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Abstract

Articulators such as the soft palate play an essential role in the production of speech. In
combination with the levator veli palatini (LVP), the soft palate causes velopharyngeal
closure, a key requirement for the production of most speech sounds.

Velopharyngeal insufficiency (VPI) is an anatomical or structural defect that prevents
velopharyngeal closure and consequently impairs speech. While several well-established
surgical techniques to treat VPI exist, there is currently no consensus on which is most
effective and consequently a variety of techniques are used. In addition, treatment is not
always successful and further surgery is required.

Typically in clinical assessments of speech, imaging is used to enable identification of
the defects preventing velopharyngeal closure and inform the choice of treatment. While
currently the most commonly used imaging techniques are videofluoroscopy and
nasendoscopy, use of magnetic resonance imaging (MRI) is increasing due to its unique
ability to dynamically image the articulators during speech and acquire detailed three-
dimensional (3D) images of the LVP. In addition, there is increasing interest in extracting
guantitative information about the vocal tract, articulators and LVP from the images. The
work presented in this thesis makes several contributions towards addressing the unmet
need for this quantitative information.

Segmentation of medical images is a common first step to enable automatic
measurement of anatomical features. In the work presented in this thesis, two segmentation
methods, both of them deep learning based, were developed and evaluated. One method
segments the vocal tract, soft palate and four other relevant anatomical features in two-
dimensional (2D) magnetic resonance (MR) images of speech. At the time it was published,
the method overcame the limitations of existing segmentation methods that either only
segmented air-tissue boundaries between the vocal tract and adjacent tissues or only fully
segmented the vocal tract. The other method segments the LVP and pharynx in 3D MR
images of the vocal tract.

In addition, a framework for quantification of articulator motion in 2D MR images of
speech was developed and evaluated. This deep learning framework for nonlinear

registration builds on the 2D image segmentation method by employing knowledge of



region boundaries as well as images to estimate displacement fields between 2D MR images
of speech. The framework was compared with several state-of-the-art traditional
registration methods and deep learning frameworks for nonlinear registration and found to
estimate displacement fields that more accurately captured velopharyngeal closures.

To enable the development and evaluation of the segmentation methods and motion
guantification framework, a new dataset of 15 3D MR images of the vocal tract was acquired
and ground-truth (GT) segmentations were created for it and an existing dataset of 392 2D
MR images of speech. Prior to acquiring the new dataset, an investigation was performed to
identify the parameters that resulted in the optimal image contrast for LVP visualisation.

To be suitable for use in clinical speech assessment, a key requirement of
segmentation and motion quantification methods is that they capture any velopharyngeal
closures that occur. Since standard evaluation metrics do not provide such information, a
novel metric based on velopharyngeal closure was developed to enable more clinically
relevant evaluation. Particularly in the comparison of motion quantification frameworks, the
metric revealed differences between the frameworks that standard metrics did not.

To conclude, while future work is required to fully address the unmet need for
guantitative information about the vocal tract, soft palate and LVP in MR images, the work
presented in this thesis has nevertheless contributed towards addressing this need and
created several new opportunities to contribute to the ultimate goal of improving the

treatment outcomes of patients with VPI.
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Figure 25: An overview of the deep-learning-based nonlinear registration method developed
by [253]. The method is both segmentation informed and discontinuity preserving. The
method consists of the following steps. First, the input images are multiplied by binary
masks to create multiple single-region versions of the images. These versions of the images
are then used as inputs to U-Net-based FCNs to estimate region-specific velocity fields. Next,
the velocity fields are converted into deformation fields, multiplied by binary masks to
introduce discontinuities and then linearly combined to create an overall deformation field.
Finally, a spatial transformer is used to warp the moving image according to the overall
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Figure 26: An overview of the deep-learning-based nonlinear registration method developed

by [254]. The segmentation-informed method uses a convolutional neural network (CNN) to



estimate deformation fields that align ultrasound (US) images to magnetic resonance (MR)
images. Images and segmentations are used as inputs to the CNN during both training and
deployment. Additional CNNs are required to estimate segmentations for the images. DSC:

Dice coefficient, DDF: dense displacement field. .........cccccveriiiniiiiieiiiiniiee e 84

Figure 27: (A) Registration of consecutive frames in a series of two-dimensional real-time
magnetic resonance images of speech. (B) Registration of the midsagittal slice of a three-
dimensional image of the vocal tract to a two-dimensional real-time magnetic resonance
image of speech. ¢ indicates the deformation field required to align the left-hand image to

the right-hand IMage. .....uiiiiii e e e s arae e e e e eaes 86

Figure 28: An overview of the registration-based method proposed by [20] to estimate

tongue tip speeds in series of two-dimensional magnetic resonance images of speech....... 88

Figure 29: Five consecutive images from one of the real-time magnetic resonance image
series (A) with ground-truth segmentations of anatomical features overlaid (B). The ground-
truth segmentations are of the head (dark blue), soft palate (light blue), jaw (green), tongue
(yellow), vocal tract (pink) and tooth space (red) classes. (C) shows ground-truth
segmentations only. (D) shows cropped versions of the ground-truth segmentations in (C)
with labels indicating if the soft palate is in contact with the posterior pharyngeal wall. (E) is
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Figure 30: A real-time magnetic resonance image of speech cropped to only show the vocal
tract (A) with ground-truth segmentations of anatomical features overlaid (B). The blue
arrows point to the inferior surface of the intervertebral disc between vertebrae C3 and C4.
The dotted green arrows point to the anterior edge of the hyoid bone, while the solid green
arrows point to where the neck meets the jaw. The yellow arrows point to the inferior
boundary of the tongue class in the neck, while the pink arrows point to the inferior

boundary of the VOCal tract Class........uueeieiieiiiiii e e e e 97

Figure 31: A series of real-time magnetic resonance images of speech (A), corresponding
binary masks of the entire head created by applying a manually chosen threshold (B), and

the binary masks after holes in them have been filled (C). ....coovviiieiiiieeiie e, 99



Figure 32: Pairs of binary masks of the entire head created from the same images but using
different thresholds, one suitable and the other unsuitable. In row (A), the threshold used to
create the left-hand mask is too low, resulting in noise in the vocal tract (indicated by blue
arrow). In row (B), the threshold used to create the right-hand mask is too high, resulting in
the jaw being divided into two regions. In row (C), the threshold used to create the left-hand
mask is too low, resulting in the tip of the epiglottis being artificially in contact with the
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Figure 33: A series of real-time magnetic resonance images of speech with an approximate
manually drawn outline of the head class overlaid in blue (A), with the section of the entire
head binary mask (see Figure 31B) contained in the approximate outline overlaid (B), with
the manually refined version of the binary mask in (B) overlaid (C). (D) shows the binary
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Figure 34: The process to create a binary mask of the tooth space class. (A) A real-time
magnetic resonance image with a jaw and tongue class binary masks overlaid in blue. (B)The
same binary mask except with the tooth space region manually filled. (C) The same image
with the tooth space class binary mask overlaid. The binary mask in (C) was created by

subtracting the binary mask in (A) from the binary mask in (B)......ccccceeevveeeiiieeiicieieecieeeens 102

Figure 35: The process to create a binary mask of the vocal tract class. (A) A binary mask of
the head, soft palate, jaw, tongue and tooth space classes combined. (B) The same binary
mask except with the vocal tract region manually added to it. (C) A real-time magnetic
resonance image with the vocal tract binary mask overlaid in blue. The binary mask in (C)

was created by subtracting the binary mask in (A) from the binary mask in (B).................. 102

Figure 36: The ground-truth labels of the five real-time magnetic resonance image series.
Each line chart represents a different series and has different x-axes. Each peak in a line

chart indicates a velopharyngeal CloSUIE. ........coiiiiiiiiiii e 103

Figure 37: The number of real-time magnetic resonance images showing contact between
the soft palate and posterior pharyngeal wall, complementary information to that provided
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Figure 38: The intra- and inter-rater agreement in the labels of the 392 images (A) and in the

Velopharyngeal ClOSUIES (B).....ccuieeiiiieeeiiieeecieee ettt ertee et e e e e et e e e srae e e e eabeeeesnaaeeennnnee s 105

Figure 39: Real-time magnetic resonance images cropped to only show the vocal tract (A)

and soft palate (B) where only two out of four raters agreed on the label. ........................ 106

Figure 40: The number of pixels of each class per ground-truth segmentation. (B) is identical

to (A) except the y-axis maximum value has been reduced to 2750. .......cccccveeeeeeecrreeeeeennns 106

Figure 41: The intra-rater agreement in the ground-truth segmentations, evaluated using the

Dice coefficient (A) and general Hausdorff distance (B). ......cccceevvcveeiiiieeeciee e 107

Figure 42: Pairs of ground-truth segmentations with large intra-rater differences. In rows (A)
and (B), the vocal tract between the epiglottis and the anterior surface of the tongue has
been included in the tongue class in the left-hand segmentation (first attempt) but not in the
right-hand one (second attempt). In row (C), the head and tongue classes are in contact in
the right-hand segmentation but not in the left-hand one. The ground-truth segmentations
are of the head (dark blue), soft palate (light blue), jaw (green), tongue (yellow), vocal tract

(pink) and tooth SPAce (red) ClasSES. ..ccuiiiiiiiee ettt e e e saeeeeaes 108

Figure 43: The intra-rater agreement in the ground-truth segmentations, evaluated using the
Dice coefficient (A) and general Hausdorff distance (B), and grouped according to whether

there is contact between the soft palate and posterior pharyngeal wall or not. ................. 109

Figure 44: Real-time magnetic resonance images cropped to only show the vocal tract (A)
and soft palate (B) whose ground-truth segmentations had lower intra-rater agreement. The
images show examples (indicated by white arrows) of the three main image quality related
challenges faced by the MRI Physicist while creating the segmentations. In the left-hand
image pair, there is fluid between the soft palate and posterior pharyngeal wall. In the
central image pair, there is fluid in the vocal tract and also blurring of the soft palate-vocal
tract boundary as a result of motion. In the right-hand image pair, the boundary between

the soft palate and posterior pharyngeal wall is unclear. ..........cccoooe e, 109



Figure 45: Example midsagittal and axial slices from the three-dimensional images acquired
in the image optimisation experiment. T1, PD (proton density) and T, indicate the contrast
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Figure 46: Example regions of interest (ROIs). Image (B) is a cropped version of image (A).
The yellow ROl is on the levator veli palatini (LVP) while the light blue ROl is on the soft

tisSUE adJACENT TO TthE LVP. ...eeeeiiieeeeeeeeeee e e r e e e e e e e e e e e e 120

Figure 47: The contrast between the levator veli palatini and the adjacent soft tissue in the

T1-, proton-density- and T,-weighted magnetic resonance images........ccoccvveeeeiiiciveeeenennns 120

Figure 48: Two-dimensional slices of one of the three-dimensional magnetic resonance
images. Column (1) shows an oblique axial slice (A and B) and an axial slice (C and D), while
column (2) shows a midsagittal slice. In the slices, light blue shading indicates the levator veli
palatini (LVP) ground-truth (GT) segmentation, while the orange dashed lines in column (2)
indicate the plane of the slice shown in column 1. In column (1), rows (A) and (B) show the
same oblique axial slice without and with the LVP GT segmentation overlaid, while rows (C)

and (D) show the same axial slice without and with the LVP GT segmentation overlaid. .... 125

Figure 49: Two-dimensional slices of one of the three-dimensional magnetic resonance
images. Column (1) shows an axial slice, while column (2) shows a midsagittal one. Row D
shows slices with the pharynx ground-truth segmentation overlaid, while rows B and C show
preliminary segmentations. Green shading indicates a segmentation, while the orange

dashed lines in column (2) indicate the plane of the slice shown in column (1).................. 126

Figure 50: Ground-truth segmentations of the levator veli palatini (dark grey) and pharynx

(light grey) in each of the 15 IMagES. ...uviiiiiiee it e e e saee e 130

Figure 51: Number of voxels per segmentation class in the ground-truth segmentations of

the 15 Magnetic reSONANCE IMAGES. .uuvuiieeiiiiiiiieeeiriiiteeeeeerirreeeeeessbrreeessssbreeeeesssssseeeeessnnnes 131

Figure 52: An overview of the proposed deep-learning-based segmentation method. The
method consists of three steps: (1) a convolutional neural network (CNN) for estimating

segmentations of seven different classes; (2) a post-processing step to remove anatomically



impossible regions in the estimated segmentations; (3) further post-processing steps to
measure the minimum distance between the soft palate and the posterior pharyngeal wall.
The input to the method is a two-dimensional real-time magnetic resonance image of the
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Figure 53: The architecture of the convolutional neural network of the proposed method

[205]. BN: batch normalisation, ReLU: rectified linear unit, conv: convolution.................... 136

Figure 54: An overview of the post-processing steps to measure the minimum Euclidean

distance between the soft palate and the posterior pharyngeal wall. ..........cccccovvivieeennnnns 139

Figure 55: Examples of each type of velopharyngeal closure. On the y-axis, “Yes” indicates
contact between the soft palate and posterior pharyngeal wall, while “No” indicates no
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Figure 56: Examples of ground-truth segmentations (column 1) and corresponding
segmentations estimated by the class frequency weighted version of the proposed method
before and after the post-processing step (columns 2 and 3 respectively). Rows A to C show
estimated segmentations with low, average and high Dice coefficients respectively. Rows D
to F show estimated segmentations with large, average and small general Hausdorff
distances respectively. The sounds being produced by the subjects are /t/ in “two” (row A),
/r/ in “three” (row B), /n/ at the end of “nine” (row C), /w/ in “one” (row D), /f/ in “four”
(row E) and /n/ in “ten” (row F). The segmentations have been cropped to only show the

vocal tract region. IMage SOUrCe: [205]. .iiiiiiiiiiiiiiiiiiiiee et e e e s srre e e e e e 144

Figure 57: (A) Dice coefficients and (B) general Hausdorff distances of the segmentations
estimated by both versions of the proposed method. In the Figure legend, ‘Class Frequency
(CF)" and ‘CF and Boundary Distance’ indicate the loss function weighting used during the

training of the proposed MEthod. ... e e e e 145

Figure 58: Minimum distances between the soft palate and posterior pharyngeal wall
measured in the ground-truth segmentations and segmentations estimated by both versions

of the proposed method. Each row corresponds to a different subject. In the Figure legend,



‘Class Frequency (CF)’ and ‘CF and Boundary Distance’ indicates the loss function weighting

used during the training of the proposed method. ..........ccccooviiiiiiiiiiii e, 146

Figure 59: Absolute differences in the minimum distance (between the soft palate and
posterior pharyngeal wall) measured in the ground-truth segmentations (der) and
corresponding segmentations estimated by both versions of the proposed method
(destimated). The x-axis label ‘Loss Function Weighting’ indicates the loss function weighting

used during the training of the proposed method. ..........ccccooiiiiiiiiniiii e, 147

Figure 60: Velopharyngeal closures in the ground-truth segmentations and segmentations
estimated by both versions of the proposed method. Each row corresponds to a different
subject. In the Figure legend, ‘Class Frequency (CF)’ and ‘CF and Boundary Distance’

indicates the loss function weighting used during the training of the proposed method.... 148

