12,540 research outputs found

    Threshold-based Clustering for Intrusion Detection Systems

    Get PDF
    Signature-based intrusion detection systems look for known, suspicious patterns in the input data. In this paper we explore compression of labeled empirical data using threshold-based clustering with regularization. The main target of clustering is to compress training dataset to the limited number of signatures, and to minimize the number of comparisons that are necessary to determine the status of the input event as a result. Essentially, the process of clustering includes merging of the clusters which are close enough. As a consequence, we will reduce original dataset to the limited number of labeled centroids. In a complex with k-nearest-neighbor (kNN) method, this set of centroids may be used as a multi-class classifier. Clearly, different attributes have different importance depending on the particular training database. This importance may be regulated in the definition of the distance using linear weight coefficients. The paper introduces special procedure to estimate above weight coefficients. The experiments on the KDD-99 intrusion detection dataset have confirmed effectiveness of the proposed methods. ©2006 COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only

    ANTIDS: Self-Organized Ant-based Clustering Model for Intrusion Detection System

    Full text link
    Security of computers and the networks that connect them is increasingly becoming of great significance. Computer security is defined as the protection of computing systems against threats to confidentiality, integrity, and availability. There are two types of intruders: the external intruders who are unauthorized users of the machines they attack, and internal intruders, who have permission to access the system with some restrictions. Due to the fact that it is more and more improbable to a system administrator to recognize and manually intervene to stop an attack, there is an increasing recognition that ID systems should have a lot to earn on following its basic principles on the behavior of complex natural systems, namely in what refers to self-organization, allowing for a real distributed and collective perception of this phenomena. With that aim in mind, the present work presents a self-organized ant colony based intrusion detection system (ANTIDS) to detect intrusions in a network infrastructure. The performance is compared among conventional soft computing paradigms like Decision Trees, Support Vector Machines and Linear Genetic Programming to model fast, online and efficient intrusion detection systems.Comment: 13 pages, 3 figures, Swarm Intelligence and Patterns (SIP)- special track at WSTST 2005, Muroran, JAPA

    Efficient classification using parallel and scalable compressed model and Its application on intrusion detection

    Full text link
    In order to achieve high efficiency of classification in intrusion detection, a compressed model is proposed in this paper which combines horizontal compression with vertical compression. OneR is utilized as horizontal com-pression for attribute reduction, and affinity propagation is employed as vertical compression to select small representative exemplars from large training data. As to be able to computationally compress the larger volume of training data with scalability, MapReduce based parallelization approach is then implemented and evaluated for each step of the model compression process abovementioned, on which common but efficient classification methods can be directly used. Experimental application study on two publicly available datasets of intrusion detection, KDD99 and CMDC2012, demonstrates that the classification using the compressed model proposed can effectively speed up the detection procedure at up to 184 times, most importantly at the cost of a minimal accuracy difference with less than 1% on average
    • …
    corecore