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ABSTRACT

Signature-based intrusion detection systems look for known, suspicious patterns in the input data. In this paper we
explore compression of labeled empirical data using threshold-based clustering with regularization. The main target of
clustering is to compress training dataset to the limited number of signatures, and to minimize the number of comparisons
that are necessary to determine the status of the input event as a result. Essentially, the process of clustering includes
merging of the clusters which are close enough. As a consequence, we will reduce original dataset to the limited number
of labeled centroids. In a complex with k-nearest-neighbor (kNN ) method, this set of centroids may be used as a multi-
class classifier. Clearly, different attributes have different importance depending on the particular training database.
This importance may be regulated in the definition of the distance using linear weight coefficients. The paper introduces
special procedure to estimate above weight coefficients.

The experiments on the KDD-99 intrusion detection dataset have confirmed effectiveness of the proposed methods.
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1. INTRODUCTION

Most deployed intrusion detection systems follow a signature-based approach1 where attacks are identified by matching
each input event against predefined signatures that model malicious activity. In difference, the basic idea of anomaly-
based systems2 is: if a new sample is “close” enough to the set of normal clusters, it is considered normal; otherwise, it
is classified as abnormal.

The paper proposes an indirect kNN3 method which includes the following 2 steps. Firstly, we compress training
dataset to the limited set of centroids or signatures with labels computed according to the data within corresponding
clusters as an averages. Then, we form multi-classifier using kNN clustering method applied to the above set of
centroids.

Model-based and distance-based clustering algorithms have a heuristical nature. Respectively, their performance
depends essentially on the selection of initial settings if number of clusters is bigger than one. The threshold-based
clustering4 model is not immune completely against this problem as well, but, in most cases, dependence between
initial settings and final results tends to zero asymptotically as sample size grows.

As a consequence of dynamic nature of clustering process some particular centroids may become too close to be
considered as an independent elements of the classifier, and it was noticed that bigger number of signatures or centroids
(after some point) will lead to worse results. Respectively, we will merge similar clusters, and will reduce number of
clusters as a result. Experiments on a large real datasets have confirmed effectiveness of this operation.5 The primary
target of this research was to develop an automatical system in order to improve substantially contest criterion using
KDD-99 datasets.

A special hard regularization represents an essential element of the proposed system. Using this regularization we
will make clusters uniform in terms of labels as a main targets of classification. A soft regularization with additional
regulation parameters will require special tuning depending on the particular dataset, and may be regarded as a further
development.

In a real-time environment, the efficiency of data analysis is critical. For example, on-line fraud detection systems
need to respond with an approval or rejection on the transaction within a few seconds. In this paper, we focus on the
automatical systems for classification of different patterns. The advantage of signature-based designs is the fact that
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they can identify attacks with required accuracy and they tend to produce fewer alarms comparing with anomaly-based
systems.1 The problem of alert analysis has become very important.6 The large amount of alerts can overwhelm
security administrators and prevent them from adequately understanding and analyzing the security state of the network,
and initiating appropriate response in a timely fashion.

2. THE MODEL

Let X = (xt, yt) , t = 1..N, be a training sample of observations where xt is �-dimensional vector of attributes, yt is
the label in a form of m-dimensional vector of non-negative components: yti ∈ {0, 1},∑m

i=1 yti = 1.

For example, in the following below Section 3 we consider KDD-99 database with m = 5 labels: 1) “normal” and
4 types of intrusions 2) “PRB”, 3) “DOS”, 4) “U2R” and 5) “R2L”. Accordingly, we define matrix Y = {yij , i, j =
1..m} :

Table 1. Matrix of labels Y .
Label normal PRB DOS U2R R2L

normal 1 0 0 0 0
PRB 0 1 0 0 0
DOS 0 0 1 0 0
U2R 0 0 0 1 0
R2L 0 0 0 0 1

As a base, we employ in this study a reasonably economical technique named Leader Algorithm which was intro-
duced in Ref.7, pp. 75-76, and later was used4 in application to the intrusion detection. The following below Algorithm 1
has two significant differences comparing with Leader Algorithm. Firstly, the Algorithm 1 use flexible centroids (in-
stead of permanent leaders) which will be recomputed after any change of the corresponding cluster. Secondly, the
Algorithm 1 will be used in application to the labelled data, and we would be interested to make clusters uniform in the
terms of labels. Respectively, we will apply special regularization R in (1) and (2), which should be powerful enough
so that clustering will be conducted inside particular subsets with the same labels.