Figure 61: Magnetic resonance images (column 1) whose estimated segmentations after
post-processing (column 3) incorrectly showed velopharyngeal closure. Column 2 is the
ground-truth segmentation of the images. In both images, the soft palate is close to the
posterior pharyngeal wall but not in contact with it. Row A shows the subject pausing
between saying “four” and “five”, while row B shows the subject producing the sound /n/ at
the end of “nine”. The images and segmentations have been cropped to only show the vocal
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Figure 62: Ground-truth segmentations (column 1) and corresponding segmentations
estimated by the proposed method (column 2) when inputted with images of vocal tract
shapes that were not present in the training dataset. The segmentations have been cropped

to only show the vocal tract reZION. ......ccvviiiiiiiiii e 150

Figure 63: An overview of the proposed framework for segmentation-informed nonlinear
registration. A pair of two-dimensional (2D) real-time magnetic resonance images of the
vocal tract pass through the framework as follows. First, the image pair are used as inputs to
a convolutional neural network (CNN) which estimates segmentations of six different
anatomical features in the images. Second, the segmentations are post-processed to remove

anatomically impossible regions. Third, the image pair and post-processed segmentations



are used as inputs to a registration CNN which estimates a displacement field to align the
moving image to the fixed image. Fourth, the moving image and displacement field are used
as inputs to a spatial transformer to transform the moving image. During training and
evaluation, the spatial transformer is also used to transform the ground-truth (GT)
segmentations of the moving image. The red boundary contains the parts of the framework
used during training and evaluation, while the green boundary contains the parts used
during deployment. The grey boundary contains the terms in the loss function used to train

the framework. IMage soUrce: [291]. ..o e e e e e e e e e e e 162

Figure 64: The architecture of the registration convolutional neural network in the proposed
framework (i.e. the Reg CNN box in Figure 1). When input with a pair of two-dimensional
(2D) real-time magnetic resonance images of the vocal tract and segmentations of six
different anatomical features in the pair, the network estimates a displacement field to align
one of the images to the other. The network has 14 input channels: two for the image pair,
six for the segmentations of the fixed image and six more for the segmentations of the
moving image. The network output has 2 channels: one for displacements in the x-direction
and another for displacements in the y-direction. The outputs of each 2D convolution (conv)
are batch normalised. Following batch normalisation (BN), the outputs are passed through a

rectified linear unit (ReLU). Image source: [291]......cccciieeeeeiciiiiiee e 162

Figure 65: The reference image in each of the five series of two-dimensional real-time
magnetic resonance images (image from [291]). During framework evaluation, these images

were used as the moving image for registration PUrpPOSEes.......cccovvviviiiiiiriiiieee e 165

Figure 66: Transformed images and transformed ground-truth segmentations output by each
method and framework, cropped to only show the vocal tract region. In (A), the first two
rows show the moving image (M) and fixed image (F) pairs. The five fixed images are
consecutive images from one of the image series and show a velopharyngeal closure. The
white arrows show where the soft palate is in contact with the pharyngeal wall. The moving
images are the reference image of the subject. The remaining rows in (A) show the
transformed moving images output by the free-form deformations (FFD) and segmentation-
informed FFD (SIFFD) methods and the VoxelMorph (VXM), segmentation-informed VXM

(SIVXM), joint registration and segmentation (JRS) and proposed (Proposed) frameworks. In



(B), the first two rows show the ground-truth segmentations of the moving image (m) and
fixed images (f). The remaining rows in (B) show the transformed ground-truth
segmentations output by each method or framework. (C) shows enlarged versions of the

segmentations outlined in orange in (B). Image source: [291]......ccccceeeeeeiiiieeececciireeee e, 173

Figure 67: Dice coefficients (DSCs) of the transformed ground-truth segmentations output by
the free-form deformations (FFD) and segmentation-informed FFD (SIFFD) methods and the
VoxelMorph (VXM), segmentation-informed VXM (SIVXM), joint registration and
segmentation (JRS) and proposed (Proposed) frameworks. The DSCs are averaged over the
six segmentation classes. (B) shows the section of (A) where the DSCs are between 0.8 and
1.0. There were statistically significant differences between all the DSC groups. Image
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Figure 68: Dice coefficients (DSCs) of the transformed ground-truth segmentations output by
the free-form deformations (FFD) and segmentation-informed FFD (SIFFD) methods and the
VoxelMorph (VXM), segmentation-informed VXM (SIVXM), joint registration and
segmentation (JRS) and proposed (Proposed) frameworks. The DSCs are averaged over a
single segmentation class. (B) shows the section of (A) where the DSCs are between 0.8 and
1.0. There were statistically significant differences between all the DSC groups, except

between pairs of groups indicated with black bars above the box plots. Image source: [291].

Figure 69: Average symmetric surface distances (ASDs) of the transformed ground-truth
segmentations output by the free-form deformations (FFD) and segmentation-informed FFD
(SIFFD) methods and the VoxelMorph (VXM), segmentation-informed VXM (SIVXM), joint
registration and segmentation (JRS) and proposed (Proposed) frameworks. The ASDs are
averaged over all six segmentation classes. (B) shows the section of (A) where the ASDs are
between 0.0 and 1.2. There were statistically significant differences between all the ASD
groups, except between pairs of groups indicated with black bars above the box plots. Image
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Figure 70: Average symmetric surface distances (ASDs) of the transformed ground-truth

segmentations output by the free-form deformations (FFD) and segmentation-informed FFD



(SIFFD) methods and the VoxelMorph (VXM), segmentation-informed VXM (SIVXM), joint
registration and segmentation (JRS) and proposed (Proposed) frameworks. The ASDs are
averaged across a single segmentation class. (B) shows the section of (A) where the ASDs are
between 0 and 2. There were statistically significant differences between all the ASD groups,
except between pairs of groups indicated with black bars above the box plots. Image source:
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Figure 71: True velopharyngeal closures in the transformed ground-truth (GT) segmentations
(of the moving image) output by the free-form deformations (FFD) and segmentation-
informed FFD (SIFFD) methods and the VoxelMorph (VXM), segmentation-informed VXM
(SIVXM), joint registration and segmentation (JRS) and proposed (Proposed) frameworks.
The bars labelled GT indicate the number of velopharyngeal closures in the GT
segmentations of the fixed images. In (A) the true velopharyngeal closures are summed
across all five subjects, while in (B) the true velopharyngeal closures are summed across a
single subject. There were statistically significant differences between the true
velopharyngeal closures captured by each framework, except between the frameworks

indicated with the black bar in (A). Image source: [291]......coocvieieiiieeeiiee e 177

Figure 72: Dice coefficients (DSCs) of the transformed ground-truth segmentations output by
the proposed framework, averaged across a single segmentation class. The colour code
indicates the segmentation classes used as inputs to the registration convolutional neural
network of the proposed framework during training and evaluation. In the Figure legend,
‘All” indicates that all six segmentation classes described in section 4.1.4 were used as inputs,
while ‘H, SP and VT’ indicates the head (H), soft palate (SP) and vocal tract (VT) classes. (B)
shows the section of (A) where the DSCs are between 0.8 and 1. There were statistically
significant differences between all the ASD groups, except between pairs of groups indicated

with black bars above the box plots. Image source: [291]. .....covviiviiiieiiiiiiiiieee e 178

Figure 73: Average symmetric surface distances (ASDs) of the transformed ground-truth
segmentations output by the proposed framework, averaged across a single segmentation
class. The colour code indicates the segmentation classes used as inputs to the registration
convolutional neural network of the proposed framework during training and evaluation. In

the Figure legend, ‘None (VXM)’ indicates the results of the VoxelMorph framework, ‘All’



indicates that all six segmentation classes described in section 4.1.4 were used as inputs,
while ‘H, SP and VT’ indicates the head (H), soft palate (SP) and vocal tract (VT) classes. (B)
shows the section of (A) where the ASDs are between 0 and 2. There were statistically
significant differences between all the ASD groups, except between pairs of groups indicated

with black bars above the box plots. Image source: [291]. .....covviiviiiieiiiiiiiiieee e 179

Figure 74: True velopharyngeal closures in the transformed ground-truth segmentations (of
the moving image) output by the proposed framework. The label ‘Ground truth’ indicates
the number of velopharyngeal closures in the ground-truth segmentations of the fixed
images. In (A) the closures are summed across all five subjects. The label ‘All’ indicates that
all six segmentation classes described in section 4.1.4 were used as inputs to the registration
convolutional neural network of the proposed framework, while ‘H, SP and VT’ indicates the
head (H), soft palate (SP) and vocal tract (VT) classes. In (B) the true velopharyngeal closures

are summed across a single subject. Image source: [291]. .....ccccciiiiiiiiiiiieieee e 179

Figure 75: Segmentation convolutional neural network architecture. IN: instance

normalization; IReLU: leaky rectified linear unit with negative slope 0.01; conv: convolution.

Figure 76: An overview of the registration-based augmentation method. A moving image (M)
is nonlinearly registered to a fixed image (F). The resulting displacement field, D, is
interpolated to Dinterp by multiplication by a weighting term between 0.2 and 0.8. An

augmented version of M is created by transforming M according t0 Dinterp...eeeeerevereeeernnnns 191

Figure 77: Examples of ground-truth segmentations created using the registration-based
augmentation method. 'Fixed' and 'Moving' indicate segmentations of the fixed and moving
images respectively, while ‘Augmented’ indicates a segmentation created using the
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Figure 78: Examples of ground-truth segmentations created using the stastistical-
deformation-model-based augmentation method. 'Reference’ indicates the segmentation of
the reference image used to create a model, while 'Augmented' indicates a segmentation

created using the augmentation Method. .........euveeveeiiiiiiii e, 194



Figure 79: Segmentations estimated by different versions of the proposed method. The
“Aug” column indicates the type of data augmentation used during segmentation
convolutional neural network training: “None” indicates no augmentation; “D” indicates the
default nnU-Net augmentations; “RB” indicates registration-based augmentation; “SiSDM”
indicates single statistical deformation model (SDM) based augmentation; “MuSDM”
indicates multiple SDM based augmentation; “+ D” indicates that the default nnU-Net
augmentations were also used; “GT” indicates ground-truth segmentations. Each column
shows segmentations of a different image. Columns (A), (B) and (C) show segmentations
with relatively low, average and high Dice coefficients respectively. Dark and light grey

indicate the levator veli palatini and pharynx respectively........ccccveeeiiniiiieeeeeinciiieee e, 198

Figure 80: Training and validation losses of the segmentation convolutional neural network
(CNN). “Aug” indicates the type of data augmentation used during segmentation
convolutional neural network training: “None” indicates no augmentation; “Default”
indicates the default nnU-Net augmentation; “Reg-based” indicates registration-based
augmentation; “Single SDM” indicates single statistical deformation model (SDM) based
augmentation; “Multiple SDM” indicates multiple SDM based augmentation; “+ Default”
indicates that the default nnU-Net augmentations were also used. In the figure legend,
“Fold” indicates the cross-validation fold. Solid lines indicate training losses, while dashed
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Figure 81: Effect of post-processing step of proposed method on segmentation estimation
accuracy. The colour code indicates the type of data augmentation used during
segmentation convolutional neural network training: “None” indicates no augmentation;
“Default” indicates the default nnU-Net augmentation; “Registration-based” indicates
registration-based augmentation; “Single SDM” indicates single statistical deformation
model (SDM) based augmentation; “Multiple SDM” indicates multiple SDM based
augmentation; “+ Default” indicates that the default nnU-Net augmentations were also
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Figure 82: Dice coefficients and general Hausdorff distances of segmentations estimated by
different versions of the proposed method. The colour code indicates the type of data

augmentation used during segmentation convolutional neural network training: “None”



indicates no augmentation; “Default” indicates the default nnU-Net augmentation;
“Registration-based” indicates registration-based augmentation; “Single SDM” indicates
single statistical deformation model (SDM) based augmentation; “Multiple SDM” indicates
multiple SDM based augmentation; “+ Default” indicates that the default nnU-Net
augmentations were also used. Black bars above box plots indicate statistically significant
differences (5% significance level, p<0.001 unless indicated) between groups of Dice
coefficients. There were no statistically significant differences between groups of general
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Chapter 1: Introduction

1.1 Motivation

Speech is one of the principal forms of human communication. Its production is a complex
process involving several body parts including articulators such as the tongue and soft
palate. A phenomenon called velopharyngeal closure regularly occurs during normal speech.
Velopharyngeal closure prevents airflow into the nasal cavity and is required to produce
most speech sounds. For velopharyngeal closure to occur, the soft palate must elevate and
come into contact with the pharyngeal walls. The muscle primarily responsible for elevating
the soft palate is called the levator veli palatini (LVP).

Velopharyngeal insufficiency (VPI) is an anatomical or structural defect that prevents
velopharyngeal closure and consequently impairs speech [1]. Speech impairments negatively
affect social and educational development as well as quality of life [2]. Mitigating such
impairments is therefore crucial in order to avoid these negative effects.

Since VPI is an anatomical or structural defect, it can only be treated via surgery [1].
Several well-established surgical techniques to treat VPI exist, however, there is no
consensus on which is most effective and consequently a variety of techniques are used [3—
5]. The technique most likely to improve the speech of a patient depends on the defect(s)
preventing velopharyngeal closure. If the defect is a poorly functioning LVP, a treatment that
aims to improve LVP function is performed, while if the defect is an abnormally deep
pharynx or an insufficiently long soft palate, a treatment that aims to address these defects
is performed. However, treatment is not always successful and consequently further surgery
can be required: studies have reported persistence of VPI requiring further surgery in 0-50%
of cases [5,6]. Key drawbacks of further surgery are additional distress and disruption for
patients and their carers, increased workloads for clinicians and additional costs for
healthcare services.

Typically in clinical assessments of speech, imaging is used to enable identification of
the defects preventing velopharyngeal closure. Since the treatment most likely to improve
the speech of a patient depends on the defect(s) preventing velopharyngeal closure, imaging

has an important role in the management of patients with VPI by providing clinicians with



Introduction 31

information that aids treatment decision making. Imaging enables visualisation of the vocal
tract and soft palate during speech and therefore provides information about the size, shape
and motion of these anatomical features. Visualisation of vocal tract and soft palate size and
shape enables clinicians to identify if the defect is an abnormally deep pharynx or an
insufficiently long soft palate, while visualisation of soft palate motion enables clinical teams
to infer if the LVP is functioning adequately. Currently, the imaging techniques most
commonly used in clinical speech assessment are videofluoroscopy and nasendoscopy [3,4].
These imaging techniques enable two-dimensional (2D) visualisation of the vocal tract and
soft palate during speech. However, neither technique enables visualisation of the LVP.

There is increasing interest in using magnetic resonance imaging (MRI) in clinical
speech assessment, due to the unique ability of MRI to noninvasively and dynamically image
the vocal tract and articulators during speech and acquire detailed three-dimensional (3D)
images of the LVP without using ionising radiation [7,8]. Three-dimensional visualisation of
the LVP would provide clinicians with additional clinically relevant information that could aid
VPI treatment decision making.

A range of MRI techniques to dynamically image the vocal tract and articulators
during speech have been developed [9-11]. While techniques that enable imaging at very
high spatio-temporal resolutions have been developed, these require specialised MRI
equipment and software [9,10] and are therefore very challenging to implement in other
centres. This barrier to adoption has motivated the development of techniques that only
require standard MRI equipment and software [11]. While these techniques image at lower
spatio-temporal resolutions, the resolutions are nevertheless sufficient to capture the
general motion of articulators such as the soft palate [12].

Due to the small size of the LVP and its 3D structure, 3D MRI at a high spatial
resolution is required to fully visualise the muscle. The LVP and the soft tissue that surrounds
it have very similar tissue properties. Consequently, a key challenge when imaging the LVP is
ensuring that the image contrast is sufficient to discriminate between the two. In previous
work, T>-weighted images of the LVP have predominantly been acquired [8]. However, the
results of recent work suggest that the image contrast in T1-weighted or proton-density-
weighted (PD-weighted) images may result in improved LVP visualisation [13]. There is

therefore currently no consensus on the optimal image contrast for LVP visualisation.
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Currently in clinical speech assessment, analysis of vocal tract and soft palate size,
shape and motion is qualitative and no analysis of the size, shape and configuration of the
LVP is performed. However, in combination with the increasing interest in using MRl in
clinical speech assessment, there is increasing interest in quantitative analysis of vocal tract
and soft palate size, shape and motion, and also LVP size, shape and configuration in
magnetic resonance (MR) images [7,8]. Such quantitative analysis would provide objective
information to aid treatment decision-making. In previous work, measurement of the size,
shape and configuration of the soft palate and LVP was manually performed [7,8]. Such
measurements are time consuming, require input from specialists, are prone to intra- and
inter-observer variability and are consequently not feasible on a large scale. There is
therefore a growing unmet need for methods to automatically perform these
measurements. This unmet need is not limited to the clinical speech assessment
community; the speech science community is increasingly using MRI to visualise the vocal
tract and articulators during speech and is also increasingly interested in methods to
automatically measure the vocal tract and articulators in MR images.

