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ABSTRACT
When using non-contact finger tracking, fingers can be clas-
sified as to which hand they belong to by analysing the phase
relation of physiological tremor. In this paper, we show how
3D capacitive sensors can pick up muscle tremor in fingers
above a device. We develop a signal processing pipeline
based on nonlinear phase synchronisation that can reliably
group fingers to hands and experimentally validate our tech-
nique. This allows significant new gestural capabilities for
3D finger sensing without additional hardware.
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MOTIVATION
3D touch devices which can sense the fingers before they con-
tact the screen have been researched for some time [18, 17, 4]
and are becoming commercially available (e.g. Microchip’s
GestIC, Fogale’s Sensation). Such 3D multitouch devices can
be used by one or many people simultaneously; for example,
in a two-player collaborative game. Reliably distinguishing
interacting fingers from users interacting simultaneously can
be tricky. Splitting the screen can provide multi-user input
(e.g. one person gets the left half, the other gets the right
half), but this is wasteful and doesn’t allow for rich, collabo-
rative multitouch interaction. These devices also cannot dis-
tinguishing bimanual and single-handed gestures. New ges-
tures which use knowledge of the generating hand extend the
gestural repertoire of multi-touch screens.

We propose a method to group fingers according to the hand
they belong to. Applications include: distinct unimanual
and bimanual gesture input (e.g. one-handed pinch for mi-
crozoom functionality, large scale zooming with two-handed
pinch); media browsing and sorting applications, where mul-
tiple users can slide and arrange items without gestures inter-
fering with each other; and multiplayer above-surface games,
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Figure 1. Frequency spectrum of the distance to surface of a finger hov-
ering steadily 1cm above a touch screen. Tremor is visible around 9Hz.

with independent multitouch controls even in overlapping
screen areas.

RELATED WORK
Tremor sensed via accelerometer has been used as a way of
detecting whether mobile devices are being held by a living
person, and as a proxy for grip pressure, by monitoring fre-
quency changes in isometric tremor [15]. The phase dynam-
ics of tremor are discussed in detail by Beuter et al [3]. Selker
et al [14] use mobile accelerometer based tremor tracking to
estimate sleep quality of users from long-term measurements.
Phase synchronisation analysis has been used to detect con-
versational alignment between people speaking on the phone
by measuring phase relations of gait cycles [10].

There has been extensive work in multi-user displays to sep-
arate interacting fingers from different users. DiamondTouch
[5] used capacitve coupling through the body to separate
hands (requiring users to sit in specific transmitter seats).
Suto et al [16] use an optical system to estimate finger iden-
tity from user position. Medusa [1] used proximity sensors
to detect the orientation of arms and assign touch points by
projecting the arm orientation to the touch region. Harrison
et al [8] use swept frequency capacitive sensing to distinguish
users on a mobile device with additional hardware.

AIMS
All humans involuntarily produce strong tremor oscillations
in their arms, in the 6-12Hz region [7], as a byproduct of
muscular activation (Figure 1). There are various type of
tremor present in healthy humans, including rest tremor, ac-
tion tremor, postural tremor, kinetic tremor, isometric tremor



and intention tremor; the most relevant tremor in the hover-
ing finger case is rest tremor, which is produced while mus-
cles are at rest. This has been used, for example, to determine
grip strength using an accelerometer to track modulations of
the tremor spectrum [15]. Muscle tremor effects are quite
weak when measured with a finger resting on a surface, as on
a conventional touchscreen, because the surface provides me-
chanical support and frictional damping to the finger. How-
ever, when fingers are hovering unsupported over the device,
tremor is much more pronounced.

We propose to track the tremor component in each detected
finger and identify common sources. We hypothesise that one
user’s fingers are subject to a large common tremor (from
wrist and arm muscles), whereas fingers another user will be
quite distinct. We can then group fingers according to their
estimated common sources, and identify fingers belonging to
different users or different hands of a single user.