Algorithm 1 Threshold-based Clustering
1: Select threshold parameter H and distance Φ (for example, it may be squared distance or sum of absolute differ-

ences);
2: initialize t := 1, number of clusters τ := 1, and the first cluster with centroid qτ := xt as a first element in the

training dataset;
3: t := t+ 1, obtain a sequential data-instance xt and compute

⎧
⎨

⎩

D = min
c=1..τ

[Φ(xt, qc) +R(yt, fc)] ;

j = argmin
c=1..τ

[Φ(xt, qc) +R(yt, fc)] ;
(1)

4: if D ≤ H , then assign xt to the cluster j and recompute qj and fj as a sample averages of the internal data;
5: if D > H , then create a new cluster with centroid qτ+1 := xt, τ := τ + 1;
6: repeat steps 3-5, until no instances are left in the training set.

Then, we compute vector of weight coefficients and matrix of frequencies
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w = {wc =
Nc

N
, c = 1..τ};

F = {fci =
nci

Nc
≥ 0, c = 1..τ, i = 1..m,

m∑

i=1

fci = 1}
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where any row in the matrix F represents particular cluster as an average of internal labels, nci is the number of elements
with label i in the cluster Xc, and Nc =

∑m
i=1 nci is the total number elements in the cluster Xc, N =

∑τ
c=1Nc.

DEFINITION 2.1. We define 1) “a distance to the cluster” or 2) “a distance between clusters” as 1) a distance to the
corresponding centroid or 2) a distance between corresponding centroids assuming that the distance represents a sum
of two terms: 1) for attributes and 2) for labels.

DEFINITION 2.2. Assuming that k ≤ τ , we form an indirect kNN classifier as a complex of 2 matrices: 1) centroids and
2) frequencies. The classification includes 2 steps: for any data-instance

1) find k closest centroids qc, c = 1..k, according to the regularized distance Φ;

2) compute vector
∑k

c=1 wcf c as a weighted average of c = 1..k rows of the matrix of frequencies, and define label
according to the maximal component (empirical maximum likelihood).

2.1. Threshold-based Clustering with Merging
We can develop the Algorithm 1 by including “backward” merging operation of the existing clusters which are close
enough. The algorithm requires update of the matrix of distances between clusters (or centroids) after any transaction.
This operation will double the required computation time assuming that the number of clusters remains constant. But, in
fact, the backward operation may reduce significantly (subject to the properly selected regulation parameters) the number
of clusters or clustering size and, as a consequence, the Algorithm 2 may be faster comparing with the Algorithm 1 for
the same forward threshold parameter.

Algorithm 2 Threshold-based Clustering with Merging
1: Select forward and backward threshold parameters HF ,HB ,HF ≥ HB , and distance Φ;
2: initialize t := 1, number of clusters τ := 1, the first cluster with centroid qτ := xt as a first element in the training

dataset;
3: t := t+ 1, obtain a sequential data-instance (xt, yt) and compute

⎧
⎨

⎩

D = min
c=1..τ

[Φ(xt, qc) +R(yt, fc)] ;

j = argmin
c=1..τ

[Φ(xt, qc) +R(yt, fc)] ;
(2)

4: if D ≤ HF , then assign xt to the cluster j and recompute qj and fj as a sample averages;
5: if D > HF , then create a new cluster with centroid qτ+1 := xt, τ := τ + 1;
6: if τ ≥ 2, compute triangle matrix of distances between centroids, find minimal distance dmin and corresponding

centroids;
7: merge 2 nearest clusters if dmin < HB , τ := τ − 1;
8: repeat steps 3-7, until no instances are left in the training set.