Segmentation of medical images is a common first step to enable automatic
measurement of anatomical structures. Several methods have been developed to segment
air-tissue boundaries between the vocal tract and adjacent articulators in MR images of
speech [14-16], however, these methods do not fully segment articulators such as the soft
palate and therefore do not enable analysis of articulator size, shape and motion. Instead,
methods that fully segment articulators in MR images of speech are required. Regarding
methods to automatically segment the LVP in 3D MR images, there is only one report in the
literature of such methods: in very recent work (postdating the work described in this thesis)
deep-learning-based (DL-based) methods to perform this task were developed and
compared [17].

Development and evaluation of segmentation methods requires datasets with
corresponding ground-truth (GT) segmentations. While there are publicly available speech
MRI datasets [18,19], none of these include GT segmentations of articulators. In addition,
there are no publicly available MRI datasets in which the LVP can be adequately visualised.
Due to the lack of suitable publicly available MRI datasets, acquisition of new datasets and
creation of GT segmentations is required to enable the development and evaluation of

methods to segment the vocal tract, soft palate and LVP in MR images.
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An established way to automatically quantify complex motion in an image series is by
using a nonlinear registration method to estimate displacement fields between the images.
While traditional registration methods have been used to register MR images of speech in
several previous works [20,21], there is only a single report in the literature of these
methods being used to quantify articulator motion: in [20], such methods were used to
guantify tongue motion. However, there are no reports in the literature of such methods
being used to quantify soft palate motion.

To be suitable for use in clinical speech assessment, a key requirement of image
analysis methods is that they capture any velopharyngeal closures that occur. However,
standard metrics for evaluating segmentation and motion quantification method accuracy
do not provide such information. To enable clinically relevant evaluation of the accuracy of
image analysis methods, there is an unmet need for the development of such metrics.

The main aim of the work presented in this thesis is to begin to address the unmet
need for methods to perform automatic quantitative analysis of the vocal tract, soft palate
and LVP in MR images, by developing methods to segment such images and developing a

framework to quantify motion in such images.

1.2 Contributions

The work presented in this thesis makes several contributions towards addressing the unmet
need for methods to perform automatic quantitative analysis of the vocal tract, soft palate
and LVP in MR images. More specifically, as part of the work two segmentation methods and
a motion quantification framework were developed, GT segmentations were created for an
existing speech MRI dataset, a new MRI dataset including GT segmentations was created
and a novel metric based on velopharyngeal closure was developed to enable a more
clinically relevant evaluation of segmentation method and motion quantification framework

accuracy. More information about these contributions is provided in the following sections.

1.2.1 Articulator Segmentation in MR Images of Speech
As a first step towards enabling automatic measurement of vocal tract and soft palate size,
shape and motion in 2D MR images of speech, a method to automatically segment the vocal

tract, soft palate and four other anatomical features in this type of image was developed.
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The DL-based method includes an extension to automatically calculate the minimum
distance between the soft palate and the posterior pharyngeal wall, a measurement of
particular interest to clinicians who perform clinical speech assessments. Although primarily
designed to enable automatic measurement of vocal tract and soft palate size, shape and
motion in 2D MR images of speech, the 2D segmentation method was designed to also
enable measurement of tongue size, shape and motion in order to broaden its potential

applications and utility.

1.2.2 Quantification of Articulator Motion in MR Images of Speech

As an additional step towards enabling automatic measurement of soft palate motion in 2D
MR images of speech, a framework to automatically estimate the motion of the soft palate
and five other anatomical features in this type of image was developed. This deep learning
framework for nonlinear registration of 2D MR images of speech builds on the 2D image
segmentation method by incorporating knowledge of region boundaries into the registration

and automatically estimates displacement fields between this type of image.

1.2.3 LVP Segmentation in 3D MR Images

As a first step towards enabling automatic measurement of LVP size, shape and configuration
in 3D MR images of the vocal tract, a method to automatically segment the LVP and pharynx
in this type of image was developed. Similarly to the 2D image segmentation method and
the motion quantification framework, the 3D image segmentation method is deep learning

based.

1.2.4 Speech MRI Dataset GT Segmentation Creation

There are currently no publicly available speech MRI datasets that include GT segmentations
of the entire vocal tract or soft palate. To enable the development and evaluation of a
method to segment such images, GT segmentations for an existing speech MRI dataset were
created. A dataset acquired using a speech MRI technique that does not require specialised
MRI equipment and software was deliberately chosen in order to facilitate acquisition of

similar images in other centres and consequently application of the 2D image segmentation
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method presented in this thesis. GT segmentations of the vocal tract, soft palate and four

other anatomical structures were manually created for each image in the dataset.

1.2.5 New MRI Dataset and GT Segmentation Creation

There is currently no consensus on the optimal image contrast for visualising the LVP in 3D
MR images. In addition, there are currently no publicly available MRI datasets that include
GT segmentations of the LVP. To enable the development and evaluation of a method to
segment the LVP in 3D MR images, a new dataset of 3D MR images of the vocal tract was
acquired after performing an investigation to identify the parameters that result in the
optimal image contrast for visualising the LVP in this type of image. GT segmentations of the

LVP and pharynx were manually created for each image in the dataset.

1.2.6 Novel Metric for Clinically Relevant Method Accuracy Evaluation

To be suitable for use in clinical speech assessment, a key requirement of segmentation and
motion quantification methods is that they capture any velopharyngeal closures that occur.
However, standard metrics for evaluating segmentation and motion quantification method
accuracy do not provide such information. To enable more clinically relevant evaluation of
the accuracy of segmentation methods and motion quantification frameworks, a novel

metric based on velopharyngeal closure was developed.

1.3 Outline

This thesis is divided into eight chapters, including this Introduction. The other seven

chapters of this thesis are outlined below:

Chapter 2: Clinical Background

Chapter 2 provides the clinical background to the work presented in this thesis. As this work
involves developing methods to analyse images of speech, the chapter provides an overview
of speech production. The chapter also provides an overview of VPI, the health problem that

this work ultimately aims to address, and the management of patients with VPI.
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Chapter 3: Technical Introduction

Chapter 3 introduces the technical background to this work. First, as MRI data was acquired
and used in this work, the chapter provides an overview of MRI and then reviews speech
MRI techniques and MRI techniques for LVP visualisation. Second, as DL-based methods
were developed in this work, the chapter provides an overview of deep learning and its
application to medical image analysis. Third, as DL-based segmentation methods were
developed in this work, the chapter provides an overview of medical image segmentation
focusing on DL-based methods and then reviews the literature on the segmentation of
speech MR images and the segmentation of the LVP in MR images. Fourth, as a motion
guantification framework based on image registration was developed in this work, the
chapter provides an overview of medical image registration and then reviews the literature

on the registration of speech MR images.

Chapter 4: Materials

Chapter 4 describes the datasets acquired and used in this work. First, the chapter describes
the previously acquired speech MRI dataset that was used in this work and how GT
segmentations were created for this dataset. Second, the chapter describes the new MRI
dataset that was acquired in this work, including the image contrast optimisation
investigation that was performed prior to acquiring the dataset. The chapter then describes
how GT segmentations were created for this new dataset. The speech MRI dataset and
corresponding GT segmentations were used to develop the segmentation method presented
in chapter 5 and the registration framework presented in chapter 6, while the new MRI
dataset and corresponding GT segmentations were used to develop the segmentation

method presented in chapter 7.

Chapter 5: DL-Based Segmentation of Speech MRI Data

Chapter 5 presents a DL-based method to segment the vocal tract and articulators in 2D MR
images of speech. The chapter also presents an extension to the method to calculate the
minimum distance between the soft palate and the posterior pharyngeal wall. Finally, the
chapter presents a novel clinically relevant metric based on velopharyngeal closure to
evaluate the accuracy of segmentations estimated by the method. The speech MRI dataset

described in chapter 4 was used to develop the segmentation method.
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Chapter 6: DL-Based Nonlinear Registration of Speech MRI Data

Chapter 6 presents a deep learning framework for nonlinear registration of 2D MR images of
speech. The framework builds on the segmentation method presented in chapter 5. Chapter
6 also presents the results of experiments comparing the performance of the proposed
framework to state-of-the-art traditional nonlinear registration methods and deep learning
frameworks for nonlinear registration. One of the metrics used in this comparison was the
novel clinically relevant metric based on velopharyngeal closure presented in chapter 5. The
speech MRI dataset and corresponding GT segmentations described in chapter 4 were used

to develop the proposed framework and in the performance comparison experiments.

Chapter 7: DL-Based LVP Segmentation in 3D MR Images

Chapter 7 presents a DL-based method to segment the LVP and pharynx in 3D MR images of
the vocal tract. It also presents the results of experiments investigating the effect of different
data augmentation methods on the accuracy of the segmentation method. The new MRI
dataset and corresponding GT segmentations described in chapter 4 were used to develop

the segmentation method and in the data augmentation experiments.

Chapter 8: Conclusions
Chapter 8 first summarises the contributions of the work presented in this thesis. The

chapter then discusses limitations of this work and makes suggestions on future work.
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Chapter 2: Clinical Background

This chapter introduces the clinical background to the work presented in this thesis. It
consists of an overview of speech and its production, followed by an overview of VPI, the

health problem that this work ultimately aims to tackle.

2.1 Speech

Speech is one of the principal forms of human communication. Its production is a complex
process involving several body parts (see Figure 1), notably the lungs, vocal folds (also
known as the vocal cords) and articulators including the lips, tongue and soft palate (also

known as the velum) [1,22].
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Figure 1: (A) A diagram of a midsagittal slice of the head, showing anatomical features with key roles in speech production
(modified from [23]). (B) A real-time magnetic resonance image of a midsagittal slice of the head. PPW: posterior

pharyngeal wall.
Speech production requires a flow of air from the lungs. For the majority of speech
sounds, the airflow passes through the trachea, larynx (which contains the vocal folds),
pharynx and oral cavity, and leaves the body via the mouth. For a few speech sounds, such

as [m], [n], [ng] in English, the airflow passes through the trachea, larynx, pharynx, oral

cavity and nasal cavity, and leaves the body via the nose.
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Airflow past the vocal folds causes them to vibrate. This vibration modulates the
airflow and generates sound. The tension of the vocal folds and their separation, both of
which can be controlled by the speaker, determine the frequencies of the sound that is
generated.

The oral cavity acts as a resonator that modifies the sound generated by the vocal
folds to the desired speech sound. The sound modification depends on the size and shape of
the oral cavity. The speaker can control these properties of the cavity by moving articulators
including the lips, tongue and soft palate to different positions.

As well as modifying the shape of the oral cavity, the soft palate is responsible for
preventing airflow into the nasal cavity. Prevention of such airflow is required to produce all
speech sounds in English apart from [m], [n] and [n]. The soft palate prevents such airflow by
blocking the opening between the pharynx and the nasal cavity. It achieves this by elevating
and coming into contact with the pharyngeal walls (see Figure 2). Blockage of the opening in
this way is known as velopharyngeal closure.

(A) .

Soft palate

Figure 2: (A) A diagram of a midsagittal slice of the head showing velopharyngeal closure: the soft palate is elevated and in
contact with the posterior pharyngeal wall (PPW) (modified from [24]). (B) A real-time magnetic resonance image of a

midsagittal slice of the head showing velopharyngeal closure.

Elevation of the soft palate is primarily caused by a muscle called the LVP. The LVP forms a U-
shaped sling that lifts the soft palate (see Figure 3). The muscle originates from the base of
the skull, close to the petrous part of the temporal bone, and connects to the midsection of

the soft palate at approximately 40% of the length of the soft palate [25,26] (see Figure 4).
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Levator Veli Palatini

Figure 3: A diagram of an open mouth, showing the tongue, velum (soft palate), hard palate and levator veli palatini

(modified from [27]).

Figure 4: A diagram of a midsagittal view of the soft palate and its muscles [28]: the levator veli palatini (LVP), tensor veli
palatini (TVP), salphingopharyngeus (SP), superior pharyngeal constrictor (SC), and the transverse fascicle (tPP), dorsal

fascicle (dPP) and ventral fascicle (vPP) of the palatopharyngeus muscle (PP).
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2.2 Velopharyngeal Insufficiency

2.2.1 Causes and Effects

VPl is an anatomical or structural defect that prevents velopharyngeal closure [1]. Examples
of defects include the pharynx being abnormally deep, the LVP not elevating the soft palate
sufficiently to block the opening between the pharynx and the nasal cavity, and the soft
palate not being sufficiently large to block the opening between the pharynx and the nasal
cavity [29]. As a result of the defect, airflow during speech is disrupted as air flows into the
nasal cavity when it should not. This disruption can make it challenging or impossible to
produce certain speech sounds and therefore impairs speech. The extent to which speech is
impaired by VPI is variable. In cases where the defect is minor, individuals can produce most
speech sounds correctly. However, in more severe cases, individuals can only produce a few
speech sounds correctly. Speech and language impairments have been found to negatively
affect social and educational development [2,30-33]. VPI is the health problem which the

work described in this thesis ultimately aims to address.

2.2.2 Prevalence

Two populations of individuals are particularly prone to VPI: individuals with a repaired cleft
palate and individuals with velocardiofacial syndrome [34—38]. The incidence of VPI has
been found to be 16-37% in individuals with a repaired cleft palate [34,35] and 27-92% in
individuals with velocardiofacial syndrome [38].

Orofacial clefts are abnormal fissures in the lip and/or palate that are present from
birth (see Figure 5). They occur when different sections of the lip and/or palate do not fuse
together correctly during prenatal development. A cleft can be in the lip only (cleft lip), the
palate only (cleft palate) or both (cleft lip and palate). Cleft lips can be further categorised as
being either unilateral or bilateral depending on whether they are on both sides of the face
(see Figure 5). A cleft in the palate results in an abnormal opening between the oral and
nasal cavities that negatively affects feeding and speech.

In the United Kingdom (UK), approximately 800 babies per year are born with a
orofacial cleft that involves the palate [39,40]. Cleft palates are surgically repaired, usually six

to 12 months after birth. Since children with a repaired cleft palate are known to be prone to



Clinical Background 42

speech impairments, their speech is assessed by Speech and Language Therapists (SLTs)
every two years until the age of 18.

Velocardiofacial syndrome is a genetic condition caused by a hemizygous deletion of
chromosome 22q11.2 [38]. It is characterised by heart anomalies and mild-to-moderate
immune deficiencies. Additional common characteristics of individuals with the syndrome
include facial dysmorphia, developmental delay and VPI. The prevalence of velocardiofacial

syndrome in the UK has been found to be approximately 1 per 4000 births [46].

&
add

Figure 5: Different types of orofacial clefts: (A) normal palate (modified from [41]), (B) unilateral cleft lip [42], (C) bilateral

—

C)

cleft lip [43), (D) cleft palate [41], (E) unilateral cleft lip and palate [44], (F) bilateral cleft lip and palate [45]. White arrows

indicate clefts.

2.2.3 Treatment

Since VPI is an anatomical or structural defect, it can only be treated via surgery [1]. As part
of their rehabilitation following surgery, patients receive speech therapy to help them learn
to use the modified anatomy effectively and to eliminate compensatory placements (i.e.
abnormal articulator positioning during speech production in order to compensate for the
anatomical or structural defect). Several well-established surgical techniques to treat VPI
exist, including intravelar veloplasty, palate re-repair, pharyngeal flap, sphincter

pharyngoplasty and Furlow Z-palatoplasty [47]. Intravelar veloplasty and palate re-repair
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both aim to change the position and orientation of the LVP to improve the function of the
muscle. Pharyngeal flap and sphincter pharyngoplasty both aim to reduce the size of the
opening between the pharynx and nasal cavity. Furlow Z-palatoplasty aims to both change
the position and orientation of the LVP and reduce the size of the opening between the
pharynx and nasal cavity. However, there is no consensus on which technique is most
effective and consequently a variety of techniques are used [4—6,47]. The technique most
likely to improve the speech of a patient depends on the defect(s) preventing
velopharyngeal closure, however, the choice of technique can also be influenced by surgeon
experience [47]. If the defect is a poorly functioning LVP, a technique that aims to improve
LVP function such as a palate re-repair is performed, while if the defect is an abnormally
deep pharynx or an insufficiently large soft palate, a technique that aims to reduce the size
of the opening between the pharynx and nasal cavity is performed. Surgical treatment is
most often performed when the patient is approximately six years old [48-52]. However,
treatment is not always successful: studies have reported persistence of VPI following
surgery in 16-100% of cases [48—-52]. VPI persistence can necessitate further surgery
[48,49,52]. For patients and their carers, further surgery results in additional hospital visits.
These visits can be distressing and inconvenient, and usually cause patients to miss school.
In addition, accompanying carers must usually take time off work for the visits and post-
surgery care at home. For health and care services, further surgery results in additional
workloads for clinical teams and additional costs. In the UK, the cost of a surgery and its
planning and follow-up is approximately £8500. Avoiding further surgery would therefore
avoid large additional costs. The ultimate goal of the work presented in this thesis is to
develop methods to help clinical teams improve the treatment outcomes of patients with
VPl and therefore reduce the rates of further surgery.

