return Set. 

Web 
Page 

Figure 19: Page Classifier 

By applying Algorithm5 on each type of pages (list page, detail page, and 

profile page), we are able to extract a group of characteristic path strings for each 

type of pages. Then given a new page, the classifier would only need to simply 

check whether that page contains all the path strings for a group to decide whether 

that page belongs to that type of page. The process is shown in Figure 19. 

Note that most of the time, we don't even need to compare the whole group 

of page path strings with characteristic path strings, a few typical path strings would 

suffice to differentiate different types of pages. For example, as we tested on fiickr, 

we find that only one path string for each type of page is enough to do the 
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classification. 

4 Profile based Focused Crawler 

Using the path string method, we are able to identify the correct page types. 

In this section, we are going to discuss our profile-based crawling system. The basic 

idea is based on an uploader's profile, we have a rough understanding of the topic 

interests of the uploader, then when we encounter an image/video link of that 

uploader, we will have a prior knowledge of whether that image belong to our 

crawling topic and we process that link accordingly. By doing this, we are able to 

avoid extracting the actual detail page to know whether that page belongs to our 

crawling topic. To this end, we further divide the user profile into an inner profile 

and an inter profile. 

4.1 Ranking from the Inner Profile 

The inner Profile is an uploader's individual property. It comes from the 

uploader's general description of the media that they uploaded. From that, we can 

roughly identify the type of this uploader. For instance, a nature fan would 

generally upload more images and thus generate more annotations about nature; an 

animal adorer would have more terms about animal, dog, pets, etc., in their profile 

dictionary. For Flickr photo-sharing, an uploader's inner profile terms corne from 

the names of their "collections", "sets", "tags". For YouTube page, an uploader's 

inner profile comes from their "videos", "favorites", "playlists", etc. 
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Member Rank 

Figure 20: Inner Profile Ranking 

The process for calculating inner profile rank can be illustrated with Figure 

20. After we collect all the profile pages for an uploader, we extract terms from 

these pages, and get one final profile term vector. We then calculate the cosine 

similarity between the profile term vector and the topic term vector to get the 

member's inner profile rank. We use Equation 9 to calculate a user's inner rank. 

Rankinner (uIT) = Cos(xu , XT) (9) 

where Xu is the term vector of the user , and xT is the topic term vector. 

4.2 Ranking from the Inter Profile 

The inner profile gives only an uploader's individual properties. However, 

since an uploader is in a soicial media-sharing websites and he/she socialize with 

other uploaders in the same site, we need to take such social networking activities 

into consideration. The motivation behind this is if a user is a big fan of one topic, 

then he will tend to have friends , contacts, groups, or subscriptions, etc., which are 

related to that topic. Through social networking, different uploaders form a graph. 

However, such a graph is very sparse. An uploader may have only a limited number 

of social contacts. Hence, it is hard to conduct a systematic analysis on such a 

sparse graph. In this paper, we will use a simple method, in which we just 

accumulate an uploader 's social contacts' inner ranks and sum them up to get the 

uploader 's inter rank. 
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Suppose a user U have N contacts, then the inter rank of the user is 

calculated with Equation 10. 

N 

Rankinter(uIT) = liN L Rankinner(ciIT) 
i=l 

(10) 

where T is the given crawling topic, and Rankinner(ciIT) is the user's ith contact's 

inner rank. 

4.3 Combining The Inner-Rank and Inter-Rank 

For focused crawling, our final purpose is to find the probability of following 

link Ln given the crawling topic T so that we can decide whether we should follow 

the link. Using Bayes Rule, we have: 

(11) 

Suppose there are N total candidate links, then 

Pr(T) = L (Pr(TILi) * Pr(Li)) (12) 
O<i':SN 

Our task is then transformed into calculating the prior Pr(TILn), that is, given a 

link, the probability of that link belongs to crawling topic T. We propose to 

calculate the prior based on inner ranks and inter ranks. Each factor gives us a 

reward of following the link. We combine them together with the following equation. 

(13) 

where Ln is the nth image thumbnail link and Um is the mth user that corresponds 

to the nth image thumbnail link. Rankinner(Um) and Rankinter(um) are calculated 

using Equation 9 and Equation 10 respectively. We can normalize them to make 

Pr( TILn) a valid probability, but for practical applications, they are just used for 

ranking links to decide which ones to follow, and thus they don't have to be 

transformed into probability ranges. 
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5 Co-tagging Topic Discovery 

To start the focused crawling process, we need to feed the crawler with a 

crawling topic. The crawling topic cannot be set only as one tag as that would be 

too narrow. For example, if we choose the crawling topic as "animals", all tags that 

are closely related to "animals", which may include "cat", "dog", "pet", etc., need 

also to be included in the crawling topic tags. Hence, to set a crawling topic 

properly, we need to expand the topic tagging words. Our method to conduct this 

task is by exploiting image/video co-tagging. 

We use a voting-like processing method. If one tag, say Tl, and the topic tag 

T co-occurred in one photo, we count this as one vote of Tl also belonging to our 

crawling topic. When we accumulate all the votes through a lot of photos, we would 

get a cumulative vote for Tl also belonging to our crawling topic. When such a 

vote is above a threshold, we will include tag Tl in our crawling topic tags. For real 

application, we use a correlation threshold. 

p(TnTl) 
cP = P(T) x P(Tl) (14) 

where p(TnTl) is the number of pictures co-tagged by both tag T and tag Tl, 

and P(T) and P(Tl) are the number of pictures tagged by tag T and tag Tl 

respectively. Suppose tag T belongs to the crawling topic, cp gives the score of 

whether Tl also belonging to the crawling topic. When cp is bigger than a pre-set 

threshold, we will count Tl as belonging to the crawling topic. 

In order to make the crawling topic tags more robust, we use the following 

strategies. 

l. Take only one image if multiple images are tagged with the same set of tags. 

This is usually because an up loader may use the same set of tags to tag a 

group of images they uploaded to save some time. 

55 



Figure 21: Two Layer Co-tagging Topic Discovery. 

2. From the top co-tagging tags, start a new round of co-tagging tag discovery 

process. The process can be described as in Figure 21 , then use the expanded 

cluster of high frequent co-occurrent tags as the final crawling topic. 

6 Profile-based Focused Crawling System 

We have a two-stage crawling process that includes a co-tagging topic 

discovery stage and a profile-based focused crawling stage. Both of these stages use 

the proposed page classifier extensively to avoid unnecessary crawling. We will give 

the diagrams and algorithms for these two processes below. 

6.1 Co-tagging Topic Discovery Stage 

The first stage of our profile-based focused crawling system is the co-tagging 

topic discovery stage. In this stage, we collect images that are tagged with the 

initial topic tag, record their co-tags, process the final co-tagging set , and extract 

the top-frequent co-occurrent ones. Figure 22 gives the diagram of the working 

process of this stage, and Algorithm 6 gives the detailed steps. 
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Figure 22: Stage One: Co-tagging Topic Expansion Stage 

In Algorithm 6, lines 4-14 do the actual crawling work. The page classifier 

described in section 3 is used in line 6 to decide whether a page is a list page or a 

detail page. We already know that in social media-sharing web sites, list page have 

out links to detail pages and profile pages, and we name such links as detail page 

links and profile page links respectively. It is usually easy to differentiate them 

because in the DOM tree structure, detail page links generally have image 

thumbnails as their children, while profile page links will have text nodes, which are 

usually the uploader names, as their children. Combined with our path string 

method, we can efficiently identify such outlinks. In lines 11-12, by not following 

profile page links, we save lots of work. Since we are not following profile page links, 

the classifying result for page p in line 6 would not be a profile page. Lines 15-16 do 

the co-tagging analysis work and line 17 return the expanded topic tags. 

57 



algorithm 6 Stage one : Co-tagging topic discovery 
Input: Initial Crawling Topic Tag, T 

List pages, p_l, ... p_N 

Output: Expanded Topic Tags, T, T_l, ... T_k 

Steps 

1 Set Queue Q = empty 

2 for i=l to n 

3 do Enqueue p_i into Q 

4 while Q!=Empty 

5 do page p = Dequeue Q 

6 classify p 

7 if p=List Page 

8 then <0_1, ... o_m> = Outlinks from p 

9 if o_i = Detail Page Link 

10 then Enqueue o_i to Q 

11 else if o_i = Profile Page Link 

12 then discard o_i 

13 else if p = Detail Page 

14 then extract tags data from p 

15 analyze the tags to get to top frequency 

16 co-occurred tags <T, T_l, ... , 

6.2 Profile-based Focused Crawling Stage 

In the second stage or the actual crawling stage, we use the information 

acquired from the first stage to guide our focused crawler. For this stage, depending 

on the system scale, we can choose to store the member profile either on hard disk 

or in main memory. 
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Figure 23: Stage Two: Profile-based Focused Crawling Stage 

The system diagram is shown in Figure 23, and the process detail is shown in 

Algorithm 7. In Algorithm 7, similar as the co-tagging stage, we classify page p in 

line 6. The difference is, since we are not pruning profile page links in lines 13-14 and 

we follow them to get user profile information, we will encounter profile page branch 

in the classification result for line 6, as shown in lines 17-18. Another difference is 

how we handle detail page links, which is shown in lines 10-12. In this stage, we 

check whether a detail page link's user profile rank according to the crawling topic. 