REMARK 2.1. The simplest definition of R may be as follows

R(yt, fc) =

{
0 if yt = fc;
A, otherwise

(3)

where the constant A represents an upper bound for the loss function Φ (in the following Section 3.3 we used value of
the parameter A = 75 which is slightly bigger comparing with the upper bound for Φ).

As a next step after Algorithm 2 we can apply suitable adjustment in order to conduct further smoothing. For
example, it may be an algorithm within the CM framework.8

The algorithms within CM -framework have a heuristical nature. Respectively, their performance depend essentially
on the selection of initial settings if number of clusters is bigger than one. Ref.9 proposed an adaptive technique that
grows the clusters automatically. Adaptive Algorithm 3 can identify τ clusters in an input data set by merging existing
clusters and by creating new ones while keeping the number of clusters constant. In difference to the above Algorithms 1
and 2 this algorithm use a flexible threshold parameter which should be re-computed as a minimal distance between
existing centroids after “service” of any data-instance.
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Algorithm 3 Adaptive Clustering with Merging
1: Select distance Φ and number of clusters τ ;
2: t := 0, and select τ initial centroids;
3: compute triangle matrix of distances between centroids, find minimal distance dmin and corresponding centroids;
4: t := t+ 1, compute vector of distances between data-instance xt and centroids, find minimal distance dt;
5: if dt ≤ dmin, assign the element to the nearest cluster;
6: if dt > dmin, merge 2 nearest clusters and create new cluster with xt as a centroid;
7: repeat steps 3-6, until no instances are left in the training set.

3. THE KDD-99 INTRUSION DETECTION DATABASE

The 1998 DARPA Intrusion Detection Evaluation Program was prepared and managed by MIT Lincoln Labs. The
objective was to survey and evaluate research in intrusion detection. A standard set of data to be audited, which includes
a wide variety of intrusions simulated in a military network environment, was provided. The KDD-99 data mining
contest10 used a version of this dataset.

Lincoln Labs set up an environment to acquire nine weeks of raw TCP (Transmission Control Protocol) data for a
local-area network (LAN) simulating a typical U.S. Air Force LAN. They operated the LAN as if it were a true Air
Force environment, but peppered it with multiple attacks.

The raw training data was about four gigabytes of compressed binary TCP data from seven weeks of network traffic.
This was processed into about five million connection records. Similarly, the two weeks of test data yielded around two
million connection records.

A connection is a sequence of TCP packets starting and ending at some well defined times, between which data
flows to and from a source IP (Internet Protocol) address to a target IP address under some well defined protocol. Each
connection is labelled as either normal, or as an attack with exactly one specific attack type. Each connection record
consists of about 100 bytes.

Attacks fall into four main categories:

1) DOS: denial-of-service;

2) R2L: remote-to-local, unauthorized access from a remote machine, e.g., guessing password;

3) U2R: user-to-root, unauthorized access to local superuser (root) privileges, e.g., various “buffer overflow” attacks;

4) PRB: surveillance and other probing, e.g., port scanning.

It is important to note that the test data is not from the same probability distribution as the training data, and it
includes specific attack types which are absent in the training data. This makes the task more realistic. Some intrusion
experts believe that most novel attacks are variants of known attacks and the ”signatures” of known attacks can be
sufficient to catch novel variants. The datasets contain a total of 24 training attack types, with an additional 14 types in
the test data.

More specifically, we used the complex of two datasets: 1) training (485797 rows); 2) testing (311029 rows).

There are 5 types of labels including “normal”, and 4 types of intrusions “DOS”, “R2L”, “U2R” and “PRB” which
were identified according to the given classification.

Given a training set of records with known labels, the problem is to learn a model in terms of attributes. Traditionally,
the goal has been to minimize the number of misclassified records.

Any data-unit represents a 42-dimensional vector with label plus 41 attributes, that usually characterize network
traffic behaviour. Detailed description of the attributes may be found in Ref.11, 12 and 13.