Clinical assessments of speech are performed to identify the defect preventing
velopharyngeal closure and thus inform treatment decisions. These assessments are
performed by SLTs and Plastic Surgeons. Clinical speech assessments usually involve imaging
to enable clinical teams to visualise the pharynx and soft palate of a patient while (s)he is
speaking [3,4,53]. Visualisation of the shape of the pharynx and soft palate enables clinical
teams to identify if the defect preventing velopharyngeal closure is an abnormally deep
pharynx or an insufficiently long soft palate. Visualisation of the motion of the soft palate

during speech enables clinical teams to infer how well the LVP is functioning and whether it
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is connected to the soft palate at an abnormal location. Identification of the defect
preventing velopharyngeal closure in turn aids clinical teams to decide on the treatment
required to correct the defect. Imaging therefore has an important role in the management
of patients with VPI, by providing key information for treatment decision-making. In the UK,
the imaging techniques most commonly used in clinical speech assessments are
videofluoroscopy and nasendoscopy [4,53]. Videofluoroscopy is a technique that uses X-rays
to visualise the inside of the body. Nasendoscopy is when a small camera is threaded into
the nasal cavity via the nose, enabling visualisation of the top of the soft palate. Both these
imaging techniques enable 2D visualisation of the pharynx and soft palate, however, neither

enables visualisation of the LVP.

2.3 Conclusions

Articulators such as the soft palate play an essential role in the production of speech. In
combination with the LVP, the soft palate causes velopharyngeal closure, a key requirement
for the production of most speech sounds. VPl is an anatomical or structural defect that
prevents velopharyngeal closure and consequently impairs speech. While several well-
established surgical techniques to treat VPI exist, there is currently no consensus on which is
most effective and consequently a variety of techniques are used. The technique most likely
to improve the speech of a patient depends on the defect(s) preventing velopharyngeal
closure. Imaging is used in clinical speech assessments to aid identification of the defect(s)
and therefore inform treatment decisions. However, treatment is not always successful and
further surgery can be required, causing additional distress and disruption for patients and
their carers, additional workloads for clinical teams and additional costs for health and care
services. The ultimate goal of the work presented in this thesis is to develop methods to

help to improve the treatment outcomes of patients with VPI.
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Chapter 3: Technical Introduction

This chapter introduces the technical background to the work presented in this thesis. The
first section provides an overview of MRI and its use for visualising the articulators and LVP.
The second section provides an overview of deep learning and its use for medical image
analysis tasks. The third section provides an overview of DL-based image segmentation
methods, followed by a review of existing methods for segmenting articulators and the LVP
in MR images. The final section provides an overview of medical image registration methods,
followed by a summary of previous work in which these methods were applied to MR

images of speech.

3.1 Magnetic Resonance Imaging

3.1.1 Introduction

MRI is a non-invasive imaging technique primarily used to acquire images of the inside of
the body. It is widely used in clinical practice and has an important role in the diagnosis and
monitoring of a wide range of diseases including cancer and dementia. In addition, MRl is
widely used in multiple research areas and is itself a topic of much research and
development. MRI is primarily known for its ability to acquire detailed 2D or 3D images of
static parts of the body. However, due to advances in MRI technology and data acquisition
acceleration strategies, MRI can now be used to acquire images of dynamic processes such
as speech production.

Providing a detailed coverage of all relevant aspects of MRI is beyond the scope of this
section. Instead, brief introductions to the fundamentals of key aspects are provided in the
following sections. For further details, readers are referred to [54] for an introduction to the
components of an MRI scanner, [55] for an introduction to MR signal creation and
relaxation, [56] for an introduction to MR image acquisition and k-space, and [57] and [58]

for introductions to pulse sequences.
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3.1.2 Pulse Sequences

In MRI, a sequence of radiofrequency (RF) pulses and magnetic field gradients are applied to
produce the signals required for image formation. This sequence is known as a pulse
sequence. There are many different types of pulse sequence, the most basic of which are
spin echo (SE) and gradient echo (GE) [59]. In practice, variants of SE and GE pulse
sequences that enable faster image acquisition are primarily used. Particularly widely used
sequences include turbo SE (TSE) sequences and fast GE sequences [60].

While an SE sequence produces a single MR signal per RF excitation pulse, a TSE
sequence produces multiple signals, thus accelerating image acquisition. TSE sequences
produce multiple signals by applying additional RF pulses and magnetic field gradients
between the RF excitation pulses [57]. The number of signals that are produced per RF
excitation pulse is known as the echo train length or the turbo factor. TSE sequences are
primarily used to acquire detailed 2D or 3D images of static parts of the body. A key
advantage of TSE sequences is that they can acquire images with a wide range of different
contrasts. However, while TSE sequences accelerate image acquisition, the acceleration is
not usually sufficient to enable dynamic imaging.

Fast GE sequences sufficiently accelerate image acquisition to enable dynamic
imaging. The most commonly used types of fast GE sequences are spoiled GE sequences and
refocused GE sequences [58]. Spoiled GE sequences are almost identical to GE sequences,
except that an additional magnetic field gradient, known as a spoiler gradient, is applied
after signal acquisition in order to remove any remaining transverse magnetisation and
therefore prevent it from affecting the production of subsequent signals. In refocused GE
sequences, additional magnetic field gradients are applied to manipulate the residual
transverse magnetisation so that it contributes to the production of subsequent signals.
While fast GE sequences enable more rapid image acquisition than other types of sequences
such as TSE sequences, the range of image contrasts in images acquired using such
sequences is more limited.

Pulse sequences have a range of parameters that can be modified to affect the image
acquisition speed, the spatial resolution of imaging and the contrast of the images that are

acquired. The key parameter that affects image acquisition speed is the repetition time (TR).



Technical Introduction 47

Figure 6 Magnetic resonance images with different contrasts: T;-weighted (Tiw), proton-density-weighted (PDw) and T,-

weighted (T.w). The x- and y-axes are repetition time (TR) and echo time (TE) respectively.

3.1.3 Relaxation and Image Contrast
In MRI, after the application of an RF excitation pulse, the recovery of the longitudinal
magnetisation (M,) is characterised by the spin-lattice relaxation time (T;) and is commonly

modelled using the following equation:

M,x1—et/M (1)

where t is time. The decay of the transverse magnetisation (M, ) is characterised by the

spin-spin relaxation time (T,) and is commonly modelled using the following equation:

M, < e~t/T2 (2)
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T, and T, are substance dependent. For example, in the body at a magnetic field of 3.0 T, the
T, of fat and muscle is approximately 400 ms and 900 ms respectively, while the T, of fat
and muscle is approximately 70 ms and 30 ms respectively [55]. In MRI, these differences in
relaxation times are exploited in order to acquire images with different contrasts.

A key advantage of MRI over other imaging techniques is its ability to acquire images
with a range of different contrasts. Several factors affect MR image contrast including the
proton density and the relaxation times of the volume being imaged, the strength of the
main magnetic field, the type of pulse sequence used in image acquisition and the
parameters of the pulse sequence. It is common to describe an MR image as T1-, T2- or
proton-density-weighted (PD-weighted), depending on the factor that most influenced the
image contrast. Examples of images with different contrasts are shown in Figure 6. The
contrast in a T1-weighted image depends primarily on the differences in the amplitudes of
the longitudinal magnetisations in different regions of the volume being imaged, while the
contrast in a To-weighted image depends primarily on the differences in the amplitudes of
the transverse magnetisations. The contrast in a PD-weighted image depends primarily on
the proton density of the volume being imaged.

The parameters of pulse sequences can be modified in order to acquire images with
different contrasts. The key parameters that affect the image contrast are the TR, echo time
(TE) and, for GE-based sequences, the flip angle. Generally, to acquire a Ti-weighted image,
a pulse sequence with a relatively short TR and TE is required. Conversely, to acquire a Ta-
weighted image, a pulse sequence with a relatively long TR and TE is required. To acquire a
PD-weighted image, a pulse sequence with a relatively long TR and a relatively short TE is
required.

A suitable image contrast is required to be able to distinguish between different
regions in an image and ultimately visualise anatomical features in medical images. In MR,
the process to identify the pulse sequence parameters that result in an optimal contrast for

anatomical feature visualisation is known as pulse sequence optimisation.

3.1.4 Tradeoffs in MRI
MRI involves an unavoidable tradeoff between the image acquisition speed, image quality

and spatial resolution. The optimal tradeoff for a given application depends on the relative
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importance of these three factors. MRI of dynamic processes such as speech production
requires fast image acquisition to ensure that the temporal resolution of imaging is
sufficiently high to capture the processes as they occur. Nevertheless, visualisation of the
processes also requires adequate image quality and a sufficiently high spatial resolution.

Commonly used strategies for accelerating MR image acquisition include using faster
pulse sequences, parallel imaging, non-Cartesian k-space sampling, novel image
reconstruction methods and custom receive coils. While some strategies such as faster pulse
sequences and parallel imaging are widely available on standard MRI scanners, others such
as non-Cartesian k-space sampling, novel reconstruction methods and bespoke receive coils
are only available on specialised MRI scanners. Generally, the former type of scanner is

much more common in clinical practice than the latter.

3.1.5 Dynamic MRI Techniques

MRI is primarily known for its ability to acquire detailed 2D or 3D images of static parts of
the body. However, due to advances in MRI technology and data acquisition acceleration
strategies, MRI can now be used to acquire images of dynamic processes such as speech
production. Dynamic MRI techniques use a variety of data acquisition acceleration
strategies, usually in combination, to enable imaging at high temporal resolutions while
maintaining adequate image quality and spatial resolution [12,27,61-63]. Applications of
dynamic MRI techniques include in cardiac MRI [61-63], MRI-guided invasive procedures
[61] and speech MRI [12,27,61].

Dynamic processes that regularly repeat in a similar manner, such as the beating of
the heart, can be dynamically imaged at high spatio-temporal resolutions using triggered
and gated MRI techniques [62,63]. However, these types of technique require monitoring of
the dynamic process. For example, the beating of the heart is monitored using
electrocardiography [62,63]. Using this monitoring, triggered MRI techniques synchronise
data acquisition so that it only occurs at specific stages of the process, while gated MRI
techniques continuously acquire data and then retrospectively use the recorded monitoring
signal to determine at which stage of the process data were acquired. To acquire all the data

required to create an image, triggered and gated MRI techniques require several repetitions
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of the dynamic process. Consequently, these techniques can require up to several minutes
to acquire all the data required to create an image.

Real-time MRI (rtMRI) techniques enable imaging of dynamic processes as they
occur, without requiring any repetition of the processes. This type of technique is therefore,
unlike triggered and gated MRI techniques, not restricted to imaging dynamic processes that
regularly repeat in a similar manner. However, achieving the desired spatio-temporal

resolutions is more challenging due to the lack of repetition.

3.1.6 Vocal Tract and Articulator Visualisation during Speech

Visualisation of the vocal tract and articulators during speech provides information about
the size, shape, motion and position of these anatomical features during speech production.
In a research context, primarily in speech science research, this information is desirable as it
provides insights into speech production, while, as described in section 2.2.3, in clinical
practice this information is desirable as it enables identification of the causes of speech
problems and consequently informs decisions on how to treat the problems [1,3,4].

Due to their location in the body, imaging is required to visualise the vocal tract and
articulators during speech. Several different imaging techniques enable visualisation of these
anatomical features. The most commonly used techniques are nasendoscopy [1,3,4],
videofluoroscopy [4], ultrasound (US) [64-67] and MRI [12,27,61]. Each of these techniques
has its advantages and disadvantages. Nasendoscopy is free from ionising radiation and
requires relatively inexpensive technology but is minimally invasive, potentially affecting
speech, and visualisation is limited to external surfaces of articulators. Videofluoroscopy is
non-invasive and quick to perform. However, it involves exposure to ionising radiation,
specialist staff and facilities are required to perform it, and visualisation is limited to
projections of the anatomy. US imaging is non-invasive, free from ionising radiation and
requires relatively inexpensive technology, but visualisation is limited to the tongue. MRl is
non-invasive, free from ionising radiation and enables visualisation of any view of the vocal
tract and articulators. However, it requires expensive equipment and specialist staff and

facilities to perform.
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3.1.7 Dynamic MRI of Speech

Use of MRI to visualise the vocal tract and articulators during speech is increasing due to the
growing availability of MRI scanners, the development of dynamic MRI techniques for such
visualisation, and the unique ability of MRI to non-invasively acquire images of any
orientation without using ionising radiation [12,27,61]. Currently, the main application of
dynamic MRI of speech is in speech science research [68—76]. However, there is increasing
interest in using dynamic MRI in the clinical assessment of speech of patients with VPI [7,77—
82], apraxia [83], stutter [84] or sleep apnea [85,86], or patients following glossectomy
[87,88]. Dynamic MRI has also been used to visualise the vocal tract and articulators during
singing [89,90], swallowing [91-93], laughter [94], beatboxing [95,96] and the playing of
musical instruments [97,98,107,108,99-106].

Accurate vocal tract and articulator visualisation during speech requires imaging at
spatio-temporal resolutions sufficient to capture the motion of these anatomical features.
Recommendations on dynamic speech MRI spatio-temporal resolutions have been published
by a group of dynamic speech MRI experts [12]. For example, the group recommended an
in-plane spatial resolution of <5 mm? and a temporal resolution of <150 ms for capturing the
general motion of the soft palate during speech. The spatio-temporal resolutions

recommended by the experts are shown in Figure 7.
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Figure 7: Spatio-temporal resolutions recommended by dynamic speech MRI experts for accurate capture of vocal tract and

articulator motion during speech [12].
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A wide variety of triggered and rtMRI techniques have been developed for 2D (both
single- and multi-slice) [9,10,12,27,61,109], pseudo-3D (i.e. stacks of contiguous slices) [110]
and 3D imaging [111-113] of the vocal tract and articulators during speech. Overviews of
most of these techniques are given in the review articles of Scott et al. [27] and Nayak et al.
[61]. While techniques have been developed for multi-slice 2D, pseudo-3D and 3D imaging
of the vocal tract and articulators during speech, typically a series of 2D images of a
midsagittal slice of the head are acquired in dynamic speech MRI studies. Examples of such
images are shown in Figure 8. Acquisition of 2D midsagittal image series is desirable in
clinical speech assessment as the images show a view of the vocal tract and articulators
similar to videofluoroscopy, one of the imaging techniques most commonly used in clinical
speech assessment, and therefore a view that clinicians are familiar with and can more

easily interpret.

Time

Figure 8: A series of magnetic resonance images of a midsagittal slice of the head during speech, acquired at a temporal

resolution of 100 ms.

