223 research outputs found

    A Wideband, Synthetic Aperture Beamformer for Through-The-Wall Imaging

    Get PDF
    A coarray-based aperture synthesis scheme using subarrays and post-data acquisition beamforming is presented for through-the-wall wideband microwave imaging applications. Various effects of the presence of the wall, such as refraction, change in speed, and attenuation, are incorporated into the beamformer design. Simulation results verifying the proposed synthetic aperture technique for a TWI system are presented. The effects of incorrect estimates of the parameters of the wall, such as thickness and dielectric constant, on performance are investigated

    Ultra-wideband Impulse-based Radar Signals for Through-the-wall Imaging

    Get PDF
    Ultra-wideband (UWB) is the promising technology for localization of the objects behind the walls. Recent terrorist activities and law-enforcement situations underscore the need for effective through-wall detection. The approval of UWB technology made by federal communications commission (FCC) in 2002 makes the researchers to have a look on this technology. UWB radar signals has extremely large frequency spectrum and since low frequencies has more penetration capabilities through dielectric materials it is best suitable for through-the-wall radar imaging (TWRI). Signal processing in TWRI has a greater impact in getting the information of the scanned area. This paper uses impulse signals in TWRI, examines the factors impacting in TWRI and obtains the two dimensional information of the scanned scene. Electromagnetic simulation software is used to generate the room like structure, and to obtain the raw radar data.Defence Science Journal, 2012, 62(1), pp.187-192, DOI:http://dx.doi.org/10.14429/dsj.62.84

    Performance of 2D Compressive Sensing on Wide-Beam Through-the-Wall Imaging

    Get PDF

    An Extended Virtual Aperture Imaging Model for Through-the-wall Sensing and Its Environmental Parameters Estimation

    Get PDF
    Through-the-wall imaging (TWI) radar has been given increasing attention in recent years. However, prior knowledge about environmental parameters, such as wall thickness and dielectric constant, and the standoff distance between an array and a wall, is generally unavailable in real applications. Thus, targets behind the wall suffer from defocusing and displacement under the conventional imag¬ing operations. To solve this problem, in this paper, we first set up an extended imaging model of a virtual aperture obtained by a multiple-input-multiple-output array, which considers the array position to the wall and thus is more applicable for real situations. Then, we present a method to estimate the environmental parameters to calibrate the TWI, without multiple measurements or dominant scatter¬ers behind-the-wall to assist. Simulation and field experi¬ments were performed to illustrate the validity of the pro¬posed imaging model and the environmental parameters estimation method

    Sparse MIMO architectures for through-the-wall imaging

    Full text link

    A Comparison between Multiple-Input Multiple-Output and Multiple-Input Single-Output Radar Configurations for Through-the-Wall Imaging Applications

    Get PDF
    The performances of a multiple-input multiple-output (MIMO) radar, employing 16 equivalent antennas, and multiple-input single-output (MISO) radar, employing 10 antennas, for through-the-wall imaging applications are analyzed. In particular, imaging algorithms based on the Fourier transform (FT) and the multiple signal classification (MUSIC) available in the literature are compared with the FT-MUSIC hybrid algorithm recently developed by the authors. Three different investigations have been performed. The first, performed analytically, refers to a scenario in which a point scatterer is placed in free space, and the second, addressed numerically using the CST full-wave software, refers to a scenario in which two targets are present, while the last was executed in a real scenario where a metal panel is placed behind a tuff wall. All the algorithms and radar configurations were found to be suitable for accurately reconstructing the position of the investigated target. In particular, applying the FT technique, the MISO configuration has a lower cross-range half-power beamwidths (HPBW) than the MIMO one, while the range HPBW is the same for the two radar configurations. Despite the different number of elements present in the two radar configurations, similar range and cross-range HPBW are obtained for both configurations when MUSIC and FT-MUSIC techniques are employed. The field of view for FT and FT-MUSIC is about 45°, while it is less than 15° for the MUSIC algorithm. The HPBWs obtained with the experimental setup are very close to those obtained in the analytical study. Finally, the proposed experimental MISO radar acquires the data in half the time required by the MIMO one. The numerical results, confirmed by the experimental measurements, seem to indicate in the FT-MUSIC technique the one that provides the best performance for the considered radar configurations

    Blind multi-path elimination by sparse inversion in Through-The-Wall-Imaging

    Full text link
    corecore