All attributes are numerical except second, third and fourth which we replaced by vectors of 3, 24 and 8 binary-
valued variables.

We removed variables NN25 and 26, because they equal to zero. As a result, we formed completely numerical
dataset where any row represents a 71 dimensional vector of non-negative attributes.
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Figure 1. ROC curves (used Algorithm 2) where numbers correspond to the AUC -Area Under Curve. Left column represents
expected probabilities which were computed according to the direct kNN method with k = 1, right column represents smoothed
expected probabilities which were computed according to the Bayesian method (see for more details Section 3.3).

3.1. The 1999 KDD Data Mining Contest Results

The winning algorithms of the KDD-99 Contest were built using principles of decision trees.14

In particular, C5.0 decision trees were employed by the winner15 of the KDD-99 Contest. The training process
utilized 50 data subsets each having all records from both the U2R and the R2L attack categories, 4000 records from the
PRB category, 80000 from normal category, and 400000 from the DOS category. This was done to make sure that there
were sufficient records present from each attack category to build decision tree models. For each of the above training
subsets, the researchers created ten C5.0 decision trees using error cost and boosting options. The final predictions were
computed on top of the 50 predictions each obtained from one decision tree, by minimizing the conditional risk.

The second contestant used model named LLSoft.16 The corresponding algorithm generated a set of locally
optimal decision trees (called the decision forest) from which the optimal subset of trees (called the subforest) was
selected for predicting new cases. LLSoft used only 10% of the KDD training data randomly sampled from the entire
training dataset.
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Table 2. The confusion matrices of the contestants of the KDD-99 Cup. From the top: first and second results.
Method Label normal PRB DOS U2R R2L TOTAL Correct

C5.0 normal 60262 243 78 4 6 60593 99.45%
C5.0 PRB 511 3471 184 0 0 4166 83.32%
C5.0 DOS 5299 1328 223226 0 0 229853 97.12%
C5.0 U2R 168 20 0 30 10 228 13.16%
C5.0 R2L 14527 294 0 8 1360 16189 8.40%

C5.0 TOTAL 80767 5356 223488 42 1376 311029
C5.0 False 25.39% 35.19% 0.12% 28.57% 1.16%

LLSoft normal 60244 239 85 9 16 60593 99.42%
LLSoft PRB 458 3521 187 0 0 4166 84.52%
LLSoft DOS 5595 227 224029 2 0 229853 97.47%
LLSoft U2R 177 18 4 27 2 228 11.84%
LLSoft R2L 14994 4 0 6 1185 16189 7.32%

LLSoft TOTAL 81468 4009 224305 44 1203 311029
LLSoft False 26.05% 12.17% 0.12% 38.64% 1.50%

One of the contestants used PNrule model which is based on the principles of association rules.17 The model
consists of positive rules (P-rules) that predict presence of the class, and negative rules (N-rules) that predict absence of
the class. The model is learned in two phases. The first phase discovers a few P-rules that capture most of the positive
cases for the target class while keeping the false positive rate at a reasonable level. The goal of the second phase is to
discover a few N-rules that remove most of the false positives introduced by the union of all P-rules while keeping the
detection rate above an acceptable level. The sets for P- and N-rules are ranked according to certain statistical measures.

Table 3. The confusion matrix of the contestant of the KDD-99 Cup with method named NPrule,18 second confusion matrix was
obtained using Algorithm 1.

Method Label normal PRB DOS U2R R2L TOTAL Correct

PNrule normal 60316 175 75 13 14 60593 99.54%
PNrule PRB 889 3042 26 3 206 4166 73.02%
PNrule DOS 6815 57 222874 106 1 229853 96.96%
PNrule U2R 195 3 0 15 15 228 6.58%
PNrule R2L 14440 12 1 6 1730 16189 10.69%

PNrule TOTAL 82655 3289 222976 143 1966 311029
PNrule False 27.03% 7.51% 0.05% 89.51% 12.00%

