9,010 research outputs found

    An energy efficient modified passive power filter for power quality enhancement in electric drives

    Get PDF
    In most industrial applications, AC drives are used. These drives require power electronic modules to convert AC to DC and also DC to AC. The power modules used for power conversion consist of power semiconductor switches. There is distortion in the voltage and current obtained from the power modules due to non-linear behaviors of semiconductor switches. To reduce the distortion in the input current, inductors are used along with the line impedance. A high value of inductance is required to maintain the percentage of THD within limits set by the latest standards. Along with the increased size and cost, it also reduces the power factor and output DC voltage at higher loads. The use of a passive power filter (PPF) is the conventional method followed for the reduction of percentage THD and promotion of the power factor. PPFs comprise passive elements such as the resistor, inductor, and capacitor. These passive elements are connected at the point of common coupling (PCC) in shunt to compensate for the harmonics present in the input current. In this study, a modified multi-tuned passive filter is considered to reduce the source current harmonics. A bridge rectifier with resistive load, three-phase induction motor drive, and linear resistive–inductive load is connected at the point of common coupling to analyze the harmonics present in the source current, and also unbalanced created in one phase. To achieve proper selection of the resistance value for the passive filter, the class topper optimization technique is used. To validate the simulation results obtained for the multi-tuned passive filter, the hardware is implemented with a three-phase AC induction motor drive load, in which the speed of the motor is controlled with voltage by a frequency control algorithm using an FPGA controller; The 50% THD is reduced by using the fifth-order filter alone, 75% by combining the fifth- and seventh-order filters, 85% by combining the 5th-, 7th-, 11th-, 13th-, and higher-order filters, and 90% for varying loads. For single-phase AC induction motor load, THD % is reduced to 4%, and for three-phase AC induction motor drive, THD % is reduced to 10% with the same value of the filter

    Integration of an Active Filter and a Single-Phase AC/DC Converter with Reduced Capacitance Requirement and Component Count

    Get PDF
    Existing methods of incorporating an active filter into an AC/DC converter for eliminating electrolytic capacitors usually require extra power switches. This inevitably leads to an increased system cost and degraded energy efficiency. In this paper, a concept of active-filter integration for single-phase AC/DC converters is reported. The resultant converters can provide simultaneous functions of power factor correction, DC voltage regulation, and active power decoupling for mitigating the low-frequency DC voltage ripple, without an electrolytic capacitor and extra power switch. To complement the operation, two closed-loop voltage-ripple-based reference generation methods are developed for controlling the energy storage components to achieve active power decoupling. Both simulation and experiment have confirmed the eligibility of the proposed concept and control methods in a 210-W rectification system comprising an H-bridge converter with a half-bridge active filter. Interestingly, the end converters (Type I and Type II) can be readily available using a conventional H-bridge converter with minor hardware modification. A stable DC output with merely 1.1% ripple is realized with two 50-μF film capacitors. For the same ripple performance, a 900-μF capacitor is required in conventional converters without an active filter. Moreover, it is found out that the active-filter integration concept might even improve the efficiency performance of the end converters as compared with the original AC/DC converter without integration

    Fully superconducting rectifiers and fluxpumps Part 1: Realized methods for pumping flux

    Get PDF
    The magnetic and electrical properties of superconductors were a challenge for many inventors and designers to use superconducting materials in the construction of fully superconducting voltage and current sources commonly called fluxpumps. In the past twenty years a large variety of mechanically or electrically driven devices have been proposed and successfully operated.\ud \ud In this review the basic principle of operation of each class of devices is shown and specific material problems and limitations are reported. The review will be published in two parts.\ud \ud Part 1 deals with mechanical devices such as flux compressors and dynamos. Although those devices must have been of great importance for technical application, their construction and operation offered great experience with regard to the properties of superconducting materials, their joint techniques switching and mechanical and magnetic stability under ac and dc conditions.\ud \ud In this part also a start is made with the more promising class of electrically driven rectifier fluxpumps. With these rectifiers, current levels over 10 kA can be obtained with high efficiency

    Input current shaped ac-to-dc converters

    Get PDF
    Input current shaping techniques for ac-to-dc converters were investigated. Input frequencies much higher than normal, up to 20 kHz were emphasized. Several methods of shaping the input current waveform in ac-to-dc converters were reviewed. The simplest method is the LC filter following the rectifier. The next simplest method is the resistor emulation approach in which the inductor size is determined by the converter switching frequency and not by the line input frequency. Other methods require complicated switch drive algorithms to construct the input current waveshape. For a high-frequency line input, on the order of 20 kHz, the simple LC cannot be discarded so peremptorily, since the inductor size can be compared with that for the resistor emulation method. In fact, since a dc regulator will normally be required after the filter anyway, the total component count is almost the same as for the resistor emulation method, in which the filter is effectively incorporated into the regulator

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y Tecnología DPI2001-3089Ministerio de Eduación y Ciencia d TEC2006-0386

    AC/DC power conversion schemes with unity power factor and minimum harmonic distortion