SIGNAL PROCESSING
Our approach to estimating the common sources of tracked
finger positions is to look for phase synchronisation be-
tween oscillations in the tremor range (6-12Hz). Where there
is strong synchronisation between two tracked fingers, we
might reasonably expect that that they are attached to the
same limb. Physiological evidence suggests there is little
synchronisation between left and right side limbs (excluding
small ballistocardiac effects) as there is hypothesised to be a
pair of lateralised tremor generators in the body [7].

To estimate phase synchronisation, we use a Hilbert trans-
form to approximate the analytic signal [6], and then com-
pare the resulting phase angles. This method is robust and
insensitive to amplitude modulations.

Pre-processing
For each finger, we capture the tracked x, y, z finger positions
from the touch pad, and the timestamp t. We reinterpolate
all of the position time series to a constant sampling rate of
120Hz. We then estimate the derivative of the each of these
values by finite differences. These signals are then bandpass
filtered, as the Hilbert transform used later relies on the as-
sumption of a narrowband signal. We use linear phase FIR
filter to avoid phase distortion, with 91 taps, using Blackman-
Harris windowed filter design. The -3dB band cutoffs are set
to 6Hz and 30Hz, to capture the tremor oscillations typically
centred around 10Hz. This produces a bandpass filtered sig-
nal x f (t) for each axis.

Hilbert Transform
From the bandpass filtered signal x f (t), we compute the
Hilbert transform xh(t) = H(x f (t)), to get the complex an-
alytic signal. In the offline case, we compute the true (dis-
crete) Hilbert transform via the FFT of the entire signal. A
Hilbert transform approximation FIR filter [13] can be used
in an online implementation (the bandpass and Hilbert fil-
ters can be convolved into a single FIR filter in this case).
From the analytic signal, we can obtain the phase angle
φ(t) = tan−1(<(xh(t)),=(xh(t)) which is phase unwrapped to
produce φu(t). The Hilbert transform is essential in achiev-
ing amplitude invariant performance, which is critical for the
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Figure 2. Block diagram of the signal processing steps in the tremor
synchronisation tracking.

hover sensing application as the sensors distance mapping is
non linear. This means tremor with a distant finger has very
different amplitude distribution than with the finger close to
the screen.

Phase Locking Value
Computing this value for a pair of fingers, we obtain φ1

u(t),
φ2

u(t). We can compute the phase locking value (PLV) [2] as:

P =
1
T

∣∣∣∣∣∣∣
T∑

t=0

ei(φ1
u(t)−φ2

u(t))

∣∣∣∣∣∣∣.
This is a measure of the difference of phase of φ1

u(t), φ2
u(t)

over time and is widely used in the EEG literature when in-
vestigating neural synchronisation [9].

The PLV value measures the synchronisation of two signals.
However, if the two signals are for example constant (e.g.
finger position is completely still or absent), the PLV value
will be be high and it can be difficult to find reliable thresh-
olds for the PLV to indicate synchronisation. A robust ap-
proach to identifying synchronisation is data surrogacy [12,
11] which compares the phase synchronisation between the
original signals and replicates which have had temporal struc-
ture destroyed. This separates the time varying synchronisa-
tion effect from overall signal statistics. This involves com-
puting a set of surrogates. Each surrogate is computed by
randomly shuffling the order of the time-series, and then re-
computing φ∗u(t), the unwrapped phase for the shuffled data,
and finally the PLV value P∗j for each surrogate j. By gen-
erating multiple surrogates we can derive a robust statistical
measure of how informative the PLV is.

We estimate the mean µP∗ and standard deviation σP∗ of the
PLV for each surrogate replication, and compute the z-score
of the real (original) PLV as zP =

P−µP∗

σP∗
. This is a robust mea-

sure for the level of true synchronisation. We would expect
signals with strong synchronisation to have z-score >>1, indi-
cating that the true PLV is well outside the distribution of the
surrogate PLVs. The overall process is summarised in Fig-
ure 2. In practice, a small number of surrogates (2-3) suffice,
with minor gains in robustness beyond this level.