State-of-the-art triggered techniques enable imaging of speech at the highest spatio-
temporal resolutions. More specifically, these techniques enable 2D imaging of a single slice
at a spatial resolution of 2.2x2.2 mm? and a temporal resolution of 9.8 ms [109], pseudo 3D
imaging at a spatial resolution of 1.875x1.875x2.000 mm?3 and a temporal resolution of 28
ms [110], and 3D imaging at a spatial resolution of 2.2x2.2x5.0 mm?3 and a temporal
resolution of 6 ms [112]. However, triggered techniques require continuous repetition of a
speech task during an extended period of time. For example, the state-of-the-art 2D, pseudo
3D and 3D imaging techniques require continuous repetition of a speech task for 1.7, 19.5
and 7.2 minutes respectively [109,110,112]. While continuous repetition of a speech task for
these durations may be feasible for healthy subjects, it is not for patients with speech
problems. Triggered techniques are therefore not the most suitable for use in clinical speech

assessment.
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Real-time techniques allow imaging of speech as it occurs, without requiring any
repetitions, and are therefore more suitable for use in clinical speech assessment than
triggered techniques. State-of-the-art real-time techniques enable 2D imaging of a single
slice at a spatial resolution of <2.4x2.4 mm? and a temporal resolution of <20 ms [9,10], and
3D imaging at a spatial resolution of 2.2x2.2x5.8 mm?3 and a temporal resolution of 61 ms
[113]. However, these techniques require highly specialised MRI equipment and software,
namely custom receive coils [10] and/or specialised pulse sequences and reconstruction
methods [9,10], that are not widely available especially in clinical practice. These
requirements therefore prevent the widespread adoption of the techniques, a limitation
that has motivated the development of techniques that only require widely available
standard MRI equipment and software [11,27,114,115]. Techniques that only require
standard MRI equipment and software enable 2D imaging at spatial resolutions of <2.4x2.4
mm? and temporal resolutions <100ms. While these spatio-temporal resolutions are lower
than those of state-of-the-art techniques, they are nevertheless sufficient to capture the
general motion of articulators such as the soft palate [12].

To widen access to real-time speech MRI data and therefore stimulate research in the
field, several datasets have been made publicly available [18,19,116—-121]. Most of these
datasets include 2D midsagittal image series of English [18,116,117] or French [19,118]
speakers performing phonologically comprehensive speech tasks (i.e. speech tasks designed
to include most phonemes in a wide range of contexts). The other datasets include 2D
midsagittal image series of English speakers producing emotional speech [119], repeating
several speech tasks consisting of vowel-consonant-vowel sequences [120], and imitating

unfamiliar speech sounds [121].

3.1.8 Levator Veli Palatini Visualisation

Visualisation of the LVP provides information about the shape and configuration of the
muscle. There is increasing interest in LVP visualisation, to better understand variations in
the shape and configuration of the muscle [25,122,131-140,123,141-143,124-130], to aid
planning of surgical treatment of VPI [144,145], and for medical education purposes [146].
MRI is predominantly used for LVP visualisation [13,25,130-139,122,140,142,143,123-129],



Technical Introduction 54

due to its unique ability to acquire images of any orientation with excellent soft tissue

contrast without using ionising radiation.

3.1.9 MRI of the Levator Veli Palatini

Due to the small size of the LVP and its 3D structure, 3D imaging at a high spatial resolution
is required to fully visualise the muscle. Previous work has predominantly used 3.0 T MRI at
a spatial resolution of 0.8x0.8x0.8 mm?3 for 3D LVP visualisation [25,126,138-140,127-
129,131-133,136,137]. The motivation for imaging at 3.0 T rather than at lower magnetic
field strengths is the acquisition of images with greater signal-to-noise ratios, enabling
improved visualisation of anatomical features [147]. Nevertheless, a few previous works
used 1.5 T MRI for 3D LVP visualisation [13,132,133].

The LVP and the soft tissue that surrounds it have very similar tissue properties.
Consequently, a challenge when imaging the LVP is ensuring that the image contrast
between the LVP and the surrounding soft tissue is sufficient to discriminate between the
two. Previous work has predominantly acquired T>-weighted 3D images of the LVP at 3.0 T
using TSE pulse sequences [25,126,139,140,127-129,131,134,136-138]. In addition, a
recommendation to acquire T,-weighted images for assessing the LVP in clinical practice was
recently made [8]. However, the results of recent work which investigated the optimal image
contrast for identification of LVP landmarks in 3D images acquired at 1.5 T suggest that T1- or
PD-weighted images may enable more accurate identification [13]. However, the literature
contains no reports of equivalent investigations into the optimal image contrast for 3D LVP

visualisation at 3.0 T.

3.2 Deep Learning

3.2.1 Machine Learning

A machine learning algorithm is an algorithm that is able to learn from data [148]. In this
context, an algorithm is considered to learn if its ability to perform a task improves with
experience [149]. Machine learning algorithms can be broadly categorised as supervised or
unsupervised, depending on the data they learn from. Supervised learning algorithms learn
from data that includes ground-truth (GT) labels, while unsupervised learning algorithms

learn from data that do not include such labels. Other categories of machine learning
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algorithms exist. Two notable examples of these are semi-supervised learning algorithms
and reinforcement learning algorithms. Semi-supervised learning algorithms learn from
relatively small amounts of data that include GT labels and relatively large amounts of data
that do not. This type of algorithm therefore lies between supervised and unsupervised
learning algorithms. Reinforcement learning algorithms interact with a dynamic
environment and learn from these interactions via feedback loops.

Machine learning algorithms create models using data. In recent years, models based
on artificial neural networks (ANNs) have attracted much attention, in particular those based
on ANNs with many layers. Since the number of layers of an ANN is referred to as its depth,
ANNSs with many layers are considered to be deep and are therefore referred to as deep
learning models. In recent years, the field of deep learning has advanced and expanded
rapidly. Deep learning models have been developed to perform various tasks in a wide
variety of fields including medical image analysis. The predominant type of ANN that deep
learning models for medical image analysis are based on is the convolutional neural network
(CNN), although recently deep learning models based on vision transformers (ViTs), another
type of ANN, have also begun to gain popularity. The next sections will introduce ANNs,

CNNs and ViTs, and provide an overview of how these models are developed.

3.2.2 Artificial Neural Networks
ANNs are a type of machine learning model [150]. They are networks that consist of
interconnected layers of units (also known as artificial neurons since they aim to mimic to
some degree the operation of biological neurons), as illustrated in Figure 9A. The first and
last layers of an ANN are known as the input and output layers respectively, while layers
between these are known as hidden layers. ANNs with multiple hidden layers are considered
to be deep neural networks. Consequently, machine learning using deep neural networks is
known as deep learning.

Each unit of an ANN has one or more inputs, x, and transforms these into a scalar

output, a, in a non-linear manner according to the following equation:

a=oWw'x+b) (3)
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where w is a vector of weights, b is a scalar bias and o is a non-linear function such as the
sigmoid function or the hyperbolic tangent function. The combination of the weights and
biases of the units of an ANN are the model parameters, denoted by 8, that are updated as
the ANN learns from data. Due to the multiple layers in an ANN, data are transformed in a
non-linear manner multiple times as they pass through the ANN. This series of
transformations enables ANNs to learn complex non-linear patterns in data. Feedforward
ANNs (also known as multi-layer perceptrons) contain no feedback connections. In other
words, the outputs of the units in a layer are only used as inputs to units in deeper layers.
ANNs that include feedback connections are known as recurrent neural networks (RNNs). An

example of an RNN is shown in Figure 9B.
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Figure 9: Examples of artificial neural networks. (A) A multi-layer perceptron with four layers. (B) A recurrent neural network
with four layers. Blue circles indicate units, black arrows indicate connections between units and green arrows indicate

feedback connections.
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3.2.3 Supervised Training of ANNs

An ANN is effectively a function, f, that maps an input, x, to an output, y:

y=f(x0) (4)

An iterative process is carried out to enable the ANN to learn parameters that result in f

approximating the function, f*, that maps the input to the corresponding GT label, y*:

y =1 (3)

This process is known as supervised training of the network and consists of four main steps
that are repeated multiple times. First, the network is inputted with data vectors, X €

{x1, x5, ..., x;}, and estimates labels, Y € {y4,¥>, ..., ¥i}, for these vectors:

Y = f(X;0) (6)

This step is known as forward propagation and the number of data vectors that the network
is inputted with, i, is known as the mini-batch size. Second, the labels estimated by the
network are compared with the GT labels of the data vectors, Y* € {y],¥5, ..., ¥i}. The
errors between the estimated and GT labels (known as the loss) are quantified using a
function, L(Y*,Y). This function is known as the loss function and can consist of one or
more terms. Third, the derivatives of the loss with respect to the parameters of each unit of

the network are calculated using the chain rule:

JaL
l
6w]-k

(7)

where lek is the weight between the kth unit in layer [ — 1 and the jth unit in layer [.
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Finally, an optimizer is used to update 8 according to the derivatives calculated in the third
step:
l

Wj

l oL
Wi — A5
J Bwjk

(8)
where A is a hyperparameter called the learning rate. Commonly used optimizers include
stochastic gradient descent and Adam [151]. The final two steps are known as
backpropagation and are a key requirement to enable 8 to be updated in a way that reduces
the loss. The goal of training is to find the network parameters, 8%, that minimise the loss

function. Training can therefore be formulated as the following optimisation problem:

0* = argmin L(Y*,Y) (9)
0

Supervised training requires a dataset consisting of input data vectors and corresponding GT
labels, known as a training dataset.

Once a network is fully trained, its performance is quantitatively evaluated using one
or more metrics. To enable evaluation of the performance of a fully trained network, a
dataset that does not include any of the data in the training dataset is required. This dataset

is known as the test dataset.

3.2.4 Generalisation of ANNs
A key challenge in machine learning and deep learning is training networks that perform well
on data other than those used in network training. In other words, creating networks that
generalise to new data. Techniques commonly used during network training to improve the
generalisation of a network include weight decay, dropout, data augmentation and the use
of a validation dataset.

Weight decay, also known as L, regularisation, aims to prevent individual units from
having an excessive influence on the output of the network. It is implemented by including

the following term to the loss function:
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where € is a scalar constant. The purpose of this term is to prevent the values of the network
weights from becoming too large, thus preventing individual units from becoming overly
influential. The term achieves this by increasing the loss when the weight values increase,
thus encouraging smaller values.

Dropout [152] is when the outputs of a random group of units in a network are set to
zero during network training, temporarily preventing the units from contributing to the
output of the network. At the end of training involving dropout, the resulting network is in
effect an average of several slightly less complex networks, causing an improvement in its
generalisation.

Data augmentation aims to increase the generalisation of a network by synthetically
increasing the diversity of the training dataset. This increase is achieved by creating modified
versions of the training data. When training networks for image analysis tasks, commonly
used augmentations include rotation, translation and cropping, in addition to augmentations
that modify image pixel or voxel values such as addition of random Gaussian noise [153]. An
overview of data augmentation techniques commonly used in the training of networks for
medical image analysis tasks is provided in [154].

The duration of training can greatly influence the performance of a network. Training for
an insufficient duration prevents the network from maximising its performance, while
training for an excessive duration results in the network overfitting the training dataset, thus
compromising network generalisation. Typically a validation dataset is used to identify the
optimal training duration. Evaluation of a network performance using this dataset, which
does not include any data in either the training or test datasets, gives an indication of the
network performance on the test dataset. During network training, regular evaluation of
network performance using the validation dataset enables identification of overfitting and
therefore informs when training should be stopped. A validation dataset is also often used to
identify the values of hyperparameters such as the learning rate that result in a network

with the greatest generalisation, a process known as hyperparameter optimisation.

3.2.5 Limitations of ANNs
Typically in ANNSs, units in adjacent layers are fully connected. In other words, in two

adjacent layers, each unit in the shallower layer is connected to every unit in the deeper
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layer. Increasing the number of layers and units of an ANN results in a large increase in the
number of connections and consequently the number of parameters to be learned. This
relationship causes an unavoidable tradeoff between the complexity of a model and the
computational and data requirement to train and deploy it. To mitigate this tradeoff, other

types of ANN that are more sparsely connected have been developed, such as CNNs.
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Figure 10: An example of two-dimensional convolution. The 3x4 input is convolved with a 2 x2 filter to create a 2x3 feature
map.
3.2.6 Convolutional Neural Networks
CNNs are a specific type of ANN that are designed to learn from data with a grid-like
arrangement such as images [155]. These networks contain one or more layers in which a
mathematical operation called convolution is used to transform the input to the layers.
These layers are known as convolutional layers. Typically, a convolutional layer consists of
three consecutive mathematical operations: convolution, normalisation and then a non-
linear transformation.

The convolution operation consists of convolving the input to the layer with a set of
filters (also known as kernels) with learnable weights and biases. The output of this
operation is a set of feature maps that correspond to the response of the filters at different

spatial locations of the input. Typically, filters for 2D and 3D convolutions have a size of 3x3
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pixels and 3x3x3 voxels respectively, although other filter sizes are possible. An example of
2D convolution is shown in Figure 10.

Following the convolution operation, the feature maps are normalised. The method
most commonly used to normalise feature maps is batch normalisation [156] where feature
maps are normalised across a mini-batch rather than on an individual basis. The motivation
for normalising feature maps is to stabilise the distribution of outputs from the
convolutional layer, as such stabilisation has been shown to accelerate the training of CNNs
[156]. Other methods to normalise feature maps have also been developed, such as instance
normalisation [157] where feature maps are normalised on an individual basis rather than
across a mini-batch.

Finally, normalised feature maps are transformed in an element-wise manner using a
non-linear function. The most commonly used non-linear function in CNNs is the rectified

linear unit (ReLU) which transforms a scalar value, z, in the following way:

ReLU(z) = max (0, z) (11)

Another commonly used non-linear function is the leaky ReLU [158] which transforms z in

the following way:

LeakyReLU(z) = max(0,z) + k - min(0, z) (12)

where k is a scalar constant.

In addition to convolutional layers, CNNs contain pooling layers. Pooling layers
typically occur after convolutional layers and reduce the spatial dimensions of the outputs of
convolutional layers, usually by a factor of two. Pooling layers achieve this by first
partitioning the outputs into non-overlapping regions, then calculating a summary statistic
such as the maximum value in each region and finally creating a new output consisting of
the summary statistics. The aim of pooling layers is to make CNNs approximately invariant to
small translations of the input image. The operator most commonly used in pooling layers is
max pooling. Max pooling layers identify the maximum value in each region and then create

a new output consisting of these values, as illustrated in Figure 11.
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Max pooling layer
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Figure 11: An example of a max pooling layer. The input to the layer is a feature map of size 4x4. First, the feature map is
partitioned into non-overlapping regions of size 2x2 pixels (different colours indicate different regions). The maximum value
in each region is then identified (dotted red line indicates pixel with maximum value in each region). The output of the layer

is a feature map of the maximum values.

3.2.7 CNN-Based Image Analysis
CNN-based methods have been developed to perform a range of image analysis tasks. The
most common of these tasks include image classification, object detection and image
segmentation. Image classification is the process of assigning a label to an image according
to its content. For example, given a set of images of handwritten digits, an image
classification method would label the images according to the digit they show. Object
detection is the process of detecting and locating instances of objects in images. Typically,
CNN-based object detection methods estimate the coordinates of the bounding box that
contains the object. Image segmentation is the process of partitioning images into regions of
pixels (or voxels) [159]. It consists of assigning a label to each pixel in an image, in such a way
that pixels with shared characteristics (such as pixels of the same object) are assigned the
same label. There are two main types of image segmentation: semantic segmentation and
instance segmentation. Semantic segmentation assigns a class label to every pixel in an
image. If there are multiple instances of an object in an image, a semantic segmentation
method would assign the same label to each pixel showing an instance of the object.
Instance segmentation assigns a different label to pixels of different instances of an object in
an image. If there are multiple instances of an object in an image, an instance segmentation
method would assign a different label to pixels showing a different instance of the object.
Several CNN-based image analysis methods have particularly influenced the deep
learning and image analysis communities in recent years. These methods include AlexNet

[160], VGG [161], the method developed by [162] and ResNet [163]. AlexNet [160], a



Technical Introduction 63

method for image classification, is credited for triggering renewed interest in CNN-based
methods for image analysis after winning the ImageNet Large Scale Visual Recognition
Challenge 2012 by a large margin. Inspired by AlexNet, Simonyan and Zisserman [161]
developed several CNN-based methods for image classification with different depths, and
showed that increased CNN depth resulted in improved CNN performance. This work is also
credited for triggering the trend of using 3x3 filters in convolutional layers. Long et al. [162],
were the first to develop a fully convolutional neural network (FCN) for semantic
segmentation. This network consisted of convolutional layers and pooling layers only, hence
its description as an FCN. Inspired by the work of Simonyan and Zisserman, He et al. [163]
developed residual blocks for CNNs that enabled the training of even deeper CNNs with

improved performance.