Alg.1 normal 58037 1349 359 784 64 60593 95.78%
Alg.1 PRB 291 3560 232 5 78 4166 85.45%
Alg.1 DOS 5343 412 223621 0 477 229853 97.29%
Alg.1 U2R 80 47 69 22 10 228 9.65%
Alg.1 R2L 10864 49 8 9 5259 16189 32.49%

Alg.1 TOTAL 74615 5417 224289 820 5888 311029
Alg.1 False 22.22% 34.28% 0.3% 97.32% 10.68%

The main goal is to discover a small number of rules in terms of attributes which cover most of positive examples of
the target class and very few of the negative examples. For numerical attributes, mechanism to find an effective ranges
of values is critical in the formation of rules. The authors of PNrule18 used intuitive clustering mechanism: 1) form
a small number of ranges of equal span; 2) merge or split the ranges such that the number of records in each range
satisfies certain pre-specified minimum and maximum requirements on the cluster size. Similar technique may be found
in Ref.19.
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Table 4. The confusion matrices.
Method Label normal PRB DOS U2R R2L TOTAL Correct
Alg.2 normal 58966 468 785 67 307 60593 97.31%
Alg.2 PRB 423 3209 399 0 135 4166 77.03%
Alg.2 DOS 5284 183 223901 0 485 229853 97.41%
Alg.2 U2R 167 24 3 8 26 228 3.51%
Alg.2 R2L 10592 7 12 0 5578 16189 34.46%

Alg.2 TOTAL 75432 3891 225100 75 6531 311029
Alg.2 False 21.83% 17.53% 0.53% 89.33% 14.59%

Alg.3 normal 43021 3241 382 0 13949 60593 71%
Alg.3 PRB 252 2061 1056 0 797 4166 49.47%
Alg.3 DOS 2163 6406 220417 0 867 229853 95.89%
Alg.3 U2R 29 133 1 0 65 228 0.0%
Alg.3 R2L 130 8 11 0 16040 16189 99.08%

Alg.3 TOTAL 45595 11849 221867 0 31718 311029
Alg.3 False 5.65% 82.61% 0.65% 0.0% 49.43%

The quality of detection was measured using the contest criterion (CC):

Q =
1
N
Tr (C ′S) =

1
N

m∑

i=1

m∑

j=1

cijsij , (4)

which is based on the given cost matrix (Table 5) and the confusion matrix (see, for example, Tables 2, 3 and 4):

S = {sij , i = 1..m, j = 1..m,
m∑

i=1

m∑

j=1

sij = N}

where sij is the number of detection of the label j in the case of actual label i.

Table 5. The given cost matrix.
Label normal PRB DOS U2R R2L

normal 0 1 2 2 2
PRB 1 0 2 2 2
DOS 2 1 0 2 2
U2R 3 2 2 0 2
R2L 4 2 2 2 0

3.2. Computation of weights for different attributes and Algorithm 3

We used Algorithms 1 and 2 with

Φ(xt, qc) =
�∑

i=1

λi · φtci, φtci = |xti − qci|, λi = 1, i = 1..�, (5)

and kNN -method with k = 1. Experiments with Euclidean metric produced worse results in the sense of the CC.
Also, attempts to use k > 1 did not make any significant improvement.

Clearly, different attributes have different importance depending on the particular training database. This importance
may be regulated in the definition of the distance (5) using weight coefficients λi, i = 1..�. Particular values of the
coefficients may be estimated using similar method as it was proposed in the recent paper.20
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Figure 2. (a) support coefficients ξ, see (7); (b) corresponding weight coefficients λ, see (8) where γ = 10.

We can split training dataset into m subsets Λu according to m different labels. Then we compute 3D matrix

ψuvi =
1
nu

∑

xt∈Λu

min
L(qc)=v

φtci (6)

where nu = #Λu, and symbol L(qc) = v means that label of the cluster with centroid qc is v.

It is assumed that initial clustering configuration was computed using the Algorithm 1 or 2 with distance (5). As a
next step we make an assessment according to the (6) of the rule u → v for any particular attribute (note that bigger
value corresponds to the smaller support).

