6,119 research outputs found

    Network-Level Performance Evaluation of a Two-Relay Cooperative Random Access Wireless System

    Full text link
    In wireless networks relay nodes can be used to assist the users' transmissions to reach their destination. Work on relay cooperation, from a physical layer perspective, has up to now yielded well-known results. This paper takes a different stance focusing on network-level cooperation. Extending previous results for a single relay, we investigate here the benefits from the deployment of a second one. We assume that the two relays do not generate packets of their own and the system employs random access to the medium; we further consider slotted time and that the users have saturated queues. We obtain analytical expressions for the arrival and service rates of the queues of the two relays and the stability conditions. We investigate a model of the system, in which the users are divided into clusters, each being served by one relay, and show its advantages in terms of aggregate and throughput per user. We quantify the above, analytically for the case of the collision channel and through simulations for the case of Multi-Packet Reception (MPR), and we provide insight on when the deployment of a second relay in the system can yield significant advantages.Comment: Submitted for journal publicatio

    Full-Duplex Cognitive Radio: A New Design Paradigm for Enhancing Spectrum Usage

    Full text link
    With the rapid growth of demand for ever-increasing data rate, spectrum resources have become more and more scarce. As a promising technique to increase the efficiency of the spectrum utilization, cognitive radio (CR) technique has the great potential to meet such a requirement by allowing un-licensed users to coexist in licensed bands. In conventional CR systems, the spectrum sensing is performed at the beginning of each time slot before the data transmission. This unfortunately results in two major problems: 1) transmission time reduction due to sensing, and 2) sensing accuracy impairment due to data transmission. To tackle these problems, in this paper we present a new design paradigm for future CR by exploring the full-duplex (FD) techniques to achieve the simultaneous spectrum sensing and data transmission. With FD radios equipped at the secondary users (SUs), SUs can simultaneously sense and access the vacant spectrum, and thus, significantly improve sensing performances and meanwhile increase data transmission efficiency. The aim of this article is to transform the promising conceptual framework into the practical wireless network design by addressing a diverse set of challenges such as protocol design and theoretical analysis. Several application scenarios with FD enabled CR are elaborated, and key open research directions and novel algorithms in these systems are discussed

    CARLA: combining Cooperative Relaying and Link Adaptation for IEEE 802.11 wireless networks

    Get PDF

    CORELA: a cooperative relaying enhanced link adaptation algorithm for IEEE 802.11 WLANs

    Get PDF

    STiCMAC: A MAC Protocol for Robust Space-Time Coding in Cooperative Wireless LANs

    Full text link
    Relay-assisted cooperative wireless communication has been shown to have significant performance gains over the legacy direct transmission scheme. Compared with single relay based cooperation schemes, utilizing multiple relays further improves the reliability and rate of transmissions. Distributed space-time coding (DSTC), as one of the schemes to utilize multiple relays, requires tight coordination between relays and does not perform well in a distributed environment with mobility. In this paper, a cooperative medium access control (MAC) layer protocol, called \emph{STiCMAC}, is designed to allow multiple relays to transmit at the same time in an IEEE 802.11 network. The transmission is based on a novel DSTC scheme called \emph{randomized distributed space-time coding} (\emph{R-DSTC}), which requires minimum coordination. Unlike conventional cooperation schemes that pick nodes with good links, \emph{STiCMAC} picks a \emph{transmission mode} that could most improve the end-to-end data rate. Any station that correctly receives from the source can act as a relay and participate in forwarding. The MAC protocol is implemented in a fully decentralized manner and is able to opportunistically recruit relays on the fly, thus making it \emph{robust} to channel variations and user mobility. Simulation results show that the network capacity and delay performance are greatly improved, especially in a mobile environment.Comment: This paper is a revised version of a paper with the same name submitted to IEEE Transaction on Wireless Communications. STiCMAC protocol with RTS/CTS turned off is presented in the appendix of this draf
    corecore