8,000 research outputs found

    Benchmarking Distributed Stream Data Processing Systems

    Full text link
    The need for scalable and efficient stream analysis has led to the development of many open-source streaming data processing systems (SDPSs) with highly diverging capabilities and performance characteristics. While first initiatives try to compare the systems for simple workloads, there is a clear gap of detailed analyses of the systems' performance characteristics. In this paper, we propose a framework for benchmarking distributed stream processing engines. We use our suite to evaluate the performance of three widely used SDPSs in detail, namely Apache Storm, Apache Spark, and Apache Flink. Our evaluation focuses in particular on measuring the throughput and latency of windowed operations, which are the basic type of operations in stream analytics. For this benchmark, we design workloads based on real-life, industrial use-cases inspired by the online gaming industry. The contribution of our work is threefold. First, we give a definition of latency and throughput for stateful operators. Second, we carefully separate the system under test and driver, in order to correctly represent the open world model of typical stream processing deployments and can, therefore, measure system performance under realistic conditions. Third, we build the first benchmarking framework to define and test the sustainable performance of streaming systems. Our detailed evaluation highlights the individual characteristics and use-cases of each system.Comment: Published at ICDE 201

    A Classification and Survey of Computer System Performance Evaluation Techniques

    Get PDF
    Classification and survey of computer system performance evaluation technique

    MLPerf Inference Benchmark

    Full text link
    Machine-learning (ML) hardware and software system demand is burgeoning. Driven by ML applications, the number of different ML inference systems has exploded. Over 100 organizations are building ML inference chips, and the systems that incorporate existing models span at least three orders of magnitude in power consumption and five orders of magnitude in performance; they range from embedded devices to data-center solutions. Fueling the hardware are a dozen or more software frameworks and libraries. The myriad combinations of ML hardware and ML software make assessing ML-system performance in an architecture-neutral, representative, and reproducible manner challenging. There is a clear need for industry-wide standard ML benchmarking and evaluation criteria. MLPerf Inference answers that call. In this paper, we present our benchmarking method for evaluating ML inference systems. Driven by more than 30 organizations as well as more than 200 ML engineers and practitioners, MLPerf prescribes a set of rules and best practices to ensure comparability across systems with wildly differing architectures. The first call for submissions garnered more than 600 reproducible inference-performance measurements from 14 organizations, representing over 30 systems that showcase a wide range of capabilities. The submissions attest to the benchmark's flexibility and adaptability.Comment: ISCA 202

    Online Modeling and Tuning of Parallel Stream Processing Systems

    Get PDF
    Writing performant computer programs is hard. Code for high performance applications is profiled, tweaked, and re-factored for months specifically for the hardware for which it is to run. Consumer application code doesn\u27t get the benefit of endless massaging that benefits high performance code, even though heterogeneous processor environments are beginning to resemble those in more performance oriented arenas. This thesis offers a path to performant, parallel code (through stream processing) which is tuned online and automatically adapts to the environment it is given. This approach has the potential to reduce the tuning costs associated with high performance code and brings the benefit of performance tuning to consumer applications where otherwise it would be cost prohibitive. This thesis introduces a stream processing library and multiple techniques to enable its online modeling and tuning. Stream processing (also termed data-flow programming) is a compute paradigm that views an application as a set of logical kernels connected via communications links or streams. Stream processing is increasingly used by computational-x and x-informatics fields (e.g., biology, astrophysics) where the focus is on safe and fast parallelization of specific big-data applications. A major advantage of stream processing is that it enables parallelization without necessitating manual end-user management of non-deterministic behavior often characteristic of more traditional parallel processing methods. Many big-data and high performance applications involve high throughput processing, necessitating usage of many parallel compute kernels on several compute cores. Optimizing the orchestration of kernels has been the focus of much theoretical and empirical modeling work. Purely theoretical parallel programming models can fail when the assumptions implicit within the model are mis-matched with reality (i.e., the model is incorrectly applied). Often it is unclear if the assumptions are actually being met, even when verified under controlled conditions. Full empirical optimization solves this problem by extensively searching the range of likely configurations under native operating conditions. This, however, is expensive in both time and energy. For large, massively parallel systems, even deciding which modeling paradigm to use is often prohibitively expensive and unfortunately transient (with workload and hardware). In an ideal world, a parallel run-time will re-optimize an application continuously to match its environment, with little additional overhead. This work presents methods aimed at doing just that through low overhead instrumentation, modeling, and optimization. Online optimization provides a good trade-off between static optimization and online heuristics. To enable online optimization, modeling decisions must be fast and relatively accurate. Online modeling and optimization of a stream processing system first requires the existence of a stream processing framework that is amenable to the intended type of dynamic manipulation. To fill this void, we developed the RaftLib C++ template library, which enables usage of the stream processing paradigm for C++ applications (it is the run-time which is the basis of almost all the work within this dissertation). An application topology is specified by the user, however almost everything else is optimizable by the run-time. RaftLib takes advantage of the knowledge gained during the design of several prior streaming languages (notably Auto-Pipe). The resultant framework enables online migration of tasks, auto-parallelization, online buffer-reallocation, and other useful dynamic behaviors that were not available in many previous stream processing systems. Several benchmark applications have been designed to assess the performance gains through our approaches and compare performance to other leading stream processing frameworks. Information is essential to any modeling task, to that end a low-overhead instrumentation framework has been developed which is both dynamic and adaptive. Discovering a fast and relatively optimal configuration for a stream processing application often necessitates solving for buffer sizes within a finite capacity queueing network. We show that a generalized gain/loss network flow model can bootstrap the process under certain conditions. Any modeling effort, requires that a model be selected; often a highly manual task, involving many expensive operations. This dissertation demonstrates that machine learning methods (such as a support vector machine) can successfully select models at run-time for a streaming application. The full set of approaches are incorporated into the open source RaftLib framework

    Hardware Acceleration for Unstructured Big Data and Natural Language Processing.

    Full text link
    The confluence of the rapid growth in electronic data in recent years, and the renewed interest in domain-specific hardware accelerators presents exciting technical opportunities. Traditional scale-out solutions for processing the vast amounts of text data have been shown to be energy- and cost-inefficient. In contrast, custom hardware accelerators can provide higher throughputs, lower latencies, and significant energy savings. In this thesis, I present a set of hardware accelerators for unstructured big-data processing and natural language processing. The first accelerator, called HAWK, aims to speed up the processing of ad hoc queries against large in-memory logs. HAWK is motivated by the observation that traditional software-based tools for processing large text corpora use memory bandwidth inefficiently due to software overheads, and, thus, fall far short of peak scan rates possible on modern memory systems. HAWK is designed to process data at a constant rate of 32 GB/s—faster than most extant memory systems. I demonstrate that HAWK outperforms state-of-the-art software solutions for text processing, almost by an order of magnitude in many cases. HAWK occupies an area of 45 sq-mm in its pareto-optimal configuration and consumes 22 W of power, well within the area and power envelopes of modern CPU chips. The second accelerator I propose aims to speed up similarity measurement calculations for semantic search in the natural language processing space. By leveraging the latency hiding concepts of multi-threading and simple scheduling mechanisms, my design maximizes functional unit utilization. This similarity measurement accelerator provides speedups of 36x-42x over optimized software running on server-class cores, while requiring 56x-58x lower energy, and only 1.3% of the area.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/116712/1/prateekt_1.pd
    • …
    corecore