3,306 research outputs found

    The Electromagnetic Articulography Mandarin Accented English (EMA-MAE) Corpus of Acoustic and 3D Articulatory Kinematic Data

    Get PDF
    There is a significant need for more comprehensive electromagnetic articulography (EMA) datasets that can provide matched acoustics and articulatory kinematic data with good spatial and temporal resolution. The Marquette University Electromagnetic Articulography Mandarin Accented English (EMA-MAE) corpus provides kinematic and acoustic data from 40 gender and dialect balanced speakers representing 20 Midwestern standard American English L1 speakers and 20 Mandarin Accented English (MAE) L2 speakers, half Beijing region dialect and half are Shanghai region dialect. Three dimensional EMA data were collected at a 400 Hz sampling rate using the NDI Wave system, with articulatory sensors on the midsagittal lips, lower incisors, tongue blade and dorsum, plus lateral lip corner and tongue body. Sensors provide three-dimensional position data as well as two-dimensional orientation data representing the orientation of the sensor plane. Data have been corrected for head movement relative to a fixed reference sensor and also adjusted using a biteplate calibration system to place the data in an articulatory working space relative to each subject\u27s individual midsagittal and maxillary occlusal planes. Speech materials include isolated words chosen to focus on specific contrasts between the English and Mandarin languages, as well as sentences and paragraphs for continuous speech, totaling approximately 45 minutes of data per subject. A beta version of the EMA-MAE corpus is now available, and the full corpus is in preparation for public release to help advance research in areas such as pronunciation modeling, acoustic-articulatory inversion, L1-L2 comparisons, pronunciation error detection, and accent modification training

    Artimate: an articulatory animation framework for audiovisual speech synthesis

    Get PDF
    We present a modular framework for articulatory animation synthesis using speech motion capture data obtained with electromagnetic articulography (EMA). Adapting a skeletal animation approach, the articulatory motion data is applied to a three-dimensional (3D) model of the vocal tract, creating a portable resource that can be integrated in an audiovisual (AV) speech synthesis platform to provide realistic animation of the tongue and teeth for a virtual character. The framework also provides an interface to articulatory animation synthesis, as well as an example application to illustrate its use with a 3D game engine. We rely on cross-platform, open-source software and open standards to provide a lightweight, accessible, and portable workflow.Comment: Workshop on Innovation and Applications in Speech Technology (2012

    Towards Automatic Speech Identification from Vocal Tract Shape Dynamics in Real-time MRI

    Full text link
    Vocal tract configurations play a vital role in generating distinguishable speech sounds, by modulating the airflow and creating different resonant cavities in speech production. They contain abundant information that can be utilized to better understand the underlying speech production mechanism. As a step towards automatic mapping of vocal tract shape geometry to acoustics, this paper employs effective video action recognition techniques, like Long-term Recurrent Convolutional Networks (LRCN) models, to identify different vowel-consonant-vowel (VCV) sequences from dynamic shaping of the vocal tract. Such a model typically combines a CNN based deep hierarchical visual feature extractor with Recurrent Networks, that ideally makes the network spatio-temporally deep enough to learn the sequential dynamics of a short video clip for video classification tasks. We use a database consisting of 2D real-time MRI of vocal tract shaping during VCV utterances by 17 speakers. The comparative performances of this class of algorithms under various parameter settings and for various classification tasks are discussed. Interestingly, the results show a marked difference in the model performance in the context of speech classification with respect to generic sequence or video classification tasks.Comment: To appear in the INTERSPEECH 2018 Proceeding

    Magnetic resonance imaging of the vocal tract: techniques and applications

    Get PDF
    Magnetic resonance (MR) imaging has been used to analyse and evaluate the vocal tract shape through different techniques and with promising results in several fields. Our purpose is to demonstrate the relevance of MR and image processing for the vocal tract study. The extraction of contours of the air cavities allowed the set-up of a number of 3D reconstruction image stacks by means of the combination of orthogonally oriented sets of slices for each articulatory gesture, as a new approach to solve the expected spatial under sampling of the imaging process. In result these models give improved information for the visualization of morphologic and anatomical aspects and are useful for partial measurements of the vocal tract shape in different situations. Potential use can be found in Medical and therapeutic applications as well as in acoustic articulatory speech modelling

    Segmentation and 3D reconstruction of the vocal tract from MR images - a comparative study

    Get PDF
    Speech production is an important human function involving a set of organs with specific morphological and dynamic aspects. The inter-speaker variability, the coarticulation or the nasality are some interesting aspects to improve a realistic 3D modeling of the vocal tract. For this, the understanding of the mechanism of speech production is crucial, as the current image data is not sufficient to reproduce truthfully the speakers anatomy and articulation. Hence, the goal of 3D modeling is to generate the complete geometrical and dynamical information concerning the vocal tract from medical images, such as from magnetic reso-nance imaging (MRI). This work aims to describe and compare two different segmentation techniques to at-tain the 3D shape of the vocal tract during speech production from MR images: the former based on manual tracing of the vocal tract contours and the latter based on image thresholding. Thus, the segmented cross-sectional areas were measured, and 3D models were built from the sagittal data by blending the contours ob-tained from the two segmentation techniques. The mean error of the measures computed were low for both segmentation techniques, which let us conclude that the techniques are useful to evaluate the vocal tract ge-ometry accurately. Additionally, the 3D models built using both segmentation techniques were also very similar and truthful. However, when the coronal data was used, various difficulties occurred

    Three-dimensional modeling of tongue during speech using MRI data

    Get PDF
    The tongue is the most important and dynamic articulator for speech formation, because of its anatomic aspects (particularly, the large volume of this muscular organ comparatively to the surrounding organs of the vocal tract) and also due to the wide range of movements and flexibility that are involved. In speech communication research, a variety of techniques have been used for measuring the three-dimensional vocal tract shapes. More recently, magnetic resonance imaging (MRI) becomes common; mainly, because this technique allows the collection of a set of static and dynamic images that can represent the entire vocal tract along any orientation. Over the years, different anatomical organs of the vocal tract have been modelled; namely, 2D and 3D tongue models, using parametric or statistical modelling procedures. Our aims are to present and describe some 3D reconstructed models from MRI data, for one subject uttering sustained articulations of some typical Portuguese sounds. Thus, we present a 3D database of the tongue obtained by stack combinations with the subject articulating Portuguese vowels. This 3D knowledge of the speech organs could be very important; especially, for clinical purposes (for example, for the assessment of articulatory impairments followed by tongue surgery in speech rehabilitation), and also for a better understanding of acoustic theory in speech formation
    corecore