453 research outputs found

    A new perspective on the analysis of helix-helix packing preferences in globular proteins

    Full text link
    For many years it had been believed that steric compatibility of helix interfaces could be the source of the observed preference for particular angles between neighbouring helices as emerging from statistical analysis of protein databanks. Several elegant models describing how side chains on helices can interdigitate without steric clashes were able to account quite reasonably for the observed distributions. However, it was later recognized (Bowie, 1997 and Walther, 1998) that the ``bare'' measured angle distribution should be corrected to avoid statistical bias. Disappointingly, the rescaled distributions dramatically lost their similarity with theoretical predictions casting many doubts on the validity of the geometrical assumptions and models. In this report we elucidate a few points concerning the proper choice of the random reference distribution. In particular we show the existence of crucial corrections due to the correct implementation of the approach used to discriminate whether two helices are in contact or not and to measure their relative orientations. By using this new rescaling, the ``true'' packing angle preferences are well described, even more than with the original ``bare'' distribution, by regular packing models.Comment: 23 pages, 5 figure

    Transformation Model With Constraints for High Accuracy of 2D-3D Building Registration in Aerial Imagery

    Get PDF
    This paper proposes a novel rigorous transformation model for 2D-3D registration to address the difficult problem of obtaining a sufficient number of well-distributed ground control points (GCPs) in urban areas with tall buildings. The proposed model applies two types of geometric constraints, co-planarity and perpendicularity, to the conventional photogrammetric collinearity model. Both types of geometric information are directly obtained from geometric building structures, with which the geometric constraints are automatically created and combined into the conventional transformation model. A test field located in downtown Denver, Colorado, is used to evaluate the accuracy and reliability of the proposed method. The comparison analysis of the accuracy achieved by the proposed method and the conventional method is conducted. Experimental results demonstrated that: (1) the theoretical accuracy of the solved registration parameters can reach 0.47 pixels, whereas the other methods reach only 1.23 and 1.09 pixels; (2) the RMS values of 2D-3D registration achieved by the proposed model are only two pixels along the x and y directions, much smaller than the RMS values of the conventional model, which are approximately 10 pixels along the x and y directions. These results demonstrate that the proposed method is able to significantly improve the accuracy of 2D-3D registration with much fewer GCPs in urban areas with tall buildings

    Freeform User Interfaces for Graphical Computing

    Get PDF
    報告番号: 甲15222 ; 学位授与年月日: 2000-03-29 ; 学位の種別: 課程博士 ; 学位の種類: 博士(工学) ; 学位記番号: 博工第4717号 ; 研究科・専攻: 工学系研究科情報工学専

    Aperture Synthesis Radar Imaging for Upper Atmospheric Research

    Get PDF

    Computational General Relativistic Force-Free Electrodynamics: II. Characterization of Numerical Diffusivity

    Full text link
    Scientific codes are an indispensable link between theory and experiment; in (astro-)plasma physics, such numerical tools are one window into the universe's most extreme flows of energy. The discretization of Maxwell's equations - needed to make highly magnetized (astro)physical plasma amenable to its numerical modeling - introduces numerical diffusion. It acts as a source of dissipation independent of the system's physical constituents. Understanding the numerical diffusion of scientific codes is the key to classify their reliability. It gives specific limits in which the results of numerical experiments are physical. We aim at quantifying and characterizing the numerical diffusion properties of our recently developed numerical tool for the simulation of general relativistic force-free electrodynamics, by calibrating and comparing it with other strategies found in the literature. Our code correctly models smooth waves of highly magnetized plasma. We evaluate the limits of general relativistic force-free electrodynamics in the context of current sheets and tearing mode instabilities. We identify that the current parallel to the magnetic field (j\mathbf{j}_\parallel), in combination with the break-down of general relativistic force-free electrodynamics across current sheets, impairs the physical modeling of resistive instabilities. We find that at least eight numerical cells per characteristic size of interest (e.g. the wavelength in plasma waves or the transverse width of a current sheet) are needed to find consistency between resistivity of numerical and of physical origins. High-order discretization of the force-free current allows us to provide almost ideal orders of convergence for (smooth) plasma wave dynamics. The physical modeling of resistive layers requires suitable current prescriptions or a sub-grid modeling for the evolution of j\mathbf{j}_\parallel.Comment: 14 pages, 9 figures, submitted to A&

    On plane-based camera calibration: a general algorithm, singularities, applications

    Get PDF
    We present a general algorithm for plane-based calibration that can deal with arbitrary numbers of views and calibration planes. The algorithm can simultaneously calibrate different views from a camera with variable intrinsic parameters and it is easy to incorporate known values of intrinsic parameters. For some minimal cases, we describe all singularities, naming the parameters that can not be estimated. Experimental results of our method are shown that exhibit the singularities while revealing good performance in non-singular conditions. Several applications of plane-based 3D geometry inference are discussed as wel

    Exploiting line metric reconstruction from non-central circular panoramas

    Get PDF
    In certain non-central imaging systems, straight lines are projected via a non-planar surface encapsulating the 4 degrees of freedom of the 3D line. Consequently the geometry of the 3D line can be recovered from a minimum of four image points. However, with classical non-central catadioptric systems there is not enough effective baseline for a practical implementation of the method. In this paper we propose a multi-camera system configuration resembling the circular panoramic model which results in a particular non-central projection allowing the stitching of a non-central panorama. From a single panorama we obtain well-conditioned 3D reconstruction of lines, which are specially interesting in texture-less scenarios. No previous information about the direction or arrangement of the lines in the scene is assumed. The proposed method is evaluated on both synthetic and real images
    corecore