If the rank is higher than a pre-set threshold, RANK T H, we will follow that detail 

page link, otherwise, we will discard it. Note that in this process, we need to check 

whether a user's profile rank is available or not, which can be done easily by setting 

a rank available flag, and we omit this implementation detail in the algorithm. In 

lines 17-18, we process profile pages and extract profile data. Another issue is when 

to calculate the user profile rank since the profiles are accumulated from multiple 

pages. We can set a fixed time interval to conduct the calculation or use different 
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threads to do the job, which is another implementation detail that we will skip here. 

algorithm 7 Stage Two: Profile-based Focused Crawling 
Input: Crawling Topic Tags, <T_1, ... ,T_k> 

Crawling URLs <url_1, 

Output: Crawled Detail Pages 

Steps 

1 Queue Q = empty 

2 for i=1 to n 

3 do Enqueue url_i into Q 

4 while Q != Empty 

5 do page p Dequeue Q 

6 classify p 

7 if P = List Page 

... , 

8 

9 

o_m> = Outlinks from p 

if 0 i = Detail Page Link 

11 then Enqueue o_i to Q 

12 else Discard o_i 

13 else if o_i = Profile Page Link 

14 then Enqueue o_i to Q 

15 else if p = Detail Page 

16 then Extract Tags Data from p 

17 else if p = Profile Page 

18 then Extract Prof Data from p 

19 else if p = Other Type Page 

20 then ignore p 

21 Return Detail Pages Tags Data 
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7 Summary and Discussions 

This chapter explained in detail how profile based image crawling works. We 

use inner profile and inter profile to decide which image to crawl. At the same time, 

some of those profile information maybe considered good candidate for ranking the 

image. 

a) Image Uploader Profile. In the query ranking stage, if we can use the 

query keyword to match the image uploader profiles. If we find a match 

between an image uploader's top tagging categories and the query keyword, 

that uploader's images can be ranked higher. 

b) Image Comments. Because comments can contain too much noise 

(including spam) it needs much preprocessing to be useful. However, if we can 

count how many comments an image has received, and use this as a ranking 

factor (since, in general, the more comments an image has, the more 

interesting it is), that would also be useful. 

There are some open issues worth discussion. 

1. Image Title: What about long titles? Are there some heuristics for 

extracting meaningful keywords from long sentence? What about meaningless 

number titles? Can we recognize these types of titles by applying some rules. 

2. Image Tags: This is the part in which we are mainly interested. However, 

several problems remain: (1) more and more people tend to use the same set 

of tags to annotate a whole set of images. This can make the tags un-reliable; 

(2) Camera models and lens types are starting to enter into image tags, 

adding further noise. 
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CHAPTER V 

Image Indexing 

1 Introduction 

As we intend to build an image search engine for the social Web, besides 

indexing image text (tags or annotations around the image link), we need to pay 

close attention to indexing image content features such as colors and textures. In 

this chapter, two types of image content will be explored: color and texture. 

In section 6 of Chapter II, we have reviewed different indexing schemes used 

in current CBIR systems and intuitively explained why we chose to use inverted files 

for our indexing architecture. In this chapter, we will perform further experiments 

to justify our inverted indexing scheme. Then, we are going to present our 

clustering-merge algorithm that explicitly seeks to better model power-law 

distributions. After that, we will explain our procedure to extract these content 

features and to convert them into textual codewords for indexing. 

In section 5 of chapter II, we have reviewed different image processing 

techniques. One of the most important methods that we propose is the tile-based 

gridding scheme based on spatial image segmentation. More specifically we define 

three types of image tiles: inner tiles, bordering tiles, and crossing tiles. Through 

these definitions, we hope to combine effectiveness and efficiency in dealing with real 

world image content and thus realize a scalable image search system. We will also 

consider dividing an image into sub-blocks (9 blocks) for further processing. Later, 

in explaining our image texture extraction process, we will also discuss how we 

divide an image into small tiles for processing. In each step, we will pay special 

attention to the computational complexity and the performance bottleneck that 

may be present in the real-world system. 
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2 Image Indexing 

2.1 Sparseness of Image Features 

One assumption and reason behind the success of the inverted file structure 

for indexing text and documents is the sparseness of terms in text documents. The 

total number of terms in a large document collection is very high with 

dimensionality 0(104
) [59] [66], while the number of terms that occur in a single 

document is comparatively low 0(102
) [59] [66]. In other words, human have 

accumulated a big enough vocabulary to cover each field of our everyday life, yet for 

a specific topic or article, a small portion suffices. However for the case of images, 

since "A picture is worth a thousand words" and since pictures tend to be 

self-explanatory, it can be hard to develop a complete thesaurus for images. The 

result is that a sparse dictionary comparable to documents does not exist. However, 

an analysis of images based on its color, texture, and shape, shows that although a 

term-document like high sparseness is not achieved, a slightly lower sparseness could 

be reached with an appropriate content to codeword mapping. For instance, a 

picture may contain relatively only a few dominant colors when using a color 

histogram containing hundreds of bins. The sparseness also depends on the visual 

word representation. 

Figure 24 gives the log-log distribution of the resulting colorwords (mapped 

from original colors) using different methods to represent 10,000 actual images 

selected randomly from flickr.com. For equal color quantization, we use 4 x 4 x 4 

quantization on the RGB color channels to get 64 bins. For the clustering-merge 

based method, we use 1000 images as the training set to obtain the global color or 

texture codebook, then use the global codebook to represent 10,000 images 

randomly selected from fiickr.com. 
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Figure 24: Log-log plots of different quantization methods. 

We can see that these representations roughly follow a power law 

distribution. In [35], Frederic et al showed that texture features followed a power 

law distribution. Their results match our experimental results, and provide a 

motivation for our inverted indexing scheme. In the following, we will discuss our 

clustering-merge method to compute the global codebook. 

2.2 GLA C lustering and Cluster-Merge Algorit hm 

We have reviewed the Generalized Lloyd Algorithm for generating visual 

codebooks in section 6 of Chapter II. In this section, we will discuss why we need 

GLA to generate visual codebooks as an alternative to another method that we 

have used in [71]. First , uniform q~antization is not feasible for high-dimensional 
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features , whereas GLA can be used in such cases. For image color codebook 

generation, we can choose uniform quantization since there are only three channels 

(R,G,and B) and the dimensionality is three, but for the Gabor texture feature , the 

dimensionality is high (48 or more) , and we cannot use uniform quantization to 

generate the codebook, so we have to rely on clustering, for example, to generate 

the codebook. The second reason why we use GLA to replace uniform quantization 

is that the latter does not take the actual feature distribution into account and can 

lose some accuracy in representing the images. 

(a) Equal Quantization (b) Clustering-Merge Based Quantization 

Figure 25: Quantization Results Comparison (64 bins). 

Figure 25 compares the quantization of the picture shown in Figure 30. We 

used a global codebook for the clustering case. We can see that clustering merge 

based quantization gives more smooth and better quantization results. Because 

clustering tends to choose better centroids. 

One issue with using most k-mean-based clustering algorithms such as GLA 

for codebook generation is that for power law distributed data, more cluster centers 

are generated around high density areas [35]. This can cause the codewords to be 

overpopulated in the high density area while the sparse area are not properly 

represented. To solve this problem, we propose to merge these very close cluster 

centers after obtaining the K-means clustering result. We first use K-means to 

generate more centers than what we expect, then we merge these centers into the 

number of centers we want . Through merging close centers, we can discourse cluster 

centers from crowding into high density areas. At the same time, we fully take 
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advantage of the efficiency of K-means. Thus, our clustering merge algorithm will 

be much more efficient than purely a hierarchical clustering algorithm. The 

pseudocode for merging clusters is shown in algorithm 8. 

algorithm 8 Pseudocode for "cluster-merge". 
Input: n clusters 

Output: k clusters 

MergeCluster(n,k,r) 

if (k>=n) 

return n; //already less than k clusters 

while (k<n) 

do 

find two closest centers c1, c2 among n clusters 

if(dist(c1,c2) > r) //radius limit 

break; 

merge c1, c2 into c 

insert c into the list of cluster centers 

delete c1 and c2 from the list of cluster centers 

n = n - 1 

return n 

In algorithm 8, we check two constraints, the number of clusters and the 

distance between two closest clusters. Once we obtain the desired number of 

clusters or if the distance between two closest clusters becomes greater than the 

threshold distance, we terminate the merging and return the results. 

2.3 Building an Inverted Index for Image Content with "Field 

Boosting" 

In a similar way that we build an inverted index for documents, we can build 

an inverted index for images by using the image visual code-words. We will discuss 

the process of how to generate these code-words in Section 3. 
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Figure 26: Indexing an Image Using Inverted File. 

As shown in Figure 26, in the same way that we can divide a web page 

document into different fields (blocks) like title, text, url, etc and record these fields 

in the inverted file for further retrieval, we can divide an image into different fields. 

When using image segmentation, we can mark different fields like object, and 

background, etc. Similarly, when we use gridding to divide the image, we can mark 

the resulting regions as different fields such as R_91 and R_92. 

Document or field Boosting [27] is a way of selectively boosting documents or 

fields so that they receive a high relevance score in matching. In our case, we can 

assign different boosting factors (cx) to different "fields" or blocks of an image as 

follows. 
1 

CXimage /ield(block) = d(bl k ) oc ,center + 1 
(15) 
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where d is the average distance of the image "field" (grid, block, or segment) to the 

image center. For instance, if we impose a grid on the image with 9 blocks as shown 

in Figure 26, the average Manhattan distance for block R_95, R_92, R_91 can be set 

as 0, 1, 2 respectively, which correspond to a boosting factor of 1, 1/2, and 1/3 

accordingly. 

Building an inverted index for images in such a way will not only help us 

emphasize the important image regions, it can also help us in retrieving user 

designated query regions. For instance, in Figure 26, if object regions are to be 

considered more important than background regions, then and R_95, the center 

block, may deserve more attention for the final weighting than R_91, the border 

region. In the query interface, by allowing users to choose which region to have 

certain characteristics to search, we can better serve users' needs in filtering 

irrelevant images. We can also increase the sparseness of the content code words, as 

mentioned above. 

3 Image Codebook Design and Feature Extraction 

In this section, we will discuss how we convert the image content features 

such as color and texture, into text for indexing. In section 6 of chapter II, we have 

reviewed the GLA or K-means algorithm. In section 2.2, we discussed our 

cluster-merge method for better codebook representations. In the following, we are 

going to use the cluster-merge algorithm in image codebook design, by explaining 

the detailed steps for dealing with each image feature. 
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3.1 Image Color Codebook 
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Figure 27: Process of Generating Image Color Codebook. 
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Figure 28: Example of a Color Codebook. 