    Get PDF
    In most line-interfaced power converter applications the ac mains voltage is first rectified into a dc voltage or current, which is subsequently converted into voltages and currents of appropriate amplitude, frequency and shape to meet the load requirements. The front-end rectifier must satisfy three main requirements: (a) Minimum harmonic injection into the ac mains should comply with limits imposed by recommended standards such as IEEE-519, IEC-555. (b) High input power factor to reduce the reactive power requirements. (c) High efficiency and reliability and low cost to ensure competitiveness on the market. The challenge is therefore to provide a conversion scheme which delivers high quality output waveforms without distorting the ac mains and without drawing any reactive power. Successful application of PWM techniques to forced commutated converters has prompted recent investigation in finding more suitable topologies for ac to dc conversion. Two structures have evolved based on the characteristics of the dc link: the current source topology and the voltage source topology. This thesis investigates these two topologies and proposes a number of control schemes to achieve unity displacement factor operation and fast response. For the current source topology two control methods, a closed loop and a feed-forward scheme, are proposed. The feed-forward scheme is based on phase shifting and gating patterns of individual switches to compensate the effect of the input filter and load operating point. Furthermore, the feed-forward scheme is combined with a control strategy to eliminate the need for damping resistors. For the voltage source topology, a simple control strategy is proposed to obtain a near unity power factor input stage for voltage source inverter based ac drive applications. Also, performance of current controlled voltage source type rectifiers in rotating and stationary frames is investigated. Small signal models are developed for both topologies and different transfer functions are derived for each structure. The theoretical considerations are verified by simulation and by experiments on laboratory prototypes

    Comparison of single-phase matrix converter and H-bridge converter for radio frequency induction heating

    Get PDF
    This paper compares the newly developed single-phase matrix converter and the more conventional H- bridge converter for radio frequency induction heating. Both the converters exhibit unity power factor, very low total harmonic distortion at the utility supply interface, good controllability under soft switching condition for a wide range of power, and high efficiencies, whilst still having simple structures. A novel switching control pattern has been proposed for the matrix converter in order to maintain the comparable performance to the H-bridge converter. Simulation and experimental results for both converters are presented. Comparisons between two converters have confirmed the excellent performance of the proposed matrix converter

    High-power converters for space applications

    Get PDF
    Phase 1 was a concept definition effort to extend space-type dc/dc converter technology to the megawatt level with a weight of less than 0.1 kg/kW (220 lb./MW). Two system designs were evaluated in Phase 1. Each design operates from a 5 kV stacked fuel cell source and provides a voltage step-up to 100 kV at 10 A for charging capacitors (100 pps at a duty cycle of 17 min on, 17 min off). Both designs use an MCT-based, full-bridge inverter, gaseous hydrogen cooling, and crowbar fault protection. The GE-CRD system uses an advanced high-voltage transformer/rectifier filter is series with a resonant tank circuit, driven by an inverter operating at 20 to 50 kHz. Output voltage is controlled through frequency and phase shift control. Fast transient response and stability is ensured via optimal control. Super-resonant operation employing MCTs provides the advantages of lossless snubbing, no turn-on switching loss, use of medium-speed diodes, and intrinsic current limiting under load-fault conditions. Estimated weight of the GE-CRD system is 88 kg (1.5 cu ft.). Efficiency of 94.4 percent and total system loss is 55.711 kW operating at 1 MW load power. The Maxwell system is based on a resonance transformer approach using a cascade of five LC resonant sections at 100 kHz. The 5 kV bus is converted to a square wave, stepped-up to a 100 kV sine wave by the LC sections, rectified, and filtered. Output voltage is controlled with a special series regulator circuit. Estimated weight of the Maxwell system is 83.8 kg (4.0 cu ft.). Efficiency is 87.2 percent and total system loss is 146.411 kW operating at 1 MW load power

    High current and high power superconducting rectifiers

    Get PDF
    Results on three experimental superconducting rectifiers are reported. Two of them are 1 kA low frequency flux pumps, one thermally and magnetically switched. The third is a low-current high-frequency magnetically switched rectifier which can use the mains directly

    A Bidirectional Soft-Switched DAB-Based Single-Stage Three-Phase AC–DC Converter for V2G Application

    Get PDF
    In vehicle-to-grid applications, the battery charger of the electric vehicle (EV) needs to have a bidirectional power flow capability. Galvanic isolation is necessary for safety. An ac-dc bidirectional power converter with high-frequency isolation results in high power density, a key requirement for an on-board charger of an EV. Dual-active-bridge (DAB) converters are preferred in medium power and high voltage isolated dc-dc converters due to high power density and better efficiency. This paper presents a DAB-based three-phase ac-dc isolated converter with a novel modulation strategy that results in: 1) single-stage power conversion with no electrolytic capacitor, improving the reliability and power density; 2) open-loop power factor correction; 3) soft-switching of all semiconductor devices; and 4) a simple linear relationship between the control variable and the transferred active power. This paper presents a detailed analysis of the proposed operation, along with simulation results and experimental verification
    corecore