Real time implementation
The above process is used in the experimental work described
below. To demonstrate that this technique is viable in real-
time processing of touch input, a simplified online algorithm
was also implemented. This implementation uses a truncated
FIR approximation to the Hilbert transform (31 taps, designed
by the Remez exchange algorithm) and a shorter FIR band-
pass filter (also 31 taps), with a bandpass region of 8Hz-24Hz.



Figure 3. Left: The 3D sensing device, which also has a built-in dis-
play. Right: Raw output of the 10x16 sensor with two fingers hovering
at approximately 0.5cm.

The PLV Pt is accumulated in a leaky integrator, and a con-
nection between fingers is triggered when this value exceeds
a threshold. To eliminate spurious phase locking, a single
surrogate is estimated using a bandpass filter with randomly
permuted elements, to produce P∗t . To be considered a lock,
Pt > P ∗t +∆P for some threshold ∆P.

EXPERIMENT
N=8 subjects (2 female, 6 male, mean age 31.3) were re-
cruited locally to test the tremor tracking system. We tested
specifically whether the system could distinguish the left
hand from the right hand of a single participant. Pilot testing
indicated that separating different users’ finger grouping was
very reliable, so we concentrated on capturing intra-user hand
grouping (synthetic comparisons across users can be made
post hoc by comparing time series from different capture ses-
sions).

Participants were seated with the sensor resting on a table
about 30cm in front of them. The experimental trials con-
sisted of a series of hand poses which were given via instruc-
tion images. Each pose was held for 20 seconds and repeated
three times. There were a mix of static poses (i.e. hands
held at rest) and dynamic poses (fingers moving). Partici-
pants were instructed to keep their fingers around 1cm above
from the screen and avoid touching it. A simple bar chart of
detected finger height was shown onscreen with a ”good dis-
tance” zone, and participants were asked to use the chart to
keep their fingers in this zone.

There were a total of four poses. Each pose had a certain
number of fingers active on each of the left and right hand and
was either static or was dynamic with circling motions (while
keeping the fingers over the sensor area). The dynamic poses
were included to demonstrate that the tremor synchronisation
can be detected with moving fingers. Each pose has a unique
code ”R-LT” (right fingers, left fingers, type). For example,
one finger from each hand, static was coded 1-1S, and two
fingers from the right hand, dynamic was coded 2-0D. The
poses used were: 2-0S, 2-0D, 1-1S and 1-1D.

Hardware + logging
We use a touch sensing device with 160 long range electri-
cal field sensors arranged in a 10x16 grid (Figure 3). This
sensor produces intensity values which vary as conductive
bodies approach the surface. The sensor samples at 120Hz,
but the capture software provides data at 100Hz. We ex-
perimentally estimated the signal to noise ratio (SNR) to be
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Figure 4. Box plot showing the z scores for the two separate finger case
(1-1S and 1-1D) and two fingers on the same hand (2-0S and 2-0D), z-axis
(finger height) only. S and D denote static (finger held steady) and dy-
namic (finger moving in circles) respectively. (bar=interquartile range,
whiskers=Q1-1.5IQR, Q3+1.5IQR, median at red line)

around 48dB. The sensor has a maximum sensing range of
approximately 5cm above the surface, but is most effective
in the 0-2cm range. Onboard firmware computes up to five
independent finger x, y, z positions, which is streamed along
with the raw sensor values to a remote logging application. A
Python application coordinated experimental conditions and
data logging. We have also tested with a second sensor device
of lower sampling rate (60Hz) resolution (13x8) and obtained
very similar performance to that presented here.

ANALYSIS AND RESULTS
Captured signals were analysed with the process outlined
above, using k = 12 surrogates for z-score estimation. Figure
6 shows the phase angle of the z axis signals and a synchro-
gram [12] from a typical two finger case (1-1S versus 2-0S).
The synchronisation of the signals from the same hand is very
marked in both the synchrograms and the PLV score distribu-
tions. The full results from the trial for the two finger case
is given in Figure 4. The synchronisation detection is very
reliable. A Wilcoxon rank-sum test shows a statistically sig-
nificant difference between the z scores for 1-1S and 2-0S
(p < 0.002) and between 1-1D and 2-0D (p < 0.0002).