For our image color codebook design, our purpose is to generate a color 

codebook of size 128 (according to the sparseness distribution), which we denote as 

G = {GI , G2 , ... , GI28 }, where each color Gi = (ri' gi, bi) is a 3-dimensional RGB color 

vector. We choose 1000 images for training. Since each image contains 

approximately 150,000 (the typical image size is 500 x 300) pixels, it is 

computationally prohibitive to use GLA algorithm on such a big number of pixels 

(150,000,000), therefore we resort to a pre-sampling step. In the pre-sampling step, 

we randomly sample 10,000 pixels from each image, thus with 1000 training images 
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we get a total of 10,000,000 points for GLA clustering. After we use GLA clustering 

method, we get 256 clusters, which are merged to get 128 centers (codebook) for the 

colorwords. 

As shown in Figure 27, we apply the Generalized Lloyd Algorithm (GLA) 

followed by a merging algorithm to obtain the final 128 global color codebook to be 

used in indexing and in querying. Figure 28 shows an example color codebook 

generated by the above method. 

Two things are needed to apply the GLA methods to our problem: the 

initialization method and the distortion measure. For initialization, we choose 

random cluster centers. For distortion measure, we use the Euclidean Distance 

measure. 

x(n) E Ci 
n 

where Ci is the centroid of cluster Ci , and x( n) is the color vector at pixel n. 

3.2 Extracting and Indexing Image Color Features 

(16) 

After getting the global color codebook, we can use it to extract the color 

features from images for indexing. In the process of training to compute the image 

color codebook, we need not pay too much attention to computational efficiency. 

However, for extracting the image color features, we need to pay attention to the 

performance because we don't want this task to slow down the crawling stage. 

Unlike the method used in [40], in our method, we are going to find the 

nearest neighbor in the codebook for any given color vector, using a kd-tree 

structure for fast nearest neighbors computation. Using this method, we obtain the 

following image representation for each region. 

fe = {(Ijl Fj)Jlj E {I, 2, ... , 128}, Fj = Frequency of index entry Ij; 1 :::; j :::; N} 

(17) 

where I j is an index into the color codebook C, Fj is the corresponding term 

frequency, and N is the total number of colors in the region. 
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Figure 29: Extracting Colorwords from An Example Image. 

When building an inverted index for these colors, we will scale these term 

frequencies ' Fj into appropriate index able term frequencies by adopting a global 

scaling factor T color = 1024. That is, if the occurrence of one color word falls below 

this threshold, we set the term frequency to zero and the corresponding index term 

I j disappears from the representation. This way, we can build an inverted index by 

transforming these possibly very big numbers into corresponding indexable Term 

Frequencies used in text-like indexing. Therefore, Equation 17 is transformed into: 

fe = {(Ij, Tj)IIj E {I, 2, .. . , 128}, Tj = Fj/Tcolor(fOr Fj ~ Teolor) = 

color term frequency , 1 ~ j ~ N} (18) 

Figure 29 gives an example of extracting color words from an example image. 

We can recognize the sparseness of the color words in this actual image. Only 26 

out of the global 128 colorwords occurred in this image and among these 26 unique 
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colorwords, the two most popular colorwords occupy 36.9% of the total colorwords 

occurrences. 

3 .3 Image Tiling for Flexible Query ing and Focused Retrieval 
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(a) Original image (b) Gridding Tiles 

(c) Color Segmented Image (d) Color Segmented Image Tiles 

Figure 30: Different types of tiling in an Image. 

Before we discuss texture words and shape words, we will define several 

relevant tile types that will support extracting such features. 

Figure 30 shows how we divide an actual image from Flickr into small 

~ 

(64 x 64) tiles for further feature extraction. Notice that if we divide the original 

image directly into small grids (as in the top right image), some small tiles (tile 4, 5, 

and 6, etc) will have uniform texture patterns since they are totally inside one 

object or inside the background. We will name these tiles inner tiles as they lay 

totally inside an object or the background. On the other side, tiles such as tile 1, 2, 

and 3 don't have uniform texture patterns as they contain multiple conceptual areas 
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(the dog fir and the road). We name these tiles bordering tiles as they tend to 

border a big block and some other small blocks. Inner tiles are very helpful in 

identifying the texture pattern of an object, while bordering tiles are useful for 

identifying shapes or contours of objects. 

(a) Original Image (b) Color Segmented Tiles 

Figure 31: Texture Image Without Large Segmentation Blocks. 

Inner tiles and bordering tiles are not sufficient to characterize image tiles. 

For example, consider a texture image which may not have any large blocks or 

objects after segmentation. For instance, in Figure 31 , when we segment and divide 

the brick wall image (left figure) , we cannot get even one tile (right figure) which 

purely belongs to one big block or borders one big block. To deal with this case, we 

define a new another type of tile: crossing tile. By definition, it contains many small 

blocks without any pixel belonging to any big block. Notice that all the tiles in 

Figure 31 are crossing tiles. Such segmentation results often mean that the image is 

a texture image. Crossing tiles will be very meaningful in identifying texture 

patterns. For the above three types of tile cases, we will consider bordering tiles to 

be noise tiles for extracting texture features and thus ignore them when computing 

the Gabor texture feature. For shape analysis on the other hand, we will use only 

bordering tiles, while considering inner tiles and crossing tiles as noisy tiles. 
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model 1 Decision Tree Model for Classifying Tiles. 
max <= 972 

max <= 552 

max <= 494: 2 (163.0/2.0) 

max > 494 

len <= 3: 1 (38.0/8.0) 

len> 3: 2 (56.0/9.0) 

max > 552 

len <= 4: 1 (489.0/10.0) 

len > 4 

std <= 223.637 

len <= 5 

max <= 593: 2 (8.0/2.0) 

max> 593: 1 (8.0/1.0) 

len > 5 

std <= 198.513: 2 (6.0) 

std > 198.513 

max <= 635: 1 (3.0) 

max> 635: 2 (4.0) 

std > 223.637: 1 (49.0/5.0) 

max> 972: 0 (316.0/3.0) 

In order to take advantage of tiling, we need to be able to decide whether an 

image tile is an inner tile, bordering tile, or crossing tile. To differentiate between 

these three kinds of tiles, we train a simple decision tree classifier (C4.5) to learn 

how to automatically classify a tile into the correct type. Note inner tiles contain 

one single segmented component based on color, bordering tiles would contain two 

or three color-segmented components of which there is one dominant component, 

while crossing tiles contain multiple color-segmented components neither of which is 

dominant. Hence, we use three features: number of components (len), number of 
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pixels of the maximum component (max), and standard deviation (std) of the 

number of pixels of each component in the segmented tile, and three class labels: 

inner tile (0), bordering tile (1), and crossing tile (2). We first use 1000 tiles as a 

training set. For these 1000 color segmented tiles, we manually label each 

segmented tile as inner tile, bordering tile, or crossing tile. After training and 

10-fold cross-validation, we get the following classification model (with 93.8596 % 

Correctly Classified Instances). 

3.4 Image Texture Codebook 

We use Gabor texture feature extraction to generate the image texture 

codebook. Some related work includes [41], in which Ma et al used a two-stage 

training method to obtain an image texture thesaurus, and [42], in which Malik et 

al used the K-means clustering method to analyze the image texture using 'textons'. 

Malik et al transform each pixel of an image into texton channels. We will adopt a 

similar method for texture extraction. However, because we first need to get the 

global image texture dictionary from a set of training texture images, instead of 

clustering the filtered image output pixel-wise for only one image as in [42], we will 

perform clustering patch-wise on an entire set of training images. This way, each 

texture image can be subdivided into small patches which contain certain texture 

words. We analyze texture patch-wise instead of textel-wise because this 

corresponds to our visual understanding of images: textures can make sense to us 

only when they are displayed in a region and thus form a pattern. However, if we 

study the filtered output with different orientations and scales, we may notice that 

these filters are for specific spatial points and not for patches. 

Furthermore, we do not use all the segmented components for texture 

analysis. Instead we use only the inner tiles and crossing tiles. This is because first 

of all, image segmentation is not very accurate especially in the bordering part 

separating two components or blocks. Another reason is that sampling inner tiles 

instead of all the segmented blocks can help reduce the computational cost and 

raises the possibility of saving even more computations by only computing the 
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texture features of those tiles that are not similar to any other analyzed tiles. For 

instance, before we compute one tile 's texture feature, we can check whether most of 

its pixel values are similar to the previous neighboring tile in the same block by 

taking the pixel value difference. If we find that the tiles are very similar, then we 

can simply classify this tile into the same pattern as the previous tile and avoid 

computing its texture features. The third reason for using blocks instead of tiles is 

that it would otherwise be very hard to handle crossing tiles, which are also very 

important in identifying texture tiles. 

Texture 
Codebook 

T, m 
Cluster T2 m 

Imagen 
Tk III 

I 
-------~ 

Training Images 

Figure 32: Process of Generating Image Texture Codebook. 

Figure 33: Example Texture Codebook. 
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To compute the texture codebook, we divide each image into 32 x 32 pixel 

blocks or tiles, select texture tiles ( inner tiles and crossing tiles ) according to 

image segmentation results, then apply Gabor filters to each texture tile, and finally 

record the corresponding texture features. The process for generating the image 

texture codebook is summarized in Figure 32. We use 1000 texture pictures for 

training (each picture roughly contains 160 (32 x 32 pixel) tiles with more than half 

of the tiles selected as texture tiles). This process yields 128 texture words 

(compared to [41] which yields 950 codewords). The clustering method used is GLA 

followed by the cluster-merge algorithm, as discussed above. Figure 33 shows an 

example texture book generated using the above procedure. 

3.5 Extracting and Indexing Texture Features 

As mentioned above, when we try to extract image texture patterns, we 

apply Gabor filters to several small 32 x 32 image patches or tiles which are selected 

as texture tiles. After extracting the image texture feature vector, we use Nearest 

Neighbor (accelerated by a Kd-tree structure) to determine the corresponding 

texture codeword from the texture codebook. 
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Figure 34: Extracting Texturewords from An Example Image. 

Figure 34 gives an example of extracting texture words from an actual image. 

The leftmost column contains the representative tiles selected from the codebook in 

Figure 33, while the remaining tiles are the corresponding image tiles extracted 

from the actual image. In the process of extracting texturewords from an actual 

image, we adopt a similar procedure, where we segment the image and select 

texture tiles (inner tiles and crossing tiles) according to the segmentation results 

using the decision tree model show in model 1. We use a nearest neighbor search 

method to find the representative texture word in the texture code book to represent 

each texture tile. 