Finally, we will compute general support taking into account given cost matrix

ξi =
m∑

u=1

m∑

v=1

ψuvi · cuv, (7)

and recompute weight coefficients

λi ∝ exp {−γ · ξi},
�∑

i=1

λi = �. (8)

DEFINITION 3.1. We define Algorithm 3 as an identical to the Algorithm 2 with distance (5) and weight coefficients
(8).
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3.3. Experimental Results

According to Ref.21, and in order to give the same importance to each attribute, the attributes were normalized to the
range between 0 and 1 using the maximum values obtained. Another normalization4 which is based on the complex of
2 operations: 1) compute the difference between observation and sample mean, 2) divide the difference by the standard
deviation, was not efficient in this particular case.

Table 6. Probability of detection (PD) pi and false alarm rate (FAR) gi, i = 1..5, as a function of the Tables 2, 3 and 4.
Method normal PRB DOS U2R R2L

Alg.2 PD 0.973 0.77 0.974 0.035 0.345
Alg.2 FAR 0.218 0.175 0.0053 0.893 0.146
Alg.1 PD 0.958 0.855 0.973 0.096 0.325
Alg.1 FAR 0.222 0.343 0.003 0.973 0.107

C5.0 PD 0.995 0.833 0.971 0.132 0.084
C5.0 FAR 0.254 0.352 0.0012 0.286 0.012

LLSoft PD 0.994 0.845 0.975 0.118 0.073
LLSoft FAR 0.261 0.122 0.0012 0.386 0.015
PNRule PD 0.995 0.73 0.97 0.066 0.107
PNRule FAR 0.271 0.075 0.0005 0.895 0.12

1NN PD 0.996 0.75 0.973 0.035 0.0059
1NN FAR 0.275 0.161 0.0018 0.111 0.078

In general, we want a very high detection rate with a very low false alarm rate. However, there is a trade-off between
these two measures.2 This trade-off can be shown using ROC curves.

Figure 1 illustrates ROC curves of 1− F̂ (1−θ) where F̂ is an empirical distribution function of the event (“normal”,
“PRB”, “DOS’, “U2R”, “R2L”) and θ is an expected probability of the corresponding event. In the first case (left column)
we used expected probabilities obtained by the kNN method with k = 1. In the second case (right column) we applied
smoothing according to Bayesian formula

pti ∝
τ∑

c=1

fci · exp {−2Φ(xt, qc)}, i = 1..m,

where centroids qc and corresponding frequencies fci were defined in the Section 2.

The cost matrix represents subjective preferences. As an alternative, we can use more traditional and objective
characteristics: probability of correct detection

PC =
m∑

i=1

πipi =
1
N

m∑

i=1

sii,

and standard deviation

Sdev =

√
√
√
√ 1
N − 1

m∑

i=1

m∑

j=1

sij(cij −Q)2

where πi = hi

N is a prior empirical probability of the label i; pi = sii

hi
is an empirical probability of correct detection of

the label i; hi =
∑m

j=1 sij , N =
∑m

i=1 hi. The values of PC , CC and Sdev may be found in the Table 9.
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Table 7. Some simulation results and used regulation parameters. Columns “Create” and “Merge” display numbers of clusters which
were created and merged during clustering process. Both Algorithms 1 and 2 used the same forward threshold parameter HF .

Algorithm 1 Algorithm 2

HF τ CC HB τ Create Merge CC

4 130 0.212282 1 110 183 73 0.231519
4.5 109 0.223076 1 92 145 53 0.222548
4.8 93 0.197133 1 79 126 47 0.192834
4.9 91 0.195532 1 77 125 48 0.192593
5 88 0.19658 1 73 123 50 0.189728

5.1 87 0.196593 1 72 118 46 0.191018
5.5 73 0.206296 1 68 110 42 0.195503
6 64 0.205534 1 54 90 36 0.205061
7 44 0.252285 1 40 56 16 0.197776
8 31 0.239544 1 30 42 12 0.237563

REMARK 3.1. Note that good quality classifier requires a sufficient level of smoothing. Experiments with bigger number
of clusters (with τ up to 2000) produced worse results.

