6,108 research outputs found

    Single-photon-assisted entanglement concentration of a multi-photon system in a partially entangled W state with weak cross-Kerr nonlinearity

    Full text link
    We propose a nonlocal entanglement concentration protocol (ECP) for NN-photon systems in a partially entangled W state, resorting to some ancillary single photons and the parity-check measurement based on cross-Kerr nonlinearity. One party in quantum communication first performs a parity-check measurement on her photon in an NN-photon system and an ancillary photon, and then she picks up the even-parity instance for obtaining the standard W state. When she obtains an odd-parity instance, the system is in a less-entanglement state and it is the resource in the next round of entanglement concentration. By iterating the entanglement concentration process several times, the present ECP has the total success probability approaching to the limit in theory. The present ECP has the advantage of a high success probability. Moreover, the present ECP requires only the NN-photon system itself and some ancillary single photons, not two copies of the systems, which decreases the difficulty of its implementation largely in experiment. It maybe have good applications in quantum communication in future.Comment: 7 pages, 3 figure

    Dense-Coding Attack on Three-Party Quantum Key Distribution Protocols

    Full text link
    Cryptanalysis is an important branch in the study of cryptography, including both the classical cryptography and the quantum one. In this paper we analyze the security of two three-party quantum key distribution protocols (QKDPs) proposed recently, and point out that they are susceptible to a simple and effective attack, i.e. the dense-coding attack. It is shown that the eavesdropper Eve can totally obtain the session key by sending entangled qubits as the fake signal to Alice and performing collective measurements after Alice's encoding. The attack process is just like a dense-coding communication between Eve and Alice, where a special measurement basis is employed. Furthermore, this attack does not introduce any errors to the transmitted information and consequently will not be discovered by Alice and Bob. The attack strategy is described in detail and a proof for its correctness is given. At last, the root of this insecurity and a possible way to improve these protocols are discussed.Comment: 6 pages, 3 figure

    Efficient Scheme for Perfect Collective Einstein-Podolsky-Rosen Steering

    Full text link
    A practical scheme for the demonstration of perfect one-sided device-independent quantum secret sharing is proposed. The scheme involves a three-mode optomechanical system in which a pair of independent cavity modes is driven by short laser pulses and interact with a movable mirror. We demonstrate that by tuning the laser frequency to the blue (anti-Stokes) sideband of the average frequency of the cavity modes, the modes become mutually coherent and then may collectively steer the mirror mode to a perfect Einstein-Podolsky-Rosen state. The scheme is shown to be experimentally feasible, it is robust against the frequency difference between the modes, mechanical thermal noise and damping, and coupling strengths of the cavity modes to the mirror.Comment: 9 pages, 4 figure

    Quantum cryptography: key distribution and beyond

    Full text link
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Comment: It's a review on quantum cryptography and it is not restricted to QK
    • …
    corecore