3.6 Training Set and Classifier Selection 

The selection of a good representative training set is very important for the 

appropriate generation of the image codebook. For the world wide web image search 

case, we can probably never choose a training set that is large enough to cover every 
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possible pattern of color and texture. In other words, we can only use a partial set 

to represent the whole data set. All we can do is try to use a sufficiently large and 

diverse training set that contains as many patterns as possible. In the color 

codebook generation, we will try to select training images that contain as many 

visually different concepts as possible. For the texture codebook, we need to pay 

attention to diversity, that is, choose a training set that contains as many different 

texture patterns as possible. However, we also need to make sure that the "correct" 

texture patterns are extracted. To ensure this, first of all, we need to reduce the 

number of non-texture images in the training set. Second of all, we should try to 

choose images that contain uniform texture patterns. Last but not least, we need to 

guarantee that we can extract the uniform texture patches if the image as a whole is 

not uniform in texture. Thus, we need to use image segmentation in order to get 

uniform texture patches, as discussed above. 

Finally, after generating the codebook, we will use a classifier for classifying 

the image content features to the corresponding codebook. The accuracy and 

efficiency of this classifier are crucial for the whole system to be effective and 

efficient. For color components, a straightforward nearest neighbor mapping maybe 

sufficient, however for texture tiles, a more sophisticated classifier may be needed to 

correctly decide whether an image contains a specific visual. word or not. Unlike the 

text domain, where the occurrence of a term (word) in a specific document is 

categorical (hence requiring strict match), the occurrence of a visual word in an 

image relies more on the likeness of the image component to the corresponding 

codebook palette (hence requiring a more flexible and thus imperfect matching). 

4 Indexing Image Tags and Content 

4.1 Image Index Boosting 

In section 2.2.3, we have discussed image "field boosting". We discuss 

"document boosting" to images corresponding to different users. In chapter IV, we 

have also discussed how different image uploader profiles, image comments, etc, 
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could affect an image's ranking. For image comments, we currently only consider 

the number of comments posted for an image. Hence the boosting factor for image J 

is set as: 
Nc(I) 

(3image comments (J) = -k- (19) 

where Nc(I) is the number of comments for image J, while k is a scaling factor (can 

be chosen as the average number of comments an image obtains). This means that 

the more comments an image has, the more popular it is, and consequently it gets a 

higher ranking. Note this boosting is in the indexing stage, and we also have a 

boosting policy in the querying stage. 

Similarly, we will assign different boosting factors for images depending on 

their uploaders. 

(3image uploader(I) = sirn(T, P) (20) 

where T is the text in image's annotation, and P is the text in the image uploader 

profile. Basically, this means that if the annotations of an image page are similar to 

what the image uploader profile suggests, then that image would get a higher 

boosting factor. 

4.2 Combined Indexing Scheme 

After extracting the textual and visual information from the crawled images 

we integrate all of them for indexing. Figure 35 illustrates how the information 

obtained after acquiring the image color, texture, and shape content and the image 

textual annotations from the parent HTML file, is fed to Nutch (an open source 

Search Engine)'s built-in indexer (Lucene) for building an inverted searchable index. 
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Figure 35: Indexing Images. 

5 Summary and Discussion 

In this chapter, we discussed image content indexing. Based on our review, 

we chose the inverted file structure for our indexing. We presented our visual-word 

generation methods for color, texture, and shape as image content features. For 

efficient and effective extraction of Gabor texture features, we defined three image 

tile types: inner tile, bordering tile, and crossing tile. Below, we summarize a few 

remaining open questions. 

1. By converting image colors into textual words, do we lose some similarity 

information? For instance, will the fact that color "pink" is closer to "red" 

than "yellow" be lost? Even though we do lose such information, we can use 

query expansion as a remedy. For instance, when someone queries using the 

color "red", we can expand the query to also contain "pink" but giving a lower 

boosting factor to "pink" compared to "red". 

2. How do we balance among different concepts that are expressed in a query? 

For instance, in the query "rose + color:red", shall we pay more attention to 

the "textual" concept "rose" than the "image content" concept "color:red"? 
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We will address these problems in more detail In Chapter VI, when discussing 

the query interface and the weighting schemes design. 

3. Do we lose the "spatial information" of the image contents after indexing? As 

in the case of document analysis and indexing, the spatial information 

(relative position of terms or contents) is also lost. In this case, we pay more 

attention to Boolean Queries than to accurate object queries for all the 

content features. Also, we could use a grid-based query as a remedy. 
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CHAPTER VI 

Image Querying 

1 Introduction 

A search engine's query interface is extremely important as it interacts with 

users directly. The purpose of the query interface and its functionalities is to make 

our image search engine accessible to most users without heavy learning. In chapter 

V, we addressed the problem of transforming image content features into text-like 

(codewords) for indexing. In this chapter, we discuss how we enable users to query 

the engine using these content features and using text (keywords). What makes our 

image search engine different from most other content-based image retrieval systems 

and commercial image search engines is our unique assortment of specialized query 

options. However, we need to ensure that these query functionalities will indeed 

help users get good quality results without causing unnecessary difficulties. The 

topics in this chapter include: a detailed discussion of each query functionality, the 

integration of different query functionalities, result ranking scheme, and finally 

query expansion techniques. 

2 Query By Image Tags 

As discussed in chapter IV, the final query ranking for the query by textual 

image tags (or keywords) will be based on the text in the image uploader's profile 

and associated annotations, as well as the number of image comments. The image 

uploader profile indicates the authoritativeness of an image. The image's associated 

text allows T F x I DF and field (such as title or tags)-based ranking mechanisms. 

The image comments indicate the popularity of the resulting image. The text-based 
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ranking of an image can therefore be expressed relative to a query Q using: 

RankingScoTe(Q, I E D) = queTyNoTm(Q) x TF(t in liD) x lDF(t) 
tEq and tEI/ D 

xboost(t·field in I I D) 

xL- 1(t·field in liD) 

- t: terms or words 

- t.field = field where term t is contained 

x (3q(t) 

x (3c(I) 

x(3p(I)(21) 

- I I D an image or the document that contains the image, if a query is 

content query, it should be I, if the query is a text query, it should be D 

- T F: term frequency. T F = J II / D,t 

- I DF: inverse document frequency. I DF = log(l + /::-1)' where NI = 

number of images 

- field dependent boosting factor: title boosting factor = 2, tags and sets 

names boosting factor = 1 

- L- 1(t.jield in liD) = 1 : Length normalization value 
Jnumber of terms in the field 

of a field, given the number of terms within the field. This value is computed during 

indexing and stored in the index. 

- (3q(t) = I DF(t) x (queTY boost): Boosting to one query term or one 

sub-query in case of Boolean queries. 

- queTyN oTm( Q): Normalization value for a query Q, given by the sum of the 

squared weights of each of the query terms. 

- (3c, (3q: comments and profile boosting factors have been discussed in 

chapter V. 
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3 Query By Image Content 

Since most current commercial image search engines allow users to query 

images by keywords, we will not discuss querying by keywords alone. Instead, we 

will discuss keyword-based querying later in the context of integration with 

querying by image content. 

3.1 Query By Image Color 

(a) Limitations of existing systems 

In Chapter II, we reviewed several systems of query by image color. Although 

these query-by-color systems made a big breakthrough by combining colors and 

keywords for search, several problems remain unanswered. 

First, a proper search result ranking mechanism does not seem to exist. 

Although the implementation details are not available for the above mentioned 

systems, our experiments with searching using different keywords and color palette 

combinations, indicate that most of them use color proportion for ranking. That is, 

if a picture contains a higher proportion of "blue" than "red", then its ranking for 

"blue" would be higher than "red". This ranking mechanism is rather intuitive, but 

a second look may make one think differently. For instance, given a picture that 

may contain a high proportion of "white" background (e.g., sky) compared to "red" 

objects (e.g., flower), when we submit the query "flower red", the picture with "red" 

flower on a "white" background should be ranked higher than a "white" flower with 

mostly "red" background. 

Second, a well-rounded integration of different types of queries is not yet used 

in these systems. In fact, most systems address only a single facet (tag, color, etc) 

of the whole problem. Even the few systems that combine query-by-color and 

query-by-keyword features do so by treating these features independently. 

Furthermore, no system can currently allow users to search by keywords, color, and 

texture altogether in one boolean query. 

Finally, no system currently exploits "social" web type information (such as 
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the uploader profile) in crawling, indexing, and search. 

Later, we will discuss how we try to overcome these problems using query 

weighting, and integration of different types of queries. 

3.2 Query By Image Texture 

There is currently no standalone texture retrieval system. Although a system 

by Ma et al [41], uses a texture thesaurus for browsing aerial photos, no active 

prototypes were found for our comparison. Most other systems that do use the 

texture feature use it as a "content" component, in which image similarity search is 

hidden to users. In our system, we have transformed the texture feature into texture 

words so that users can leverage texture for searching. Since we have trained a 

texture codebook and used it for indexing, the ability to search using these 

texturewords would naturally follow the indexing stage. To do this, we will build a 

texture palette similar to the color palette based on the generated codebook. Since 

presenting too many small texture thumbnails may not help users clearly discern 

the texture patterns, we will need to present bigger texture palette pitures for each 

pattern than for each color (to make the texture patterns discernable). Thus, we 

will present only few frequent patterns at the first level, and optionally present more 

patterns in a second level only, if users choose to see more. 
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4 Query Interface 

TABLE 3 

Query Functionality Comparison 2 

System Textual Content Example 

Name QBK color texture shape ROI QBE 

Google Image .j 

Flickr Search .j 

QBIC .j .j V 
SIMPLicity V 

Retrievr .j "sketch" .j 

CIRES .j 

IKONA V .j 

Tiltomo V .j 

Riya V .j 

Fotolia V V 
iStockphoto V V 
yotophoto V V 

"Show and Tell" .j .j .j .j 
Note: ROI Regwn of Interest; 

As reviewed in section 7 of chapter II, there are many query functionalities 

provided by different systems as shown in table 3. But up to now, no system has 

attempted to provide query-by-texture features. Texture was used in many systems 

purely as a supporting factor for query-by-example-image. In our work, we are 

trying to provide stand-alone query-by-texture, as well as a mechanism to combine 

it together with other common query options. 