Table 8. Results which were obtained using Algorithm 3, see, also, Table 7.
HF HB τ Create Merge CC

4.5 1 78 128 50 0.34083
4.8 1 69 113 44 0.204447
4.9 1 66 113 47 0.179752
5 1 64 110 46 0.179752

5.1 1 59 98 39 0.163088
5.2 1 59 99 40 0.158731
5.3 1 59 97 38 0.18552
5.5 1 57 98 41 0.178951
5.7 1 51 85 34 0.18188
5.9 1 47 75 28 0.427378
6 1 48 80 32 0.418598

REMARK 3.2. The Table 8 demonstrates non-monotonical property of τ as a function of HF assuming that HB is a
constant. This property follows from heuristical nature of the clustering process. As a consequence, there may be some
small fluctuations.

Similar statistical characteristics (as it is demonstrated in the Tables 2, 3, 4, 7, 8 and 9) may be found in Ref.22
for the following models:

1) Multilayer perceptron with CC = 0.2393;

2) Gaussian classifier with CC = 0.3622;

3) K-means clustering with CC = 0.2389;

4) Nearest cluster algorithm with CC = 0.2466;

5) Incremental radial basis with CC = 0.4164;

6) Leader algorithm with CC = 0.2528;

7) Hypersphere algorithm with CC = 0.2486;
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8) Fuzzy ARTMAP with CC = 0.2497;

9) C4.5 decision tree with CC = 0.2396.

10) Multiclass-classifier model with CC = 0.2285

where the best Multiclass-classifier model represents a complex of Multilayer perceptron (more effective for PRB at-
tacks), K-means (more effective for DOS and U2R attacks) and Gaussian classifier (more effective for R2L attacks)
models.

Table 9. The Competition Criterion and other statistical characteristics.
Method PC CC Sdev

Algorithm 3 0.905186 0.158731 0.513872
Algorithm 2 0.937732 0.189728 0.783618
Algorithm 1 0.933993 0.195532 0.791480

C5.0 0.927081 0.233097 0.883425
LLSoft 0.929193 0.235628 0.894503
PNrule 0.925885 0.238106 0.888375
1NN 0.923332 0.252343 0.919711

REMARK 3.3. Relations between training and test sub-sets are not symmetrical. So, probably, random selection
procedure is an appropriate for test sample, but, clearly, we should optimize selection of the training sample. For
example, we can use Algorithm 1 or 2.

REMARK 3.4. Comparing Tables 2, 3 and 4 we can draw conclusion that correct detection of the intrusion R2L is the
most important reason for the relatively good performance of the Algorithms 1 and 2. This fact may be explained by
3 factors 1) large sample size of the data labeled R2L; 2) similarity between “normal” and “R2L” types in terms of
attributes and 3) high cost of the corresponding incorrect detection.

The Algorithm 3 with specially computed weight coefficients λ (see Figure 2(b)) make nearly perfect detection of
R2L but, as a result, detection of other types will suffer. Consequently, probability of correct detection for the Algorithm
3 has the smallest value comparing with other algorithms (see Table 9).

A Pentium 4, 2.8GHz, 512MB RAM, computer was used for the computations which were conducted according to
the special program written in C. The separate computation time for training and testing was about 170 sec. for both
Algorithms 1 and 2.

4. CONCLUDING REMARKS

The Table 9 demonstrates an absolute advantage of the Algorithms 1 and 2 in the sense of all 3 used criterions where the
Algorithm 3 represents the only exception. The Algorithms 1 and 2 are automatical subject to the selection of distance
and threshold parameters as an input where threshold parameters may be tuned as a result of simple experiments on the
training dataset.

Section 3.2 introduces a very promising general approach for distance adjustment in order to improve performance
of an algorithm according to the given criterion.

Further adjustment and smoothing may be conducted according to the adaptive9 or CM methods.8 Besides, using
the principles of universal clustering23 we can test stability of the clustering configuration.
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