3.2.8 Vision Transformers

Transformers are a type of deep learning model initially developed for natural language
processing (NLP) that are particularly effective at capturing long range correlations in data
[164]. Unlike CNNs, transformers do not involve convolutions and instead use self-attention
mechanisms. Following their great success in NLP, transformers were extended to be
suitable for image analysis tasks [165]. Such transformers, known as vision transformers
(ViTs), have attracted much interest from the medical image analysis community, resulting in
their application to a range of medical image analysis tasks including image classification,
segmentation and registration. Two recent review articles provide overviews of ViT-based
medical image analysis methods [166,167]. The emergence of ViTs has prompted the

community to reconsider the supremacy of CNNs for medical image analysis tasks.

3.3 Medical Image Segmentation

Image segmentation has numerous clinical applications ranging from radiotherapy [168,169]
to neuroimaging [170] and cardiac imaging [171,172]. In many of these applications, image
segmentation is an important step to enable measurement of clinical biomarkers that inform
diagnosis or treatment decisions. For example, segmentation of the heart chambers in
cardiac MR images enables measurement of biomarkers such as ejection fraction [171,172].

A wide variety of medical image segmentation methods have been developed, to segment
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anatomy/pathology ranging from the heart to the brain in medical images acquired using
imaging techniques ranging from US to MRI. Consistent with trends in other image analysis
fields, recently most of the medical image segmentation methods that have been developed
are DL-based. Several recent review articles provide overviews of these methods
[154,166,168—-174]. However, a key requirement for the development of such methods is the
availability of GT segmentations. Obtaining such segmentations is typically a time-consuming
manual process which, particularly for medical images, requires input by specialists and is

prone to intra-and inter-observer variability.

3.3.1 Deep-Learning-Based Medical Image Segmentation

The majority of medical image segmentation methods that have been developed in recent
years have been based on FCNs. To begin with, vanilla FCN-based methods were developed
and then widely applied. Notable examples of such methods include U-Net [175] and SegNet
[176] for 2D segmentation and 3D U-Net [177] for 3D segmentation.
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Figure 12: An overview of the architecture of the U-Net [175] fully convolutional network (image from [175]), consisting of
two-dimensional convolutions (conv), transposed convolutions (up-conv), rectified linear units (ReLUs), skip connections

(grey arrows) and max pooling.
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Inspired by the work of [162], U-Net used an FCN with the architecture shown in
Figure 12 to segment 2D images [175]. The FCN consisted of a multi-layer encoder to
downsample feature maps, followed by a multi-layer decoder to upsample feature maps.
The network included skip connections that enabled the combination of feature maps from
corresponding layers in the encoder and decoder. A weighted cross entropy loss was used to
train the FCN. This loss was weighted according to the number of pixels in each class and the
distance of a pixel from a boundary. However, typically the latter weighting is not included in

the training of widely-applied U-Net-based methods in medical image analysis.
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Figure 13: An overview of the architecture of the SegNet [176] fully convolutional network (image from [176]), consisting of
two-dimensional convolutions (Conv), batch normalisation, rectified linear units (ReLUs), max pooling (Pooling), upsampling
using max pooling indices (Upsampling) and a softmax activation function (Softmax).

SegNet used an FCN with a similar architecture to U-Net to segment 2D images.
However, the FCN did not include skip connections. In addition, feature map upsampling in
the multi-layer decoder was not achieved using transposed convolutions. Instead,
upsampling was achieved using max pooling indices from corresponding layers in the multi-
layer encoder (see Figure 13).

U-Net was extended to enable 3D segmentation by replacing the 2D operations by
3D operations [177]. Similarly to the original U-Net, a weighted cross entropy loss was used
to train the FCN. However, this loss was only weighted according to the number of pixels in
each class. In addition, unlike the original U-Net, the 3D U-Net included batch normalisation.

Since the development of vanilla FCN-based methods, there have been several
general trends in the way these methods have been extended by the medical image analysis
community. Unsurprisingly, these trends mirror those in other image analysis fields. These

trends include adding residual blocks to FCNs, adding RNNs to FCNs, using series of
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consecutive FCNs and, most recently, developing hybrid FCN-ViT-based segmentation
methods.

The success of CNNs with residual blocks for image classification [163] motivated the
inclusion of such blocks in FCN-based medical image segmentation methods. One such
method that has been particularly widely applied and extended by the medical image
analysis community is V-Net [178]. V-Net used an FCN with residual blocks to segment 3D
images. Similarly to the 3D U-Net FCN, the V-Net FCN consisted of a multi-layer encoder
followed by a multi-layer decoder with skip connections. However, feature map
downsampling in the V-Net FCN was achieved using 2x2x2 convolutions with a stride of 2
rather than using max pooling. In addition, the V-Net FCN included parametric ReLUs rather
than RelLUs and was trained using a loss function based on the Dice coefficient rather than
cross entropy.

Adjacent or consecutive medical images provide contextual information, however,
vanilla FCN-based segmentation methods were not designed to exploit this information. This
limitation motivated the inclusion of RNNs, which are designed to exploit such information,
in FCN-based medical image segmentation methods. Examples of such methods include the
one developed by [179] for multi-slice cardiac MR image segmentation and the one
developed by [180] for 3D electron microscopy image segmentation.

Typically, the anatomical features of interest in a medical image occupy a relatively
small proportion of the image. This fact has motivated the development of methods that use
multi-stage approaches to segment an image [181,182]. Generally, the first stage aims to
identify the area or volume that contains the anatomical features of interest. Only this area
or volume is segmented in subsequent stages. For example, in the first stage of the method
developed by [181], a U-Net-based FCN is used to estimate an initial segmentation of an
entire image. The region of the image containing the anatomical features of interest is
determined from this segmentation and then another U-Net-based FCN is used to estimate a

more detailed segmentation of this region of the image only.
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Figure 14: An overview of the TransUNet [183] hybrid network, a fully convolutional network with a vision transformer
between the encoder and decoder (image from [183]). (a) An overview of a transformer layer consisting of layer
normalisations (Layer Norms), a multi-head self-attention block (MSA) and a multi-layer perceptron (MLP) block. (b) An
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Figure 15: An overview of the UNETR [184] hybrid network consisting of a vision transformer (ViT) as the encoder and a fully
convolutional network (FCN) as the decoder (image from [184]). Each of the 12 layers in the ViT include layer normalisations
(Norms), a multi-head self-attention block (Multi-Head Attention) and a multi-layer perceptron (MLP) block. The FCN
includes three-dimensional convolutions (Conv), rectified linear units (ReLUs), batch normalisation (BN), transposed

convolutions (Deconv). The height (H), width (W) and depth (D) of the feature maps are shown.
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Most recently, the success of ViTs in other fields of deep learning has motivated the
development of hybrid FCN-ViT-based medical image segmentation methods. A recent
review article provides an overview of such methods [166]. The rationale for combining
FCNs and ViTs is to exploit both the accurate localisation abilities of the former and the
global context identification abilities of the latter. Methods such as TransUNet [183] used a
U-Net-based FCN with a ViT between the encoder and decoder (see Figure 14) to segment
abdominal CT images and cardiac MR images, while methods such as UNETR [185] and Swin
UNETR [185] used a U-Net-based FCN with the encoder replaced by a ViT and a swin
transformer respectively to segment MR and CT images of various body organs (see Figure
15).

As noted earlier, the U-Net architecture [175,177] has proved to be particularly
popular in the medical image analysis field, influencing the development of a range of other
methods [186]. While a wide variety of complex FCN-based medical image segmentation
methods have been developed, recent work has shown that vanilla U-Net-based methods
can outperform these more complex ones if configured and trained effectively [187]. Based
on this observation, nnU-Net, an automatic method for configuring and training U-Net
effectively has been developed [187]. Given a training dataset, the method determines a
suitable U-Net FCN architecture, whether image pre-processing steps are required (for
example, cropping and normalisation) and an effective FCN training strategy including
selection of key hyperparameters such as the image patch size and the mini-batch size.
Recently, methods developed using nnU-Net have segmented a wide variety of medical
images including 2D cardiac MR images [188], 3D CT images of the kidney [189], pseudo-3D
MR images of the brain [190] and 3D CT images of the lungs [191,192] with state-of-the-art

accuracy.

3.3.2 Loss Functions and Evaluation Metrics
Supervised training of deep learning models for medical image segmentation consists of the
four main steps described in section 3.2.3. Loss functions commonly used in this training

include the mean cross entropy loss, L., and Dice loss, Lpgc:

1
Leg = X g=1 le<<=1 g log sk (13)
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where K is the number of pixels or voxels in the image, C is the number of segmentation
classes, gy, is the binary GT label indicating if pixel k belongs to segmentation class ¢ and sj,

is the probability estimated by the CNN that pixel k belongs to segmentation class c.

Zg=1 Zlk{=1 A
2 14
S M) (14)

Lpsc =1~—
Once a model has been trained, its performance is quantitatively evaluated. A recent
review article provides an overview of the metrics commonly used by the medical image
analysis community to quantify the accuracy of segmentation models [193]. Particularly
commonly used metrics include the Dice coefficient (DSC) [194], the intersection over union
(loU), general Hausdorff distance (HD) and the average symmetric surface distance (ASD).
The DSC and loU quantify the overlap between two segmentations, while the HD and ASD
quantify the discrepancies between the boundaries of two segmentations. The way in which
the DSC and loU are calculated is illustrated in Figure 16, while the way in which the HD and

ASD are calculated are illustrated in Figure 17 and Figure 18 respectively.
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Figure 16: Metrics to quantify the overlap between two segmentations A and B (image from [193]). (a) the Dice coefficient

(DSC). (b) the intersection over union (loU).
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Figure 17: Calculation of the general Hausdorff distance (HD), a metric to quantify the maximum discrepancy between the
boundaries of two segmentations A and B (image from [193]). d(a, b) indicates the Euclidean distance between pixel a (a

boundary pixel of segmentation A) and pixel b (a boundary pixel of segmentation B).
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distance between pixel a (a boundary pixel of segmentation A) and pixel b (a boundary pixel of segmentation B).



Technical Introduction 71

3.3.3 Real-Time Speech MR Image Analysis

As described in section 3.1.7, use of rtMRI to visualise the vocal tract and articulators during
speech is increasing in both research and clinical settings, and typically a series of 2D images
of a midsagittal slice of the vocal tract is acquired using real-time speech MRI techniques. In
addition, there is increasing interest in extracting quantitative information about the vocal
tract and articulators from such images [7,14,75,76,84,88,195-198,20,68—74]. More
specifically, there is interest in measuring the size and shape of the vocal tract
[14,68,197,198,70,74-76,84,88,195,196], the size, shape and motion of the soft palate
[72,73,75,84,198], lip motion [69,75,84], tongue motion [20,84] and the distance between
the soft palate and the posterior pharyngeal wall [7,72,198]. Manual measurement to obtain
this information is time-consuming, requires input by specialists and is prone to intra- and
inter-observer variability. The increasing interest in extracting quantitative information, in
combination with the need to avoid manual measurement, have motivated the
development of a range of methods to (semi-)automatically extract this information
[15,16,206,207,20,199-205]. Almost all these methods are segmentation based
[15,16,207,199-206].

3.3.4 Real-Time Speech MR Image Segmentation

Numerous methods based on a variety of approaches have been developed to segment real-
time MR (rtMR) images of speech [15,16,207,199—-206]. More specifically, these methods
segmented 2D images of a midsagittal slice of the head, the type of image most commonly
acquired using real-time speech MRI techniques. The majority of these methods [15,199—
204,208] were designed to enable (semi-)automatic analysis of the size and shape of the
vocal tract in the images, an analysis of particular interest to the speech science community.
To enable this analysis, the methods created contours of air-tissue boundaries between the
vocal tract and adjacent articulators. Some of these methods created contours without
articulator labels [199-202] while others created contours with such labels [15,203,204].

Examples of each type of contour are shown in Figure 19.
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Figure 19: Examples of contours of air-tissue boundaries between the vocal tract and adjacent articulators in real-time
speech magnetic resonance images. (A) Contours of the upper (green) and lower (red) air-tissue boundaries without
articulator labels (image from [199]). (B) Contours of air-tissue boundaries with articulator labels indicated by colour coding

(image from [203]).
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Figure 20: Overview of method developed by [199] to create contours of air-tissue boundaries between the vocal tract and

adjacent articulators in real-time speech magnetic resonance images (modified from [199]).

Instead of creating contours with articulator labels, several methods [199-202] have
been developed to create two contours per image: one of the upper air-tissue boundaries,
the other of the lower boundaries (see Figure 19A). One method created such contours by
first pre-processing the images to increase the image contrast between air and tissue, then
superposing gridlines on the pre-processed images and analysing pixel values along these
gridlines, and finally using the Viterbi algorithm to identify contours [199]. An overview of
this method is shown in Figure 20. Three DL-based methods to create such contours have
also been developed [200-202]. These methods all created contours using the same three-

stage approach, an overview of which is shown in Figure 21. First, separate FCNs were used
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to segment three groups of anatomical features in the image as a preliminary step. Second,
the contours of the segmentations were identified. Third, the contours were pruned to only
include sections corresponding to air-tissue boundaries between the vocal tract and
adjacent articulators. One method used FCNs based on SegNet [209] to create contours
[201], while the methods developed by [200] and [202] used FCNs based on those
developed by [162] and [210] respectively.
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Figure 21: Overview of approach taken by deep-learning-based methods [200-202] to create contours of air-tissue

boundaries between the vocal tract and adjacent articulators in magnetic resonance image of speech (image from [201]).

Several methods have been developed to create contours with articulator labels
[15,203,204]. One method created such contours using an optimisation algorithm to
iteratively adjust an anatomically informed synthetic image of the vocal tract until the k-
space of the synthetic image was as similar as possible to the k-space of the MR image [203].
Another method based on active appearance models (AAMs) [211] has also been developed
to create such contours [204]. This method included two AAMs to create contours: one for
images in which the soft palate was in contact with the posterior pharyngeal wall and
another for images in which there was no contact. In other work, methods based on
multiple linear regression (MLR), active shape models (ASM) [212] and shape particle
filtering (SPF) [213] were developed and compared [15]. These methods created separate
contours for 10 articulators including the tongue, soft palate and pharyngeal wall. The ASM-
and SPF- based methods were initialised using the contours created by the MLR-based

method. Evaluated using the mean sum of distances between the closest points on each
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contour, the ASM-based method was found to be the most accurate. A DL-based method
has also been developed to create contours with articulator labels [16]. This method used a
single SegNet-based FCN to estimate contours and then refined these contours using an
algorithm inspired by the connected component labelling one developed by [214].

Rather than creating contours of air-tissue boundaries between the vocal tract and
adjacent articulators, a method to fully segment the vocal tract (see Figure 22A) in real-time
speech MR images has also been developed [208]. This method used a FCN based on the

original U-Net [175] to segment the vocal tract.

Figure 22: Magnetic resonance images of speech with segmentations estimated by different methods overlaid. (A) The
method developed by [208] segmented the vocal tract only (image from [208]). (B) The method developed by [205]
segmented the head (dark blue), soft palate (light blue), jaw (green), tongue (yellow), vocal tract (pink), tooth space (red).
(C) The method developed by [207] segmented the soft palate (yellow), tongue (red) and vocal tract (green) (image from
[207]). (D) The methods developed by [206] segmented the head (orange), upper lip (blue), hard palate (red), soft palate

(vellow), jaw (green) and tongue (brown) (image from [206]).