Our current query interface contains query by keyword, color palette, and 

texture palette as shown in Figure 36. 
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SHOW and TELL 

Searching with Imlge Content And Keywords 

Texture c:.lal_1 -----------' 

Keyword Lltig<..:.eL~ ________ ----' 

C01or l.-lal_1 ------------' 

Figure 36: Current Query Interface. 

5 Query Result Ranking 

The BM25 [54] [53] ranking scheme is widely used as a state-of-art weighting 

scheme in text retrieval domain. We are going to adopt a similar measure, but we 

need to address the following concerns specifically for our image feature-based 

query, which is different from the above image-example-based query systems. 

We have discussed using equation (21) for the final ranking, which is based 

on T F x I D F. For our system to use the T F x I D F weighting, we need to 

normalize each feature space (tags, color , texture, boundary angle) to make them 

comparable, since we use different "textualization" methods for color, texture, and 

boundary angle features. Texture features and boundary angle features can be 

grouped together since they are both extracted through using image tiles and one 
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image tile can only be classified into either a texture tile or a boundary angle tile, 

and there is no overlap among them. For a typical image size of 500 x 350 pixels, 

that is divided into 32 x 32 pixel tiles, roughly 170 image tiles are generated. If we 

split these 170 feature words among texture words and boundary angle words, we 

would get ~ of them as texture words because we have two type of tiles 

corresponding to the texture pattern and one type of tiles corresponding to the 

boundary angle pattern. This would be like a short essay containing only 170 words. 

Color is another facet of the image features. Each image tile may, in addition to 

containing texture, contain image color features, but we extract the image color 

feature globally (or regionally) instead of tile-based. Thus in the image color feature 

extraction process, we need to take care of the following two issues. First, we need 

to keep the ratio between the largest color component and the smallest color 

component to a reasonable degree, say less than 10 to 1, otherwise, we would risk 

overwhelming the query results with high color term frequencies given a boolean 

query containing both color and texture features. Second, we need to keep the total 

number of generated color words comparable to the number of texture words. We 

can also be more lenient toward the number of color words compared to texture 

words since color is more commonly accepted than other features. For example, we 

can limit the total number of color words (counting duplicates) to 170, which would 

then be close to the sum of the number of texture words. This will also help prevent 

the search results from being too biased toward colors in the boolean query scenario. 

6 Query Expansion 

Query expansion may be a bonus feature for text search, however it is 

indispensable for image content search. This is because human's visual perception of 

objects is even more vague and imprecise than textual descriptions. For instance, 

some people may describe "pink" as being similar to "red" in certain scenarios. 

However, during indexing, we transform "pink" and "red" into different colorwords. 

Query expansion can provide one way to compensate for this mapping. When a 

user's query contains the color "red", we use Boolean "OR" to also include "pink" 
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(the expansion). 

We use Euclidean Distance as a metric to help decide whether including the 

other term in the query expansion or not. We then use different boosting factors on 

each expanded term, which are inversely proportional to the distance from the 

query term to each expanded term. For instance, if the user query contains color G1 

such as "q = color: G1", we find that we should include color G2 and G3 into the 

query expansion, if the distance values 

D2 = IIG2 - GIll = v(r2 - rl)2 + (g2 - gl)2 + (b2 - b1)2 and 

D3 = IIG3 - GIll = v(r3 - rl)2 + (g3 - gl)2 + (b3 - bd2, respectively are below a 

given threshold. Then our query will be transformed 

into: "q' = Gl + boost( ri2) : G2 + boost( ri3) : G3". The same technique is used for 

texture query expansion. The only difference is using their original vector 

dimensions in distance computation. For color, we have 3-dimensions (R,G,B). For 

texture, we have 48 dimensions or 60 dimensions depending on how many Gabor 

scales and orientations we use. Note that all these distance will be pre-computed 

off-line and will be available for use during the online query without adding any 

overhead. 

7 Summary 

In this chapter, we discussed different query functionalities for image search 

and made a comparison between our work and other works. Besides normal Query 

By Keyword and Query By Example, we provide query by image color and texture, 

which haven't been explored in other work. We have also discussed the query 

weighting scheme, and query expansion. All these methods strive to retrieve more 

relevant results for users' queries. 

8 Open Problems and Discussion 

It is true that we provide a more complicated image query interface, 

especially compared to Google's simple interface for example. However, we believe 
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that image search is inherently different from web page search. Web page search is 

generally biased toward popular pages, while in image search, people may be more 

interested in specificity than popularity. Similar to web page search, some people 

can take advantage of expressing their information need more richly by describing 

the desired image content. 

Our multi-modal image search system differs from faceted image search 

although they share some similarities. Faceted search assumes that a user's interests 

flow along different facets (e.g. price, size, etc) as they browse or search, while our 

assumption is that users will persist in trying to find their target images by trying 

different filtering mechanisms. Our comprehensive functionalities provide the user 

the tool to do so. Integrating different features for ranking the final search results is 

never an easy task. Thus, we need to understand the users' real motive very well. 
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CHAPTER VII 

Experimental Results 

In this chapter, we first give the experimental results for each methods we've 

used, and finally give some snapshots of the current working prototype. 

1 Demo Development Stages 

1.1 Stage 1: Show and Tell (text and color) 

In the first stage of our work, we developed a search engine that we named 

"show and tell" [71], and that used color words to describe image content and 

extracted URL text as the image textual annotations. There were several major 

limitations at this stage. For example, the content part was only restricted to the 

global image color histogram, and the textual part only contains URL text, etc. Yet 

the promising working results gave us motivation to improve the system. Query 

expansion was used only in stage one. 

1.2 Stage 2: Text, Color, Texture 

In the second stage of development, we expanded our image content part to 

include Gabor filter-based texture. We also crawled Flickr.com, to extract the image 

tags, and added tag clustering in the query-result-clustering part. The abundant 

tags in Flickr enriched our textual information, but also brought additional 

challenges on system efficiency and experimental validation. 

1.3 Stage 3: Final Prototype 

In order to overcome these problems, we have proposed our 3rd stage 

prototype design and implemented the current working demo. The major change 
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compared to the second stage is that we focuss less on the clustering of query 

results, and more on focused crawling. This stage also uses textual data extraction 

methods, introduces a visual codebook generation process, and introduce image 

segmentation in the content indexing part. 

2 DOM Tree Path String Data Extraction 

2.1 DRP Classification Experiment 

As discussed in section 5 of Chapter III, we use a C4.5 decision tree classifier 

with 10 fold cross-validation. For the training set, we randomly downloaded 10 

DRPs and 10 other types of pages from 5 web sites (Flickr, Youtube, ACM digital 

Library, SpringerLink, Amazon book), altogether we collected 100 pages with 50 

DRPs and 50 other types of pages. We set the features as discussed in section 5 and 

obtained the following decision tree model. 

fp-norm <= 0.036961: 0 (26.0) 

fp-norm > 0.036961 

max-sim<=0.144737: 0 (12.0) 

max-sim> 0.144737 

ps-ratio <=0.369231 

max-sim <= 0.681818 

max-sim <=0.184783: 0 (2.0) 

max-sim> 0.184783 

max-sim <= 0.277778: 1 (2.0) 

max-sim > 0.277778 

max-num <= 14: 0 (9.0) 

max-num> 14: 1 (3.0/1.0) 

max-sim > 0.681818: 1 (11.0) 

ps-ratio > 0.369231: 1 (35.0) 

Number of Leaves 8 
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Correctly Classified Instances 85 85 % 

We obtained a classifier accuracy of 85%. We then used this decision tree to 

classify 40 (20 DRPs and 20 other type of pages) new test pages randomly 

downloaded from Ebay and Buy.COM respectively. Altogether we got 80 pages for 

testing. The following table lists the results for each site respectively. 

TABLE 4 

DRP Classification Accuracy Result 

Ebay Buy.com 

CLASS DRP NON DRP NON 

DRP 14 6 15 5 

NON 5 15 5 15 

Accuracy 72.5% 75% 

We can see from the result that the overall accuracy was 73.75%. From this 

experimental result, we can see that although we have trained the classifier with one 

set of web sites and tested them with another two new websites, the classification 

accuracy is still high (around 73.75%). Thus, the heuristics that we chose seem to 

be website independent and to really capture the DRP patterns. 

2.2 DRP Extraction Experiments 

We have done a series of experiments for the simple scenario 1 on the Flickr 

image sharing site, and we found our approach very efficient and accurate for this 

specific web site case. The precision was very high and we could get all the accurate 

textual information. Hence in the following, we only give the experimental results 

for the more challenging scenario 2. 

In this experiment, we compare our data extraction results with RoadRunner 

[13] and EXALG [4] on number of data values extracted. We used their web page 

examples and downloaded their experimental pages and their results from their web 
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sites 1 2. For this experiment, we manually labeled the number of attributes and 

compared the number of attributes extracted from each work to the manually 

labelled one. The result is shown in Table 2.2, where N is the number of total pages 

for getting the schema, P is the real page No. that we compare, RR is the results 

from Road Runner, EXG is the results from EXALG, DPS is the number of values 

that our system obtained, and M is the number of manually labelled attributes. 

TABLE 5 

Data Extraction Comparison 

Site N P RR EXG DPS M 

Amazon (Car) 21 1 16 20 15 16 

Amazon(Pop) 19 1 202 202 202 202 

Buy.com(pro) 10 1 24 N/A 31 24 

Buy.com(pro) 10 5 19/24 N/A 27 19 

uefa(team) 20 1 9 9 9 9 

uefa(play) 20 1 23/25 23 23 23 

uefa(play) 20 5 22 22 22 22 

MLB(play) 10 1 419 418 360 419 

RPM(pack) 20 1 303 290 292 293 

We can see from Table 2.2 that our results are comparable to existing results 

although our method is simpler and more intuitive. The processing time of our 

methods is O(n), where n is the number of nodes in the DOM tree structure. 

For a detailed comparison, in the Amazon car case, the extraction results of 

EXALG over-parses the page. For instance, it parsed the price range "$29,030 -

$31,030" into two data values. The reason why we only have 15 attributes instead of 

16 attributes is because every page contains at least one car, so the "I" was taken 

as the schema data. In the above data, we only took one specific page to compare. 

