6,346 research outputs found

    Parallel Opportunistic Routing in Wireless Networks

    Full text link
    We study benefits of opportunistic routing in a large wireless ad hoc network by examining how the power, delay, and total throughput scale as the number of source- destination pairs increases up to the operating maximum. Our opportunistic routing is novel in a sense that it is massively parallel, i.e., it is performed by many nodes simultaneously to maximize the opportunistic gain while controlling the inter-user interference. The scaling behavior of conventional multi-hop transmission that does not employ opportunistic routing is also examined for comparison. Our results indicate that our opportunistic routing can exhibit a net improvement in overall power--delay trade-off over the conventional routing by providing up to a logarithmic boost in the scaling law. Such a gain is possible since the receivers can tolerate more interference due to the increased received signal power provided by the multi-user diversity gain, which means that having more simultaneous transmissions is possible.Comment: 18 pages, 7 figures, Under Review for Possible Publication in IEEE Transactions on Information Theor

    Impact of network structure on the capacity of wireless multihop ad hoc communication

    Full text link
    As a representative of a complex technological system, so-called wireless multihop ad hoc communication networks are discussed. They represent an infrastructure-less generalization of todays wireless cellular phone networks. Lacking a central control authority, the ad hoc nodes have to coordinate themselves such that the overall network performs in an optimal way. A performance indicator is the end-to-end throughput capacity. Various models, generating differing ad hoc network structure via differing transmission power assignments, are constructed and characterized. They serve as input for a generic data traffic simulation as well as some semi-analytic estimations. The latter reveal that due to the most-critical-node effect the end-to-end throughput capacity sensitively depends on the underlying network structure, resulting in differing scaling laws with respect to network size.Comment: 30 pages, to be published in Physica

    Opportunistic Relaying in Wireless Networks

    Full text link
    Relay networks having nn source-to-destination pairs and mm half-duplex relays, all operating in the same frequency band in the presence of block fading, are analyzed. This setup has attracted significant attention and several relaying protocols have been reported in the literature. However, most of the proposed solutions require either centrally coordinated scheduling or detailed channel state information (CSI) at the transmitter side. Here, an opportunistic relaying scheme is proposed, which alleviates these limitations. The scheme entails a two-hop communication protocol, in which sources communicate with destinations only through half-duplex relays. The key idea is to schedule at each hop only a subset of nodes that can benefit from \emph{multiuser diversity}. To select the source and destination nodes for each hop, it requires only CSI at receivers (relays for the first hop, and destination nodes for the second hop) and an integer-value CSI feedback to the transmitters. For the case when nn is large and mm is fixed, it is shown that the proposed scheme achieves a system throughput of m/2m/2 bits/s/Hz. In contrast, the information-theoretic upper bound of (m/2)loglogn(m/2)\log \log n bits/s/Hz is achievable only with more demanding CSI assumptions and cooperation between the relays. Furthermore, it is shown that, under the condition that the product of block duration and system bandwidth scales faster than logn\log n, the achievable throughput of the proposed scheme scales as Θ(logn)\Theta ({\log n}). Notably, this is proven to be the optimal throughput scaling even if centralized scheduling is allowed, thus proving the optimality of the proposed scheme in the scaling law sense.Comment: 17 pages, 8 figures, To appear in IEEE Transactions on Information Theor
    corecore