While contours of air-tissue boundaries between the vocal tract and adjacent
articulators enable analysis of the size and shape of the vocal tract, they only partially
segment articulators and consequently do not enable analysis of the size, shape, motion or
position of the articulators during speech. Increasing interest in such analysis, by clinicians as
well as speech science researchers, has recently motivated the development of methods to
fully segment articulators in rtMR images of speech [205-207]. These methods all used U-
Net-based FCNs to fully segment the soft palate and tongue in addition to other anatomical
features. One method, presented in chapter 5 of this thesis, used a single U-Net-based FCN
to estimate segmentations and then refined these segmentations using a post-processing
step that removed anatomically impossible regions [205]. This method segmented the

following six anatomical features: the head (including the upper lip and hard palate), soft
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palate, lower lip and jaw, tongue (including the epiglottis), vocal tract and lower incisor
space (see Figure 22B). Another method used several U-Net-based FCNs to segment the
following three anatomical features: the soft palate, tongue (not including the epiglottis) and
vocal tract (see Figure 22C). This method used a separate FCN to segment each anatomical
feature. In other work, several methods each using a different U-Net-based FCN were
developed and then compared [206]. Each of these methods used a single U-Net-based FCN
to segment the following seven anatomical features: the head (not including the upper lip
and hard palate), soft palate, lower lip and jaw (including the lower incisor space), tongue
(not including the epiglottis), upper lip and hard palate (see Figure 22D). More specifically,
the methods used FCNs based on the original U-Net and QuickTumourNet [215], the FCN
developed by [216] and CEL-Unet [217].

In addition to the methods to segment rtMR images of speech described above, a
method to segment 2D static MR images of the vocal tract has recently been developed
[218]. In contrast to the real-time speech MR image segmentation methods described
above, this method segmented sagittal images of the vocal tract as well as midsagittal
images. However, similarly to several of the DL-based real-time speech MR image
segmentation methods, the method used FCNs based on the original U-Net. The method
segmented three anatomical features (the pharynx, tongue and soft palate) in the images
using a three-stage approach. In each stage, a different U-Net-based FCN was used to
segment one anatomical feature in the images. The pharynx, tongue and soft palate were
segmented in the first, second and third stages respectively.

A key requirement for the development of DL-based segmentation methods is the
availability of GT segmentations. While GT segmentations of articulators in rtMR images of
speech have been created and used to develop methods to segment such images [205-207],
these segmentations have not been made publicly available. As described in section 3.1.7,
several real-time speech MRI datasets have been made publicly available and all these
datasets include 2D midsagittal image series [18,19,116—121]. However, none of these
datasets include articulator GT segmentations. The current lack of publicly available
articulator GT segmentations is a barrier to the development of DL-based methods to
segment (and ultimately analyse) real-time speech MR images, in addition to preventing

rigorous comparison of segmentation methods.
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3.3.5 LVP MR Image Segmentation and Analysis

As described in section 3.1.9, use of MRI to visualise the LVP is increasing. In addition, there
is increasing interest in measuring aspects of the LVP in MR images [13,25,130—
139,122,140-143,123-129]. In all previous work [13,25,130-139,122,140-143,123-129],
measurements such as the length and thickness of the LVP were manually obtained from MR
images. However, obtaining measurements in this way is time-consuming, requires input by
specialists and is prone to intra- and inter-observer variability. To avoid the burden of
manual measurements and to facilitate LVP measurement on a larger scale, there is
currently an unmet need for automatic LVP measurement methods. A common approach for
automating the measurement of anatomical features in biomedical images is to first
segment the features and then perform measurements using the segmentations. As a first
step towards developing an automatic LVP measurement method, in very recent work [17],
four state-of-the-art DL-based methods were used to segment the LVP and five other
anatomical features (adenoids, lateral pharyngeal wall, posterior pharyngeal wall, pterygoid
raphe and soft palate) in 3D Ti-weighted MR images. More specifically, two methods based
on 3D U-Net [177] (one of which was developed using nnU-Net [187]), the Swin UNETR
method [185] and the 3D UX-Net method [219] were used. Evaluated using the DSC, the 3D
UX-Net method was found to most accurately segment the LVP and three of the other
anatomical features.

GT segmentations of the LVP have been created in previous work [17,144,146],
however, these segmentations have not been made publicly available. While there are
publicly available MRI datasets that include 3D images of the vocal tract
[18,19,117,118,220,221], these datasets either do not include GT segmentations of
anatomical features [18,19,117,118] or only include GT segmentations of the vocal tract
[220,221]. The current lack of publicly available LVP GT segmentations is a barrier to the
development of DL-based methods to segment (and ultimately quantify aspects of) the LVP

in MR images, in addition to preventing rigorous comparison of segmentation methods.
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3.4 Medical Image Registration

3.4.1 Introduction

Usually, corresponding regions in different images are not in spatial alignment. In other
words, if the images were superposed, corresponding anatomical regions within them would
not overlap. There are several reasons for this lack of alignment, ranging from differences in
how the images were acquired to changes in the subject or object that was imaged. For
example, the images may have been acquired using different modalities, from different
views, or the subject or object being imaged may have moved or changed shape (e.g. images
acquired during different scanning sessions or during organ motion such as that due to
breathing or speech).

Image registration is the process of finding transformations that spatially align
images. It is a key task in the field of medical image analysis and has a wide range of clinical
applications, including radiotherapy [222] and neuroimaging [223]. Medical image
registration has been an active area of research for over 30 years and a wide variety of
methods have been developed for use in different scenarios. Several review articles give an
overview of these methods [224-229].

Image registration is usually performed on a pair of images, to find a spatial
transformation, ¢, that describes how pixels or voxels in one of the images should move in
space to align them with corresponding pixels or voxels in the other image. By convention,
the image that will be transformed is referred to as the moving or source image, I,,,, while
the other image is referred to as the fixed or target image, I;.

The transformation model (also known as a deformation model) of an Image
registration method determines the range of possible transformations ¢ that can be applied
to I,,,. Rigid models allow translations and rotations, and affine models allow translations,
rotations, shearing and scaling. These models can be compactly described using a single
matrix. However, not all transformations can be described using translations, rotations,
shearing and scaling. Instead, non-linear (also known as deformable) models are used to
describe these more complex transformations. These models are usually defined by a dense
field of vectors that describe either how each pixel or voxel in I,,, should move in space to

align it with the corresponding pixel or voxel in Ir or how each point in a grid of control
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points should move in space. Examples of the different types of transformations are shown

in Figure 23.

Image following transformation
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Figure 23: Examples of different types of transformations and their effect on an image (modified from [230]).

Finding transformations that align corresponding regions in medical images can be
useful for three main reasons. First, they can enable the fusion of information contained in
different images, which is useful for clinical applications such as image-guided interventions
[231] and radiotherapy treatment planning [232]. Second, they can quantitatively describe
differences or changes in the shapes of anatomical features in images, thus allowing
guantitative analysis of shape variability within and between populations [233]. Third, they
can quantitatively describe changes in the positions of anatomical features in images, thus

allowing estimation of the motion of these features [233—-235].

3.4.2 Traditional Registration Methods
Traditional registration methods (also known as classical registration methods) find an

optimal spatial transformation, {, by solving an optimisation problem. In other words, they



Technical Introduction 79

iteratively modify ¢ until it minimises the value of a cost function (also known as an

objective function), C(If, Ly, ):

¢ = argmin C(If, L, ©) (15)
®

Usually, C(If, Ly, ) consists of two terms: one to quantify the similarity between Ir and the

moving image transformed according to ¢, I,,, °© ¢; and another to regularise ¢:
C(Iy I, ) = M(If, Iy © @) + R() (16)

M(If, Ly o go) is often referred to as the matching criterion or similarity metric. Commonly
used matching criteria include cross-correlation (CC), mean squared error (MSE) and
mutual information (M) [224-227]. The choice of matching criterion usually depends on
whether the images are mono- or multi-modal. MSE and CC are favoured in mono-modal
image registration, as these criteria assume identity and linear mappings between the pixel
or voxel intensities in the images. M1 is favoured in multi-modal registration, as it is robust
even when there are complex nonlinear mappings between the intensities.

The purpose of R(¢) is to encourage ¢ to have certain desirable properties, usually
being spatially smooth and continuous as these properties are often required for
anatomically plausible deformation fields. A commonly used R(¢) constrains the second

derivatives of ¢ to encourage spatially smooth and continuous ¢ [236,237]:

R(p) =23k, [(Z—¢)2 + (227‘2)2 +2 (Z—‘;)Z] (17)

where K is the number of pixels in the image.

Mathematically, image registration is challenging problem as there are many
different spatial transformations that can align corresponding pixels or voxels in a pair of
images. Regularising ¢ aims to make the problem easier to solve by penalising solutions
that do not meet certain criteria, such as being smooth and continuous, as specified by the

regularisation term.
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Many different types of traditional registration methods have been developed and
used to register a wide variety of medical images. Several review articles give an overview of
these methods [224-227]. A popular rigid registration method is the block-matching method
[238], while popular nonlinear registration methods include free-form deformations (FFDs)
[236], demons [239] and their extensions such as diffeomorphic demons [240] and
symmetric image normalisation (SyN) [223].

Implementations of several of these popular methods are publicly available. For
example, NiftyReg [237,241] implements the block-matching method and FFDs, MATLAB
(MathWorks, Natick, MA) implements demons and ITK [242] implements FFDs, SyN and
demons. These implementations facilitate the adaptation and optimisation of the methods
to new applications.

While a large number of mono- and multi-modal traditional registration methods
have been developed and some of these translated into clinical practice [222], these
methods register images in an iterative and therefore time-consuming way, preventing their
use in clinical applications requiring near-real-time registration. This limitation has motivated
the image registration community to explore alternative non-iterative ways to perform

image registration.

3.4.3 Deep-Learning-Based Registration Methods
Recently, inspired by the successes of DL-based methods in other medical image analysis
tasks, researchers have developed DL-based methods for medical image registration
[228,229,251-254,243-250]. Two recent review articles give an overview of these methods
[228,229]. The latest methods [243,244,253,254,245-252] are nonlinear registration
methods that consist of CNNs (introduced in section 3.2.6) for estimating deformation fields
between images and spatial transformers [255] for transforming images and/or
segmentations according to the estimated deformation fields. These methods have achieved
state-of-the-art accuracy in the registration of MR images of organs including the heart
[243,244,247,251,253] and brain [245,246,248-250,252].

The latest DL-based nonlinear registration methods are unsupervised [243—-246] or
weakly-supervised [245-249,251-254] as, during their training, the deformation fields they

estimate are not compared with GT deformation fields. The main motivation for avoiding the
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use of GT deformation fields in training is that these are rarely available and, if not
impossible, the process to obtain these fields is time-consuming and prone to inaccuracies.
While images with GT deformation fields can be synthesised, the key challenges of this
approach are synthesising images with a realistic appearance and synthesising realistic
deformation fields.

Unsupervised methods are trained using images only. The loss functions of the latest
unsupervised methods are inspired by the cost functions of traditional registration methods
and typically consist of two terms: the matching criterion, M(If, J (p) that quantifies the
similarity between Ir and I, © ¢, and the regularisation term, R(¢), which regularises the
deformation field to ensure it has desirable properties such as being spatially smooth and

continuous. The equation for a typical loss function is therefore:

Lunsup = M(I5, Iy © @) + €R(6) (18)

where € is a scalar constant. Similarly to traditional registration methods, commonly used
matching criteria include CC [243-245,250,251] and MSE [245,247-249,252]. An overview
of how an unsupervised registration method is trained is shown in Figure 24.
Weakly-supervised methods are trained using images and additional information
such as surfaces [246] or segmentations [245,247—-250,252-254]. The loss functions of these
methods therefore typically consist of the two terms in equation (18) and an additional
term. Usually, this additional term quantifies the overlap between corresponding regions in
the segmentations or surfaces. Commonly used terms to quantify this overlap include the
DSC [245,249,250,252—-254] and cross entropy [247,248] (both introduced in section 3.3.2).
An overview of how an unsupervised registration method is trained is shown in Figure 24.
Implementations of several state-of-the-art DL-based nonlinear registration methods

are publicly available [245-249,251].



Technical Introduction 82

Moving 3D Image (m)

go(f,m) Registration Field (¢) Moved (mo ¢)

Fixed 3D Image (f) Spatial
Transform
1
1
1
Lsmouth(‘p) i
Lsim(f,m o ¢) ,
|
i
1
Auxiliary Information (Optional) l
1
1
Fixed Image Moving Image . Moved Segmentations
Segmentations (s;) ~ Segmentations (s,;) ! (Sm° P)
1
1 $
l* . ; o
Spatial —->
> | Transform
LS(,’g (Sf: Sm° (p) *

Figure 24: An overview of VoxelMorph [245], a deep-learning-based nonlinear registration method that can be trained in
either an unsupervised or weakly-supervised manner. The method consists of a convolutional neural network (gg) to
estimate deformation fields that align images and a spatial transformer to warp images (and segmentations during weakly-
supervised training) according to the deformation fields. Only images are used as inputs to the network. During
unsupervised training of the network, the loss function consists of two terms: Lg;,, to quantify the similarity between the
appearance of the moved and fixed images, and Ly, ,0tn to constrain the. During weakly-supervised training, the loss
function includes an additional term, L4, that quantifies the overlap between the moved segmentations and the fixed

image segmentations.

3.4.4 Segmentation-Informed Registration Methods

Registration and segmentation can be related tasks, and there is increasing evidence that
the performance of registration methods is improved if segmentation information is used in
the registration process [245,247-254,256]. Such information is typically included in the
training of DL-based nonlinear registration methods by adding region-overlap-based terms
such as the DSC to their loss functions. Some methods, such as VoxelMorph [245] and joint
registration and segmentation methods [247-250,252,257,258], only use segmentations
during training, as shown in Figure 24, while others also use segmentations during

deployment [251,253,254,256], as shown in Figure 26. VoxelMorph [245] has been used to
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register 3D MR images of the brain and performed this with an accuracy comparable to
state-of-the-art traditional registration methods while reducing the computation time from
hours to minutes on a central processing unit (CPU) and to under one second on a graphics
processing unit (GPU) [245].

Compared with methods such as VoxelMorph, the methods that use segmentation
during both training and deployment all include segmentation information in the
registration process in one of two additional ways. The first approach is to use
segmentations to modify the appearance of images in order to optimise them for the
registration task [251,253,256]. In this approach, images are modified before being used as
inputs to the registration CNN either by multiplying them by binary masks [251,253], as
shown in Figure 25, or by using a fully convolutional image transformer network whose loss
function includes a region-overlap-based term [256]. The second approach uses
segmentations as well as images as inputs to the registration CNN [254], as shown in Figure
26. The rationale for using segmentations as inputs, even if these are estimates rather than
ground truths, is that they provide information about the positions of anatomical features in
the images and therefore help the registration CNN to estimate more accurate deformation
fields. To enable their deployment when fixed and moving image segmentations are not
available, the frameworks proposed in [251,254] all include automated segmentation
methods.

Implementations of several segmentation-informed DL-based nonlinear registration

methods are publicly available [245,247-249,251].
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Figure 25: An overview of the deep-learning-based nonlinear registration method developed by [253]. The method is both

segmentation informed and discontinuity preserving. The method consists of the following steps. First, the input images are

multiplied by binary masks to create multiple single-region versions of the images. These versions of the images are then

used as inputs to U-Net-based FCNs to estimate region-specific velocity fields. Next, the velocity fields are converted into

deformation fields, multiplied by binary masks to introduce discontinuities and then linearly combined to create an overall

deformation field. Finally, a spatial transformer is used to warp the moving image according to the overall deformation

field.
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Figure 26: An overview of the deep-learning-based nonlinear registration method developed by [254]. The segmentation-

informed method uses a convolutional neural network (CNN) to estimate deformation fields that align ultrasound (US)
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3.4.5 Discontinuity-Preserving Registration Methods

Most nonlinear registration methods, both traditional and DL-based, feature regularisation
terms that aim to ensure that the estimated deformation fields are smooth and continuous.
However, such fields cannot accurately capture certain types of motion such as organs
sliding past each other or organs coming into contact and then separating from each other.
Instead, deformation fields with discontinuities are required to capture these types of
motion. While several traditional methods [235,259-265] have been developed to capture
the former type of motion (i.e. sliding motion), only one of these [261] can capture the latter
type (i.e. changes in organ contact). Since during speech the articulators routinely come into
contact and then separate from each other, this type of method would be particularly
suitable for capturing their motion. The method, inspired by the extended finite element
method [266], extended the FFD method by introducing an additional term to the FFD B-
spline basis functions to enable them to estimate more realistic deformations at
discontinuities. The method was segmentation-informed: it required information about the
location of discontinuities in f to be provided in the form of binary masks. The method was
used to register 4D computed tomography (CT) images of the lungs and liver achieved this
more accurately than other state-of-the-art methods including those developed by
[235,259,260,263,264]. However, unfortunately there is no publicly available
implementation of the method developed by [261].