1 http://infolab.stanford.eduj arvindjextractj 
2http://www.dia.uniroma3.it/db/roadRunner/ 
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For Buy.com product information, RoadRunner has encountered the problem of 

disjunctions, it reported a couple of nulls for page 5 (5 missing data values), while 

our extraction method correctly extracted the data accordingly. We have more 

attributes than the manually labelled number. The reason for the out-numbered 

attributes is that for the data "Availability", "Type" etc. info, although they 

occurred in every page, their Path Strings are different for pages with disjunctions 

and without disjunctions. So we extracted them all as data value instead of schema 

value. For MLB players, our method got much fewer data values than the manually 

labelled number, this is because we took the player's position ("baseman", "pitcher" 

etc) as the schema data as they occurred in every page in the same position in the 

DOM tree structure. This causes certain problems, but it can easily be addressed by 

marking the path string of that item as non-schema data. 

2.3 Path String Differentiability Experiments 

Another experiment that we have done for our extraction method is to see 

how the Path String can differentiate different schema data from real value data. 

Our assumption for using the Path Sting method to extract web data is that the 

path string for schema data and for real data share little in common. Thus, we can 

first use the path string to differentiate real data and schema data. And if the Path 

String can not totally differentiate among the two, then we can further use the node 

data value to differentiate them. Also we assume that using the Path String 

method, if we don't need to consider schema Path Strings, then we save a lot of 

effort for extracting real data. For this experiment, we used "wget" to download the 

real web data from the popular sites, "Flickr", "Youtube", "Amazon", etc. For each 

web site, we randomly downloaded 10 pages of the same type. For instance, in the 

Amazon book site, we only downloaded the pages that contain one detailed 

information of a specific book. For "Flickr", we only downloaded the page that 

contains the detailed image page. We will name these pages object pages. After 

downloading these object pages, we use our implementation (written in java, and 

96 



using nekohtml parser 3 APls for parsing the web page) to build the DOM tree and 

conduct our experiments. 

TABLE 6 

Path Strings Differentiability 

Site T S V US UV INT 

Flickr 133 111 22 36 16 3 

Youtube 488 179 309 40 73 9 

Amazon(book) 837 411 426 101 115 22 

Ebay 474 183 291 56 113 15 

Springer Link 140 100 40 27 20 5 

ACM DL 124 62 62 15 19 4 

Table 6, T is the total Path String Node Value pair, S is the schema Path 

String Node Value pair, V is the value data Path String Node Value pair, and US is 

the number of unique Path Strings for schema data. Notice that some schema data 

with different text data value may share the same path strings. The same applies to 

value data. Different value data may also share the same Path Strings. UV is the 

number of unique Path Strings for Value data. Finally, INT is the number of 

intersections between US and UV. We can see from this table that our assumption 

is roughly satisfied. The small intersections between US and UV means that very 

few pages have the same Path Strings for schema data and for true value data. This 

tells us that we can indeed use Path Strings to differentiate between schema data 

and real data. Also, notice that the number of unique Path Strings is much lower 

than the number actual Path String Node Value pair (US is less than S, UV is less 

than V) this means converting from text node value Path String to unique Path 

Strings can save some time and space for processing. 

3http://people.apache.org/ andyc/neko/ doc/html/ 
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3 Profile-based Focused Crawling 

3.1 Topic Discovery Through Co-tagging 

We tested two topics for the co-tagging topic discovery process using flickr 

photo-sharing site. In the first test, we give the starting tag "flowers", and we 

collect 3,601 images whose tags contain the keyword flowers. From this 3,601 image 

tag sets, we find the following tags occur in the top co-tagging list (after removing a 

few noise such as "nikon"). 

TABLE 7 

top co-tagging tags for "flowers" 

flowers flower nature macro spring 

yellow pink garden green white 

plants red flores purple blue 

In the second round of test, we use the starting tag "nyc", and after collecting 

3,567 images whose tags contain "nyc", we get the following expanded topic tag set. 

TABLE 8 

top co-tagging tags for "nyc" 

nyc new york city manhattan 

brooklyn street art ny newyork 

graffiti winter park gothamist usa 

Note that "macro" is a designation of the close-up kind of photography that 

is typically good to capture flowers. These results are meaningful to our knowledge. 

We then use these two sets of crawling topics for the following focused crawling 

experiments. 

3.2 Profile Based Focused Crawling 

The harvest ratio is often used to evaluate focused crawlers. It measures the 

rate at which relevant pages are acquired and how effectively irrelevant pages are 
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filtered. We will calculate the harvest ratio with the following formula 

Nr Harvest Ratio = -
Na 

(22) 

where Nr is the number of relevant pages (belonging to the crawl topic) and Na is 

the number of total pages crawled. To calculate the harvest ratio, we need a method 

to calculate the relevancy of the crawled pages. We use the following method. If the 

crawled page contains any of the tags that belong to the crawl topic, we would 

consider this page as relevant page, otherwise it will be considered as irrelevant. For 

comparison, we compared our focused crawling strategy with the breadth first 

crawling. 

Harvest Ratio of Profile Based Focused Crawl and Breadth First Crawl 
0.4r-~-~-~--;:========~===il 

I + Breadth first Crawl I 
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Figure 37: Crawling Harvest Ratio (threshold = 0.01). 

We also conducted this test on the fiickr photo-sharing site. We start our 

crawler with a list of urls with popular tags. Our first stage breadth-first crawler 

first records the up loader profiles that it extracted from corresponding pages. Later 

in our second stage of profile based focused crawling, we read these profiles, and 

calculate the corresponding ranks for each ourlink according to the user profile. In 

the focused crawling stage, we prune out links that are lower than a threshold value. 

ote that in the harvest ratio calculation, we only count the detail image links 

traversed. Figure 37 gives comparisons of focused crawling and breadth-first 

crawling for two crawling topics, "Flowers" and "NYC". We can see that our 
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harvest ratio for profile-based focused crawling is higher than that of the breadth 

first crawling. 

In the following, we conducted groups of experiments to compare our 

profile-based focused crawler with that of the OPIC crawler for both the topic 

"NYC" and "Flower". 
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Figure 38: Crawling Harvest Ratio. 

For the profile based crawler, we adjust the crawling strategy used by OPIC 

to take the user profile and crawling topic into account. Once we encounter a list 

page, if we find out that the list page is the crawling topic list by checking it's URL, 

we will reset the score of that link to the initial maximum value (1.0). We reset the 

detail page scores or profile page link scores according to their corresponding user 

profile scores. For the rest of the links, we adopt the OPIC scores. We can see from 

the results that profile based focused crawling has a much better harvest ratio than 

purely OPIC based crawling. The experimental results for the harvest ratio are 

shown in Figure 38. 

We also did experiments to compare the detail page capture ratio between 

profile-based focused crawling and OPIC based crawling. 
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Detail Page Capture Ratio of Profile Based Focused Crawl and OPIC Crawl (NYC) 
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Figure 39: Crawling Detail Page Capture Ratio Comparison. 

We can see that in both cases, the detail page capture ratio is higher for the 

profile based focused crawler than for the purely OPIC based crawler. 
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Figure 40: Robustness of Profile based crawler. 

The robustness experiment serves to evaluate how stable a profile based 

focused crawler is. We did experiments on both topics with the following results. 

The difference between the robust experiments and the above harvest ratio 

experiments is that in the robustness experiments, we use a sliding window of 1000 

pages to see the harvest ratio on each set of 1000 pages, while for the general 

harvest ratio experiments we measure the cumulative harvest ratio on 1000 pages, 
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2000 pages, ... , 10000 pages. From the experimental results, we can see that for 

both topics, the profile based focused crawler is robust. 

4 Indexing Image Content 

4.1 Effectiveness of Texture Word Representation and Comparison with 

CBIR 

To demonstrate the effectiveness of our tile-based image representation, we 

will compare the retrieval precision of using image texture tiles with that of using 

the whole image texture vectors. Our assumption is that although we use a much 

faster boolean query consisting of several representative image texture words, we 

can get a comparable retrieval precision to that of using the whole image texture 

vectors for similarity search, which the general CBIR systems would use. To 

evaluate the precision, we adopt a similar strategy as was used in SIMPLIcity [63] . 

We use a subset of COREL database with 10 categories shown in table 9, where 

each category contains 100 semantically coherent images. Altogether, there are 1000 

images for testing. 

TABLE 9 

COREL Categories of Images Tested 

Africa Beach Buildings Buses Dinosaurs 

Horses Flowers Elephants Food Mountains 

In the codebook generation stage, we collect 100 images by randomly 

selecting 10 images from each category. We use these 100 images to generate a 

global image texture codebook. After we build the image search by implementing 

N utch4 on image texture feature, we conduct our testing by randomly selecting 

three images from each category as query images (30 queries for each case) . To form 

the actual queries , for the texture words representation case, we select top-N (N 

ranges from 1 to 10) texture words for the query image to form the boolean query 

4http://lucene.apache.org/nutch/ 
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and we use Nutch's default TF x IDF ranking. For the texture vector query case, 

we take the whole 48 dimension texture vector for the query image to form the 

query and use Euclidean distance measure for ranking. We show 10 results in each 

page and examine the number of category matches in the first page. In case the 

total number of results is less than 10, we show all the results in the first page. We 

then calculate the precision as the number of category matches in the first page 

divided by the number of results in the same page. We then average the precision of 

the 30 result-sets and compare the two types of methods. The results is shown in 

Figure 41. 
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As shown in Figure 41 , the precision for the Texture word boolean query case 
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increases as the number of query terms increases. As the number of query terms 

approaches 5 or 6, the average precision of the boolean query comes close to the 

vector similarity query case. On the other hand, the number of returned results 

drops dramatically as the number of query terms increases as shown in Figure 42. 

For instance, the average number of returned results drops from 13.5 to 6.6 as the 

number of terms in the query increases from 5 to 6. Although the average precision 

is high as we include much more terms (say 9 or 10) , the very few number of results 

returned should prevent us from using too many terms. Combining Figure 41 and 

Figure 42, we can see that selecting around 5 query terms would give us a balanced 

result of desirable precision and total number of results. 

