151,640 research outputs found

    Indie Sports Games: Performance and Performativity

    Get PDF
    The indie videogame scene is playing host to a new trend – competitive multiplayer sports themed games. Titles like Hokra, BaraBariBall, Tennnes, and GIRP, among others, have been challenging traditional notions of what constitutes a sports themed videogame. The emergence and popularity of these games raises questions about how the culture of traditional sports relates to the still developing community of independent developers, journalists, scholars and enthusiasts that comprise the nascent indie scene. Looking through the lens of performance and performativity, this paper unpacks this new sports game trend, examining design, spectatorship, and group identity by way of interviews with key members of the indie game scene

    Design Thinking for Better Community in the City of Bridgeport

    Get PDF
    Founded in 1821, the city of Bridgeport is not only the largest city in Connecticut, but one of the most diverse communities as well, with over 20 countries represented in a city of over 150,000 citizens. The goal for this project was to focus on revitalization, waste management and bringing the waterfront scene back to life. As Design Management student, we explored this problem through the lens of design thinking. Using the design thinking process, while considering profitability, sustainability and social responsibility, we developed a series of proposals which activate the existing key resources in order to bring more attention which will benefit the city

    Learning Wavefront Coding for Extended Depth of Field Imaging

    Get PDF
    Depth of field is an important factor of imaging systems that highly affects the quality of the acquired spatial information. Extended depth of field (EDoF) imaging is a challenging ill-posed problem and has been extensively addressed in the literature. We propose a computational imaging approach for EDoF, where we employ wavefront coding via a diffractive optical element (DOE) and we achieve deblurring through a convolutional neural network. Thanks to the end-to-end differentiable modeling of optical image formation and computational post-processing, we jointly optimize the optical design, i.e., DOE, and the deblurring through standard gradient descent methods. Based on the properties of the underlying refractive lens and the desired EDoF range, we provide an analytical expression for the search space of the DOE, which is instrumental in the convergence of the end-to-end network. We achieve superior EDoF imaging performance compared to the state of the art, where we demonstrate results with minimal artifacts in various scenarios, including deep 3D scenes and broadband imaging

    Simulator scene display evaluation device

    Get PDF
    An apparatus for aligning and calibrating scene displays in an aircraft simulator has a base on which all of the instruments for the aligning and calibrating are mounted. Laser directs beam at double right prism which is attached to pivoting support on base. The pivot point of the prism is located at the design eye point (DEP) of simulator during the aligning and calibrating. The objective lens in the base is movable on a track to follow the laser beam at different angles within the field of vision at the DEP. An eyepiece and a precision diopter are movable into a position behind the prism during the scene evaluation. A photometer or illuminometer is pivotable about the pivot into and out of position behind the eyepiece

    Dr TIM: Ray-tracer TIM, with additional specialist scientific capabilities

    Full text link
    We describe several extensions to TIM, a raytracing program for ray-optics research. These include relativistic raytracing; simulation of the external appearance of Eaton lenses, Luneburg lenses and generalized focusing gradient-index (GGRIN) lenses, which are types of perfect imaging devices; raytracing through interfaces between spaces with different optical metrics; and refraction with generalised confocal lenslet arrays, which are particularly versatile METATOYs.Comment: 12 pages, 16 figure

    Ray-optical refraction with confocal lenslet arrays

    Get PDF
    Two parallel lenslet arrays with focal lengths f1 and f2 that share a common focal plane (that is, which are separated by a distance f1+f2) can refract transmitted light rays according to Snell's law, but with the 'sin's replaced with 'tan's. This is the case for a limited range of input angles and other conditions. Such confocal lenslet arrays can therefore simulate the interface between optical media with different refractive indices, n1 and n2, whereby the ratio η=-f2/f1 plays the role of the refractive-index ratio n2/n1. Suitable choices of focal lengths enable positive and negative refraction. In contrast to Snell's law, which leads to nontrivial geometric imaging by a planar refractive-index interface only for the special case of n1=±n2, the modified refraction law leads to geometric imaging by planar confocal lenslet arrays for any value of η. We illustrate some of the properties of confocal lenslet arrays with images rendered using ray-tracing software

    An Analysis of Optical Contributions to a Photo-Sensor's Ballistic Fingerprints

    Full text link
    Lens aberrations have previously been used to determine the provenance of an image. However, this is not necessarily unique to an image sensor, as lens systems are often interchanged. Photo-response non-uniformity noise was proposed in 2005 by Luk\'a\v{s}, Goljan and Fridrich as a stochastic signal which describes a sensor uniquely, akin to a "ballistic" fingerprint. This method, however, did not account for additional sources of bias such as lens artefacts and temperature. In this paper, we propose a new additive signal model to account for artefacts previously thought to have been isolated from the ballistic fingerprint. Our proposed model separates sensor level artefacts from the lens optical system and thus accounts for lens aberrations previously thought to be filtered out. Specifically, we apply standard image processing theory, an understanding of frequency properties relating to the physics of light and temperature response of sensor dark current to classify artefacts. This model enables us to isolate and account for bias from the lens optical system and temperature within the current model.Comment: 16 pages, 9 figures, preprint for journal submission, paper is based on a thesis chapte
    corecore