The results suggest that the z axis movement (height above
surface) is a better measure than the x and y movement (trans-
lation in the plane parallel to device surface), although syn-
chronisation is still visible in those axes (Figure 5). The
mechanism underlying this axis difference remains to be in-
vestigated but we hypothesise it may be due to the biome-
chanics of the arm when held in the hovering pose. In the
separate finger cases z-scores are generally still above 1, al-
though much lower than the z-scores for the connected finger
cases. This is due to glitches in sampling rate being propa-
gated across all tracked fingers; finger grouping is still easily
distinguishable as synchronised fingers have z-scores ≈ 5×
that of non-synchronised fingers. Combining multiple axes
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Figure 5. Box plot showing the z scores for the two separate finger case
(1-1S and 1-1D) and two fingers on the same hand (2-0S and 2-0D), for
x, y, z positions (z highlighted in green). x, y show less strong synchroni-
sation than z (finger height).

and tracking the full 3D tremor pattern may improve perfor-
mance, although this requires tracking continuously varying
phase offsets between the axes.

We subsequently captured data for 2-2S, 3-1S, 4-0S and 2-1S
from all participants. The analysis of the connectivity graphs
of the fingers is significantly complicated by the touch APIs
unstable numbering of the touch points and the results cannot
be presented in detail. In summary, the results are positive;
tremor grouping remains robust with three and four fingers,
as long as the touch sensor is able to reliably distinguish fin-
gers. We also informally tested the effect of gesture velocity
and found that the effect of voluntary motion to be insignifi-
cant even for rapid movements (e.g quick swiping of fingers
back and forth), although the small size of the sensor makes it
difficult to sustain quick movement without losing tracking.

DISCUSSION
Detection of synchronisation is very reliable. PLV based scor-
ing works very well, but simpler approaches, such as sim-
ple phase comparison (which computes how closely clustered
points are around the x = y line on a synchrogram) would be
likely to be effective. Spectral contamination from voluntary
movements is implausible and thus the detection is generally
robust; however sources of vibration in the 6-12Hz range (e.g.
in vehicles) has not been tested and may reduce the sensitivity
of the tremor grouping.

Our approach has both processing and inherent latency be-
fore synchronisation can be detected. The FIR filters have
excellent phase linearity but introduce substantial processing
latency; the realtime implementation discussed has group de-
lay of around 260ms. IIR approaches could mitigate this.
In terms of inherent latency, the Hilbert transform approach
needs at least two or three complete cycles to reliably identify
synchronisation. At 10Hz tremor, this means 200-300ms of
data must be observed, so it is unsuitable for very fast swipes
above the device. Other approaches to phase synchronisa-
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Figure 6. Time series from 30 seconds of typical two finger data. Left:
two fingers from one hand, right: two fingers from different hands. Top:
2 second extract of phase angle of the signal φz for the two series overlaid.
Middle: synchrogram (φz1 versus φz2). Bottom: True P value (red) and
the distribution of 100 P∗ surrogate values, along with the corresponding
z-score. The synchronisation is very apparent in the strong clustering of
the synchrogram plots around x = y, closely overlapping phase time
series and PLV well outside of the distribution of surrogate PLVs.

tion detection, such as phase-locked loop approaches, may
offer more sensitivity and lower-latency lock on. However,
for many tasks (e.g. multi-user media browsing) the group-
ing structure is relatively stable and sub-second updates are
not required. The analysis approach presented here works
on tracked finger positions. The phase synchronisation can
also be detected directly on the sensor matrix, before finger
extraction has been completed by computing PLV between
each sensor matrix value and performing spectral clustering
on the resulting similarity matrix. This may offer benefits in
separating closely spaced fingers.

CONCLUSION
Human tremor is a prevalent and easily detectable signal that
has significant applications in improving user interface de-
sign. 3D touch tracking has to cope with the “noise” of
tremor in positioning, but instead of simply filtering this it
out, it can be harnessed to augment input without any ad-
ditional hardware. Our processing pipeline is a robust and
easily-implemented way to group fingers to hands and opens
up an array of hand-origin sensitive gestural controls.
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