On the other hand, the retrieval efficiency benefit of using the boolean query 

over vector similarity query is obvious, as shown in Figure 43. Here the experiments 

used a Linux server (with Intel(R) Xeon(TM) CPU 2.80GHz, 2cpu, and 2G 

memory). 
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Figure 43: Texture Retrieval Efficiency Comparison between Proposed Search and 

CBIR Search. 

We can also see that as the number of terms contained in the boolean query 

increases, the retrieval speed does not fluctuate much. This is guaranteed by the 

inverted indexing structure. 
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5 Current Working Prototype Evaluation 

5.1 D eployment Configuration 

We have two machines setup for the prototype, both with Linux operating 

system. In order to balance off the data, we use nutch distributed search 

functionality. On the webmining server , we run the demo portal, on another linux 

machine, we started a search server. We have four working interfaces for different 

evaluation purpose. The color palette and texture palette are displayed in Figure 28 

and Figure 33 respectively in Chapter V. 

TABLE 10 

Demo Links 

Application URL search serve r N um o f Im ages 

US Tra ve l C it ies (focused ) http: //we bmin ing.spd .lo ui s ville.edu :8080/ isearch / webmining 16,0 56 

breadth First Crawl http://webmining. spd .louis vi lie.edu :8080 / bfs/ webmining 5,870 

fl owe rs ( focused ) http: //we bmin ing.spd .louis v ille.edu :8080/ flowers / e- comm er ce 5,849 

a nimal (foc used ) h t t p ://we bmining .sp d .lo uis v ilie.edu:8080/animal / webmi ning 5 ,884 

All the images were crawled and downloaded from flickr with a crawling 

depth of 6. In the following, we will give actual examples that compare the results 

of using a content query plus keyword query versus a keyword query only. 

5.2 Snapshot 1: Content Color v s K eyword Color 

(a) Query: rose red (b) Query:rose _coloL28 (c) 

Figure 44: Query for Red Rose (from "flowers" demo link). 

Figure 44 gives the snapshots of the result of querying "Red Rose" . Figure 44 

(a) shows the top-6 results of using keyword only query. Figure 44 (b) shows the 
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top-6 results of using keyword plus image color palette as a query. The benefit of 

using the actual content color instead of the keyword color is obvious when our 

information need is color oriented. 

5.3 Snapshot 2: Texture Words Filter Irrelevant Images 

(a) Query:dog (b) Query:dog _gabor A 7 (c) 

_gaborA7 

Figure 45: Query for Dog (from "flowers" demo link). 

Figure 45 gives an example of using texture words to filter irrelevant images. 

The last image in Figure 45 (a) happened to be tagged "hot dog" , but is not really 

related to the actual dog. When we use texture words Figure 45 (b) , we are able to 

filter out that image successfully. 

5.4 Snapshot 3: Texture Words Help Find Target Images 

(a) Query:florida beach (b) Query:florida beach _gaboL126 (c) 
_gaboL126 

Figure 46: Query for Florida beach (from "flowers" demo link). 

106 



Figure 46 gives another example of using texture words to find relevant 

images. In this scenario, suppose that the user wants to find the picture of a real 

beach with water, sand, etc, but not their buildings. If they entered keyword query 

"Florida beach sand" , they would get no results since these tags were not used by 

the image annotators . This situation is frequent since the uploaders tend to use as 

few tags as possible to annotate the images. In this case, adding the texture content 

to the query was crucial to getting the right results. 

5.5 Snapshot 4: Use "minus" option to filter irrelevant images 

(a) Query:Disney; Same results as 

Query: Disney -people 

(b) Query:Disney - _gaboL120 

Figure 47: Query for Disney (from "US Travel Cities" demo link. 

(c) 

_gaboL120 

Figure 47 gives an example of using the "minus" option to filter out 

irrelevant images. We can use the "-" i. e. the "minus" or "not" option in the search 

box. Suppose that we don't want to see people taking photos in the scenery, and use 

"-people", this would still not filter the people out as shown in Figure 47 (a). While 

when we use "- texture-word" option and exclude the people texture of Figure 47, 

we can filter out the irrelevant images with people, as shown in Figure 47 (b). 

6 Image Search Demo Evaluation 

6.1 Search Functionality Evaluation of Second stage development 

We have done a usability evaluation in the second stage. We invited 5 

independent student evaluators from different majors with almost no image search 
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research and development background. We provided 100 queries, which are popular 

tags from Flickr 5. The evaluation items were 1) To compare image search using 

only keywords with using keyword plus color(texture). In our evaluation sheet, users 

can rate the search result as good (1) or bad (0). For example, users can input query 

"car red" , or input "car" and choose the red color from the color palette. They are 

requested to look at the results and report which one is better according to their 

judgement. 2) To see whether texture is helpful for search. 3) To see how boolean 

search: (keyword plus color plus texture) can help users filter unrelated images. 

Users can also use boolean "-" operation for "not". For test 2 and test 3, users are 

requested to select "yes" or "no" to show whether the tested item was helpful. 

TABLE 11 

Users' Evaluation of Search Functionality 

Test Item percentage 

Keyword only good 12% 

Keyword Plus Color Palette good 88% 

texture helpful 70.6% 

Boolean Query Helpful 61% 

From the test results shown in Table 11, we can see that the keyword plus 

color palette query option gets higher ratings, while the texture palette was not as 

acceptable to general users as the color palette. This can be explained by the fact 

that human vision is more sensitive to color than to texture, which in turn makes 

the semantic gap between texture patterns and word annotations even wider than 

the gap between color and word annotations. This may also be due to the fact that 

texture tends to be harder to explain or "express" using common keywords. In 

general, however, the boolean query using color and texture seemed to help users in 

their image search. 

5http://www.flickr.com/photos/tags/ 
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7 Search Functionality Evaluation of 3rd stage development 

In the 3rd stage development, instead of using a general crawl, we used our 

focused crawling strategy. We used fiickr as our image tags and image annotation 

source. However, the images on fiickr get updated with time. Therefore, to make 

the search results more comparable and have a stable source of analysis, we first 

used our data extraction process to extract all the images and their tags from 

fiickr.com up to a depth of 6, starting with the most popular tags 6. Then we 

downloaded 23,692 images and saved the tags on our webmining server. Finally we 

ran a crawling and image indexing process in the webmining server. 

7.1 Focused Crawling vs Breadth First Crawling (BFS) Comparison 

Our purpose is to measure how focused crawling can give users more relevant 

search results compared to breadth-first crawling. We use two topics: "animal" and 

"flowers" and submit 10 queries for each. We ask the evaluators to compare the 

focused crawling result and the general breadth-first crawling results, by using the 

two links listed in Table 10. 

TABLE 12 

Profile based Focused Crawling vs Breadth First Crawling 

Search Total Correct Search Total Correct 

Keyword Results Results Keyword Results Results 

bf. animal bfs animal bfs flowers bfs Rowers 

cat 65 88 61 87 rose 10 62 7 26 

dog 67 80 66 78 garden 58 86 57 83 

pets 6 18 6 18 flora 4 24 4 24 

zoo 77 162 63 99 tree 82 167 68 157 

bird 62 111 56 106 spring 59 99 40 94 

wildlife 13 17 12 16 green 72 246 67 180 

frog 0 7 0 7 nature 160 420 160 417 

nature 160 366 158 366 leaves 38 66 35 66 

animals 63 67 54 62 park 221 295 172 281 

tree 82 147 68 139 plants 11 34 11 33 

total 595 1063 544 978 total 715 1499 621 1361 

From Table 12, we can see that focused crawling gives about twice the 

number of results as the breadth first crawling, no matter how many total results or 

correct results. This confirms that if we have limited resources and want to get as 

6http:j jwww.ftickr.comjphotosjtagsj 
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much information as possible for a specific topic, it is better to use our focused 

crawling method. To translate Table 12 into precision and recall, we would get the 

following Table 13, where BFRR is the breadth first crawl recall ratio. 

R II 
NumofCorrectResults eca = ~~~~~~~~~~-

TrueT otal Results 
(23) 

Since for both breadth first crawl and focused crawl, the "True Total Results" are 

the same, we have the breadth first crawl recall ratio as follows: 

Recall (B F S) 
BFS-To-FocusReeallRatio = R ll(F ) 

eea oeus 

NumofCorreetResults(BF S) 

NumofCorrectResults(Foeus) 
(24) 

Table 13 summarizes the metrics of precision and recall ratio (BFS to 

focused), showing the superiority of our focused crawling strategy, since in all cases, 

the BFRR was less than 1 (on average around 0.5), meaning that more (on average 

twice as many) results are returned by focused crawling. Despite this larger recall, 

the precision has maintained its high average value (over 0.9). 

TABLE 13 

Precision and Recall Comparison 

Keyword precision precision BFRR Keyword precision precision BFRR 

(BFS) (Focused) (BFS) (Focused) 

rose 0.7 0.419 0.269 cat 0,938 0.989 0.701 

garden 0,98 0.965 0.687 dog 0.985 0,975 0.846 

flora 1 1 0,167 pets 1 1 0.333 

tree 0.829 0.940 0.433 zoo 0,818 0.611 0,636 

spring 0,678 0,949 0.426 bird 0.903 0.955 0.528 

green 0,93 0.732 0.372 wildlife 0.923 0.941 0.75 

nature 1 0.993 0.384 frog 0 1 ° leaves 0.92 1 0.53 nature 0,987 1 0.432 

park 0.778 0.953 0,61 animals 0,857 0.925 0,871 

plants 1 0,97 0.333 tree 0.829 0.946 0.489 

average 0.869 0.907 0.456 average 0.914 0,92 0.556 

7.2 Search Functionality Evaluation 

We also did a search functionality experiment for evaluating different search 

features. We crawled 16,056 images from fiickr. We chose 10 popular travel cities 

(the first 10 in Table 14 from Yahoo travel's top 10 US travel cities7 . After our 

co-tagging topic expansion process, we obtained around 100 tags as the expanded 

7http:j jtravel.yahoo.comj 
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crawling topic, as shown in Table 14. It took around 20 hours to do our focused 

crawling on the US travel cities. 

