5,327 research outputs found

    Sensor Sleeve: Sensing Affective Gestures

    Full text link
    We describe the use of textile sensors mounted in a garment sleeve to detect affective gestures. The `Sensor Sleeve' is part of a larger project to explore the role of affect in communications. Pressure activated, capacitive and elasto-resistive sensors are investigated and their relative merits reported on. An implemented application is outlined in which a cellphone receives messages derived from the sleeve's sensors using a Bluetooth interface, and relays the signals as text messages to the user's nominated partner

    Fingers of a Hand Oscillate Together: Phase Syncronisation of Tremor in Hover Touch Sensing

    Get PDF
    When using non-contact finger tracking, fingers can be classified as to which hand they belong to by analysing the phase relation of physiological tremor. In this paper, we show how 3D capacitive sensors can pick up muscle tremor in fingers above a device. We develop a signal processing pipeline based on nonlinear phase synchronisation that can reliably group fingers to hands and experimentally validate our technique. This allows significant new gestural capabilities for 3D finger sensing without additional hardware

    Wearable Capacitive-based Wrist-worn Gesture Sensing System

    Get PDF
    Gesture control plays an increasingly significant role in modern human-machine interactions. This paper presents an innovative method of gesture recognition using flexible capacitive pressure sensor attached on user’s wrist towards computer vision and connecting senses on fingers. The method is based on the pressure variations around the wrist when the gesture changes. Flexible and ultrathin capacitive pressure sensors are deployed to capture the pressure variations. The embedding of sensors on a flexible substrate and obtain the relevant capacitance require a reliable approach based on a microcontroller to measure a small change of capacitive sensor. This paper is addressing these challenges, collect and process the measured capacitance values through a developed programming on LabVIEW to reconstruct the gesture on computer. Compared to the conventional approaches, the wrist-worn sensing method offerings a low-cost, lightweight and wearable prototype on the user’s body. The experimental result shows that the potentiality and benefits of this approach and confirms that accuracy and number of recognizable gestures can be improved by increasing number of sensor

    Transparent switchboard

    Get PDF
    A tin oxide coating is formed on a plate of glass and the coating is then etched away from the glass in thin lines to form separate electrical conductors which extend to one end of the plate and connect to either a vertical (column) or horizontal (row) position sensing SCR circuit. A thin transparent insulating coating is formed over the oxide layer except at selected touch points which are positioned in a matrix pattern of vertical columns and horizontal rows. Touching one of these points with a finger bridges the thin line between adjacent conductors to activate trigger circuits in the particular row and column sensing circuits associated with the point touched. The row and column sensing circuits are similar and are powered with a low frequency, ac voltage source. The source for the row circuits is 180 out of phase with the source for the column circuits so that one circuit acts as ground for the other during half of the supply voltage cycle. The signals from the sensing circuits are input to a logic circuit which determines the presence of a valid touch, stores a binary matrix number associated with the touched point, signals a computer of the presence of a stored number and prevents storage of a new number before receiving an enable signal from the computer
    • …
    corecore