4 research outputs found

    A study of the relationship between the performance and dependability of a fault-tolerant computer

    Get PDF
    This thesis studies the relationship by creating a tool (FTAPE) that integrates a high stress workload generator with fault injection and by using the tool to evaluate system performance under error conditions. The workloads are comprised of processes which are formed from atomic components that represent CPU, memory, and I/O activity. The fault injector is software-implemented and is capable of injecting any memory addressable location, including special registers and caches. This tool has been used to study a Tandem Integrity S2 Computer. Workloads with varying numbers of processes and varying compositions of CPU, memory, and I/O activity are first characterized in terms of performance. Then faults are injected into these workloads. The results show that as the number of concurrent processes increases, the mean fault latency initially increases due to increased contention for the CPU. However, for even higher numbers of processes (less than 3 processes), the mean latency decreases because long latency faults are paged out before they can be activated

    Queue-priority optimized algorithm: a novel task scheduling for runtime systems of application integration platforms

    Get PDF
    The need for integration of applications and services in business processes from enterprises has increased with the advancement of cloud and mobile applications. Enterprises started dealing with high volumes of data from the cloud and from mobile applications, besides their own. This is the reason why integration tools must adapt themselves to handle with high volumes of data, and to exploit the scalability of cloud computational resources without increasing enterprise operations costs. Integration platforms are tools that integrate enterprises’ applications through integration processes, which are nothing but workflows composed of a set of atomic tasks connected through communication channels. Many integration platforms schedule tasks to be executed by computational resources through the First-in-first-out heuristic. This article proposes a Queue-priority algorithm that uses a novel heuristic and tackles high volumes of data in the task scheduling of integration processes. This heuristic is optimized by the Particle Swarm Optimization computational method. The results of our experiments were confirmed by statistical tests, and validated the proposal as a feasible alternative to improve integration platforms in the execution of integration processes under a high volume of data.info:eu-repo/semantics/acceptedVersio

    Throughput measurement using a synthetic job stream

    No full text
    corecore