TABLE 14 

Crawling Topic 

nyc chicago seattle sandiego usa orlando boston 

atlanta california san francisco losangeles honolulu florida lasvegas 

hawaii newyork oahu newyorkcity urban city april 

downtown china manhattan street nevada protest architecture 

tibet red spring art park georgia night 

unitedstates washington water sky disney beach ny 

canon new graffiti blue torch building vacation 

flowers york video olympic birthday people olympictorch 

flower flag baseball massach usetts waikiki buildings sign 

travel food green embarcadero america relay brooklyn 

sunset skyline lasvegas nevada usa garden film 

universal nature olympics clouds waltdisneywor ld friends wedding 

december ocean music black disneyworld trees restaurant 

flags museum bridge white tree 

For this evaluation, we gave 5 evaluators 30 images, shown in Figure 48 and 

Figure 49, randomly selected from the database. The purpose of this experiment 

was to find the target image from the search interface. For each image, we provided 

three hints to formulate queries: one hint on the keyword, one hint on the colorword 

and one hint on the textureword. Users could choose their own tags or they could 

use the query hints given to them. The tag hint was randomly selected from the 

image's tags as annotated by the corresponding flickr uploader, while the color and 

texture hint were selected from the image's processing results (after removing 

stopwords). We also asked the evaluator to record whether they could find the 

image using their own tags. Out of 30 target images, the evaluators reported an 

average of 20 images that they could find by themselves without using our query 

hints. That said, the evaluators reported that most tag hints were useful in 

formatting their queries. 

The following description shows the questions asked to the evaluators about 

the quality of the query hints. 

Query Hint Usefulness (0-3). (0 - useless, can find the image without hint; 
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1 - somewhat useful, need to go to next page to find the image; 2 - very useful, can 

find the target image in the first page; 3 - powerful, not only can find the target 

image in the first page, but all the images returned in the first page are stongly 

related.). 

Query Hint Sensibility (-1 -2). (Does the hint match your own 

formulation about the image?) (-1- I think the hint is misleading, it does not match 

the image at all. 0 - not really, I would never use such a hint to search by myself; 

I-probably, I would use this hint even by myself; 2-the hint matches the image 

perfectly, I would have used it even by myself) 

-... .. 
(a) 78 (b) 351 (c) 396 

(i) 2972 (j) 4318 (k) 6200 

(d) 944 (e) 1503 (f) 

1510 

(1) 6289 (m) 7149 (n) 

8222 

Figure 48: Evaluation Target Images Set 1. 

(g) 2221 (h) 

2222 

(0) 8228 (p) 

9071 

(a) 9848 (b) 9872 (c) 10966 (d) 10999 (e) 12435 (f) 12458 (g) 13605 

(h) 13643 (i) 13659 (j) 13696 (k) 14671 (1) 15358 (m) 15798 (n) 16085 

Figure 49: Evaluation Target Images Set 2. 
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TABLE 15 

Search Comparison Between Tags and Tags Plus Contents 

K·tag C'colorword T' textureword 

Image Query Hints Query Hint Usefulness Query Hint 

ID in returning results Sensibility (Le, 8core>0) 

K C T K C T K+C K+T K+C+T K C T 

78 Disney 100 117 1 0 0 0 0 a 2 0 0 

351 Chicago 92 99 1 0 0 1 1 2 2 0 0 

396 Orlando 34 125 1 0 0 1 0 1 1 0 0 

944 California 127 125 0 0 0 0 0 I a a a 
1503 Boston 92 69 1 0 0 2 2 2 2 I 0 

1510 Chicago 53 117 0 0 0 0 a 2 1 0 1 

2221 sandiego 122 48 0 0 0 2 0 2 0 1 1 

2222 Flowers 111 77 I 0 0 0 0 a 1 1 1 

2972 Beijing 97 59 1 0 0 2 2 2 1 1 1 

4318 NYC 105 76 0 1 1 1 0 0 1 1 0 

6200 vegas 94 123 0 0 0 2 2 2 1 1 1 

6289 nyc: 62 13 0 0 a 1 a 2 1 I 0 

7149 building 41 125 0 a 0 2 a 2 1 1 0 

8222 Barcelona 112 4 1 0 0 2 2 2 I 2 0 

8228 Washington 0 117 0 0 0 1 0 2 0 1 0 

9071 Summer 1 98 0 0 0 2 2 2 0 1 1 

9848 China 16 34 0 0 0 2 2 2 1 I 1 

9872 london 93 94 2 0 0 2 2 2 1 0 1 

10966 MANHATTAN 97 26 0 0 0 1 2 2 1 a 1 

10999 holiday 117 87 0 0 0 2 1 2 0 0 1 

12435 tree 97 80 0 0 0 0 1 I 0 0 0 

12458 sunset 99 24 0 0 0 0 1 2 0 0 0 

13605 Nevada 104 62 0 0 0 2 2 2 0 0 0 

13643 Hawaii 111 125 0 0 0 1 0 2 0 1 0 

13659 los angeles 99 69 0 0 0 1 2 2 0 1 I 

13696 surfing 100 2 1 0 0 2 2 2 2 1 1 

14671 tree 97 6 0 0 0 0 0 0 0 0 0 

15358 beach 99 80 0 0 0 0 0 0 0 0 0 

15798 Caifornia a 80 0 0 0 2 2 2 a a 0 

16085 park 83 125 a 0 0 I 1 I 2 1 0 

average 0.333 0.033 0.033 1.167 0.967 1.533 0.733 0.567 0.4 

From Table 15, we can see that the combination of tags, colors, and textures 

altogether can help users in finding relevant images more than each one of them 

alone, with an average satisfaction score of 1.533/3. Also, texture was the least 

helpful to the user. This is likely due to the much wider semantic gap between 

texture and the user's own description about a target image. While some texture 

elements seem more intuitive, e.g. stripes, sand, clouds, waves, others are not so 

easy to understand or relate to a target concept in an image. 

We have also received feedback from an evaluator who used our prototype for 

the first time and yet succeeded to obtain some target images without using any 

hints. The following are the specific results from this evaluator. She found 15 of the 
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30 images in the first page without using any hints in an average of 2-3 trials. This 

evaluator used "keyword" in 14 of 15 successful queries, used "color" in the query in 

7 out of 15 successful results, and used "texture" along with color in 3 out of the 15 

successful results. The evaluator also commented that a learning curve is needed 

(typically with 4-10 target images with given query hints). We expect that once this 

learning curve has stabilized, a user would experience more success and use the 

content words more often than this evaluator. 
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CHAPTER VIII 

Conclusions and Future Work 

In this chapter, we draw our conclusions and comment on our future work. 

1 ConcI us ions 

For image search, keywords can playa filtering role, while image content can 

playa semantic role in getting better results. Using only one of them in a query 

could lead to false positives. However, the combination of the image keyword and 

image content together in the same query, promise to reduce the occurrence of false 

positives as illustrated in many examples in chapter VII. We have described an 

image search framework benefiting from an integration of text and image content 

both in querying and indexing. Our framework also promises to inherit the 

scalability and performance of powerful text search engines. 

In the DOM tree based DRP (Detail Record Page) extraction part, we have 

presented simple DOM tree Path String based methods for DRP identification and 

data extraction. We have adopted several heuristics to identify the DRP patterns 

from web pages based on record title and page title similarity and record Feature 

Pair occurrences. We also presented two scenarios for applying our Path String 

based method for real web record extraction. Our results and experiments 

confirmed their good performance. Our application to a flickr image set showed that 

text extraction is very efficient and simple. 

In the focused crawling part, we have presented a profile based focused 

crawler, which ranks users who have more relevant images higher when we do the 

crawling. To further differentiate the component of a profile, we defined an inner 

profile to capture the user's individual topic interests and an inter profile to capture 
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the topic interests of the user's community of contacts. We have also used 

co-tagging to expand our crawling topic. In both the co-tagging topic discovery 

process and the profile-based focused crawling process, we used a path string based 

page classification scheme. The page classification was a required ingredient in our 

focused crawling because our ranking of links to crawl is computed based on profile, 

list, and information from detailed pages. Thus these needed to be distinguished 

from one another. Our experimental results confirmed the effectiveness of this 

classification method. 

We have shown through our experiments that image content features follow a 

sparse power-law distribution. This further justified taking advantage of this 

sparseness for inverted file indexing. Our clustering-merge algorithm gave us better 

cluster center representations compared to GLA clustering, which, for sparse data, 

generated more cluster centers that were crowded in high density areas. Our 

experimental results showed our tile-based image textualization process for image 

texture and shape features are effective. 

Based on all these methods, we have developed a working demo, which is 

availabe at http) /webmining.spd.louisville.edu:8080/isearchj. It indexed around 

16,000 images crawled and downloaded from flickr. Our evaluation shows that this 

search demo can help users obtain their target image more quickly, if they are 

trained to use the palette effectively. The integration of all these methods is suitable 

for social web media sites data extraction, crawling and search. 

In order to do our evaluations, we have also collected and processed a 

benchmark data set that is available on 

http://webmining.spd.louisville.edu:8090/test/rawj.This data set can be used in 

the future by other researchers in this field without having to sacrifice excessive 

computational time and bandwidth to crawl and do the data extraction. The 

images and their annotations are already extracted. 
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2 Future Work 

Bridging the user's information search needs and the indexed data has always 

been a challenging task, especially when dealing with images and other multimedia 

data. Thus, an improved image search interface needs to be realized to make search 

easier, faster, and more accurate. However, the image shape based retrieval that we 

have outlined in our proposal can be included in future work. Finally, we mention 

that an online clustering process can greatly improve the quality of the indexed 

"content" as more images are added, without having to repeat the clustering for the 

entire index. One sensitive issue to take care of is that after updating the clustering 

results, the entire index may need to be rebuilt, using the "updated" cluster indices. 

Some improvements to the final prototype (stage 3) are easy to do because 

they have already been implemented in the previous stage demos. These include: 

content query expansion, search by image example, and clustering of the results. We 

had to strip many of these refinements from our stage 3 prototype, in order to allow 

us to make fair evaluations, that can assess the basic mechanisms of focused 

crawling, content extraction and indexing, and search capability on their own, and 

without any interference from add-ons that will generally improve the results 

regardless of the underlying mechanisms. We anticipate that these additional 

features will be added to the social image search system in future stages. 
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