Two DL-based methods have been developed to estimate deformation fields with
discontinuities [253,267]. The first method [267], consisting of a U-Net-based FCN to
estimate deformation fields to align pairs of images, was trained in an unsupervised manner
using a loss function that included a regularisation term to preserve discontinuities.
However, this regularisation term was designed to capture sliding motion only. The other
method [253], an overview of which is shown in Figure 25, used separate U-Net-based FCNs
to estimate deformation fields for different regions of the input images, and then used
segmentations to create discontinuities in these fields before combining them into an overall
displacement field. It was designed to capture cardiac motion and its suitability for capturing
motion where organs come into contact and then separate from each other has not yet
been investigated. However, there is currently no publicly available implementation of the

method.
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Frame 1 Frame 2 Frame 3

Figure 27: (A) Registration of consecutive frames in a series of two-dimensional real-time magnetic resonance images of
speech. (B) Registration of the midsagittal slice of a three-dimensional image of the vocal tract to a two-dimensional real-
time magnetic resonance image of speech. ¢ indicates the deformation field required to align the left-hand image to the

right-hand image.

3.4.6 Registration of Magnetic Resonance Images of the Vocal Tract
So far, only traditional registration methods have been applied to MR images of the vocal
tract [20,21,69,72,75,196,268-270]. Rigid methods were used to correct for changes in head
position in series of 2D rtMR images of speech [69,72,75,196], while nonlinear methods
were used to synthesise rtMR image series of speech [21,268-270], create dynamic 3D
atlases of the vocal tract during speech [21] and estimate the speed at which the tongue tip
moves during speech [20]. More specifically, in [20,21,268—-270] nonlinear methods were
used to determine transformations to align:

1. Consecutive images in series of 2D rtMR images of speech [20,268,269], as shown in

Figure 27A;
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2. Adjacent sagittal slices in 3D images of the vocal tract acquired during sustained

phonation [268];

3. Two-dimensional rtMR images of speech from different series [21,270];
4. Midsagittal slices in 3D images of the vocal tract acquired during sustained phonation
to 2D rtMR images of speech [268], as shown in Figure 27B.
Using these transformations, 3D rtMR image series of speech were synthesised [268,270],
2D rtMR image series of speech were synthesised from single 2D rtMR images of speech
[269], dynamic 3D atlases of the vocal tract during speech were created [21] and tongue tip
speeds were estimated [20].

More specifically, the registration-based method for estimating tongue tip speeds, an
overview of which is shown in Figure 28, consisted of the following steps. First, the nonlinear
registration method described in [271] was used to estimate deformation fields between
consecutive frames in series of 2D rtMR images of speech. Then, a point on the tip of the
tongue was manually selected in the first image of the series. Next, the position of the point
in all the other images was estimated using the deformation fields, thus enabling tracking of
the trajectory of the tongue tip and the calculation of tongue tip speeds. Tongue tip speeds
estimated using the method were found to be similar to those reported in the literature,
suggesting that registration-based methods can accurately estimate the speed at which
articulators move during speech.

In terms of the three previous works, the diffeomorphic demons method [240] was
used to register adjacent sagittal slices in 3D images of the vocal tract [268], consecutive
frames in 2D rtMR image series of speech [268—-270] (see Figure 27A), and midsagittal slices
in 3D images to 2D rtMR images of speech [268] (see Figure 27B). In another previous work,
the FFD method [236] was used to register consecutive frames in series of 2D rtMR images

of speech [21].
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Figure 28: An overview of the registration-based method proposed by [20] to estimate tongue tip speeds in series of two-

dimensional magnetic resonance images of speech.

In three previous works [20,268,269], images where articulators were in contact
were nonlinearly registered to images where they were not and vice versa. However, the
authors did not evaluate if their chosen registration methods captured these changes in
contact. As explained in section 2.2.3, changes in contact such as those that occur because
of velopharyngeal closure are clinically In [268], the authors reported that the diffeomorphic
demons method did not capture articulators coming into contact (for example, the lips
coming into contact). Nevertheless, the authors used the same method in similar
subsequent work [269]. In [20,269], the authors did not discuss if their chosen registration
methods captured changes in articulator contact. As described in section 2.2.3, in clinical
speech assessment visualisation of soft palate motion provides information that aids VPI
treatment decision making. Consequently, a key requirement of motion estimation methods
intended for use in clinical speech assessment is that they accurately capture soft palate

motion, including any velopharyngeal closures that occur.

3.5 Conclusions

Use of MRI to visualise the vocal tract and articulators during speech is increasing. Real-time
MRI is the most suitable type of dynamic MRI technique for use in clinical speech
assessment, as it allows imaging of speech as it occurs and does not require any repetitions

of a speech task. However, a key requirement to facilitate the widespread adoption of rtMRI
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techniques in clinical speech assessment is that the techniques should only require standard
MRI equipment and software. This requirement motivated the choice of the dataset
(described in section 4.1) that was used in the work presented in chapter 5 and chapter 6.

Use of MRI to visualise the LVP is also increasing. In previous work, T>-weighted 3D
images of the LVP at 3.0 T using TSE pulse sequences were predominantly acquired.
However, there is still no consensus on the optimal contrast for LVP visualisation in MR
images. This lack of consensus motivated the optimal contrast investigation presented in
section 4.2.2.

There is increasing interest in extracting quantitative information about articulators
and the LVP from MR images. A common approach to automate the quantification of
anatomical features in medical images is to first segment the features and then perform
guantification using the segmentations. While many methods to segment air-tissue
boundaries between the vocal tract and articulators in 2D rtMR images of speech have been
developed, few methods have been developed to fully segment articulators, an important
first step to enable their quantification. In addition, there is only a single report in the
literature of methods to segment the LVP in 3D MR images. This lack of methods motivated
the work presented in chapter 5 and chapter 7.

In addition, there is increasing interest in extracting quantitative information about
the motion of the soft palate in series of 2D rtMR images of speech. An established way to
guantify motion in image series is by using nonlinear registration methods to estimate
displacement fields between the images. While a nonlinear-registration-based method has
been developed to estimate tongue tip speed in series of 2D MR images of speech, there are
no reports in the literature of nonlinear-registration-based methods for estimating the
motion of other articulators such as the soft palate. This lack of methods motivated the

work presented in chapter 6.
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Chapter 4: Materials

This chapter describes the datasets that were used in the work presented in this thesis. The
first section describes the real-time speech MRI datasets and corresponding GT
segmentations that were used in the work described in chapter 5 and chapter 6, while the
second section describes the 3D static MR images of the vocal tract and corresponding GT

segmentations that were used in the work described in chapter 7.

4.1 Real-Time Speech MRI Datasets

4.1.1 Introduction
As explained in section 3.1.7, use of MRI to visualise the vocal tract and articulators during
speech is increasing due to the growing availability of MRI scanners, the development of
rtMRI techniques for such visualisation, and the unique ability of MRI to non-invasively
acquire images of any orientation without using ionising radiation [12,27,61]. Real-time MRI
is the most suitable type of MRI technique for use in clinical speech assessment, as it allows
imaging of speech as it occurs and does not require any repetitions of a speech task.
Typically during rtMRI of speech, series of 2D images of a midsagittal slice of the
vocal tract are acquired. To accurately capture articulator motion, imaging at relatively high
spatio-temporal resolutions is required [12]. State-of-the-art real-time speech MRI
techniques enable 2D imaging of a single slice at a spatial resolution of <2.4x2.4 mm? and a
temporal resolution of <20 ms [9,10]. However, these techniques require highly specialised
MRI equipment and software, namely custom receive coils [10] and/or specialised pulse
sequences and reconstruction methods [9,10], that are not widely available especially in
clinical practice. These requirements therefore prevent the widespread adoption of the
techniques, a limitation that has motivated the development of techniques that only require
widely available standard MRI equipment and software [11,27,114,115]. Techniques that
only require standard MRI equipment and software enable 2D imaging at spatial resolutions
of <2.4x2.4 mm? and temporal resolutions <100ms. While these spatio-temporal resolutions

are lower than those of state-of-the-art techniques, they are nevertheless sufficient to
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capture the general motion of articulators such as the soft palate [12]. A key requirement to
facilitate the widespread adoption of rtMRI techniques in clinical speech assessment is that
the techniques should only require standard MRI equipment and software. This requirement
motivated the choice of the dataset described in this section.

As explained in section 3.3.3, there is increasing interest in extracting quantitative
information about articulators and the vocal tract from 2D rtMR images of speech
[7,14,75,76,84,88,195-198,20,68—74]. More specifically, there is interest in measuring the
size and shape of the vocal tract [14,68,197,198,70,74-76,84,88,195,196], the size, shape
and motion of the soft palate [72,73,75,84,198], lip motion [69,75,84], tongue motion
[20,84] and the distance between the soft palate and the posterior pharyngeal wall
[7,72,198]. Manual measurement to obtain this information is time-consuming, requires
input by specialists and is prone to intra- and inter-observer variability. The increasing
interest in extracting quantitative information, in combination with the need to avoid
manual measurement, have motivated the development of a range of methods to (semi-
Jautomatically extract this information [15,16,206,207,20,199-205]. Almost all these
methods are segmentation based [15,16,207,199-206].

Segmentation of medical images is a common first step to enable automatic
measurement of anatomical structures. As explained in section 3.3.4, numerous methods
based on a variety of approaches have been developed to segment rtMR images of speech
[15,16,207,199-206]. The majority of these methods [15,199-204,208] were designed to
enable (semi-)automatic analysis of the size and shape of the vocal tract in the images, an
analysis of particular interest to the speech science community. To enable this analysis, the
methods created contours of air-tissue boundaries between the vocal tract and adjacent
articulators. While such contours enable analysis of the size and shape of the vocal tract,
they only partially segment articulators and consequently do not enable analysis of the size,
shape, motion or position of the articulators during speech. Increasing interest in such
analysis, by clinicians as well as speech science researchers, has recently motivated the
development of methods to fully segment articulators in rtMR images of speech [205-207],
including the method presented in chapter 5.

Development and evaluation of segmentation methods requires datasets with
corresponding GT segmentations. As explained in section 3.3.4, while there are publicly

available speech MRI datasets [18,19,116—121], none of these include GT segmentations of
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articulators. This requirement, in combination with the lack of suitable publicly available MRI
datasets, motivated the creation of the GT segmentations described in this section.

As described in section 2.2.3, visualisation of soft palate motion provides information
that aids VPI treatment decision making in clinical speech assessment. Consequently, a key
requirement of automatic image quantification methods intended for use in clinical speech
assessment is that they accurately capture soft palate motion. In particular, the methods
must capture any velopharyngeal closures that occur. To enable evaluation of the accuracy
with which methods captured velopharyngeal closures, GT velopharyngeal closure labels

were created for the datasets described in this section.

Table 1: Imaging parameters used to acquire the two-dimensional real-time magnetic resonance image series. The table
lists repetition times (TRs), echo times (TEs), sensitivity encoding (SENSE) factors, number of signal averages (NSAs), water

fat shifts (WFSs) and bandwidths (BWs).

Parameter Value

TR (ms) 2.0

TE (ms) 0.9

Flip angle (°) 15

Field of view (mm?) 300%x230

SENSE factor 2

NSA 1

Actual WFS (pixel) / BW (Hz) 0.134 /3240.4

4.1.2 Real-time MR Images of Speech
Five series of rtMR images of speech acquired in a previous study [272] were used in the
work described in chapter 5 and 6 of this thesis. The series were of five healthy adult
volunteers (two females, three males; age range 24-28 years). All volunteers were fluent
English speakers with no history of speech and language disorders.

Each volunteer was imaged in a supine position using a 3.0 T TX Achieva MRI scanner
and a 16-channel neurovascular coil (both Philips Healthcare, Best, Netherlands) while they
performed the following speech task a single time: counting from 1 to 10 in English. Images

of a 10 mm thick mid-sagittal slice of the head were acquired using a steady-state free
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precession (SSFP) pulse sequence based on the sequence identified by [11] as being optimal
for vocal tract image quality. Example images are shown in Figure 29A. Imaging parameters
are listed in Table 1. The acquired matrix size and in-plane pixel size were 120x93 and
2.5x2.45 mm? respectively. However, k-space data were zero padded to a matrix size of
256x256 by the scanner before being reconstructed, resulting in a reconstructed in-plane
pixel size of 1.17x1.17 mm?2. To maximise the signal-to-noise ratio in the images, partial
Fourier was not used. Images were acquired at a temporal resolution of 0.1 s and only one
image series was acquired per volunteer. The volunteers were instructed to perform the
speech task at a rate which they considered to be normal. Some performed the task faster
than others and consequently not all series had the same number of images. The series had

105, 71, 71, 78 and 67 images each (392 images in total).

4.1.3 Velopharyngeal Closure Identification
The number of velopharyngeal closures shown in the rtMR image series had not been
identified in any previous work. To identify this number, the following steps were taken:

1. Each image was visually inspected and labelled as either showing contact between
the soft palate and posterior pharyngeal wall or not showing contact.

2. Line charts of the labels of each image series were created (an example chart is
shown in Figure 29E) and visually inspected to determine the number of
velopharyngeal closures shown in the series.

It can be challenging to determine if an image shows contact between the soft palate and
posterior pharyngeal wall, especially if the soft palate is close to the posterior pharyngeal
wall. To reduce the subjectivity of the labels, each image was independently labelled by four
MRI Physicists. Raters one to four respectively had four, ten, two and one years of
experience of rtMRI of speech. All the images were labelled again one month later by rater
one (the author of this thesis). Intra- and inter-rater agreement was assessed by comparing
the labels and velopharyngeal closures. In cases where one rater disagreed with the others,
the majority label was considered to be the GT label. In cases where only two raters agreed,
raters one and two (those with the most experience of speech MRI) jointly inspected the
images and then reached a consensus on the labels for these images, similarly to how SLTs

jointly inspect videofluoroscopy speech image series in clinical practice in the UK. Line charts
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of the GT labels of each image series were created (an example chart is shown in Figure 29E)
and visually inspected to determine the number of velopharyngeal closures shown in the

series.
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Figure 29: Five consecutive images from one of the real-time magnetic resonance image series (A) with ground-truth
segmentations of anatomical features overlaid (B). The ground-truth segmentations are of the head (dark blue), soft palate
(light blue), jaw (green), tongue (yellow), vocal tract (pink) and tooth space (red) classes. (C) shows ground-truth
segmentations only. (D) shows cropped versions of the ground-truth segmentations in (C) with labels indicating if the soft

palate is in contact with the posterior pharyngeal wall. (E) is a line chart of the contact labels.

4.1.4 Ground-Truth Segmentation Creation

GT segmentations of anatomical features in the rtMR image series had not been created in
any previous work. GT segmentations were created by manually labelling pixels in each of
the images. The segmentations consisted of six classes, each made up of one or more

anatomical features. There was no overlap between classes: a pixel could not belong to
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more than one class. For conciseness, the classes were named as follows: head, soft palate,
jaw, tongue, vocal tract and tooth space. However, the names of the head, jaw and tongue
classes are simplifications. The head class consisted of all anatomical features superior to or
posterior to the vocal tract. It therefore included the upper lip, hard palate, brain, skull,
posterior pharyngeal wall and neck. The jaw class consisted of the lower lips, the soft tissue
anterior to and inferior to the tooth space and the soft tissue inferior to the tongue. The
tongue class included the epiglottis and the hyoid bone. Pixels not labelled as belonging to
one of the classes were considered to belong to the background. Example GT segmentations
are shown in Figure 29B. The reasons for including each class in the GT segmentations are

given in Table 2.

Table 2: Reasons for including each class in the ground-truth segmentations of the real-time magnetic resonance images of

the vocal tract during speech.

Class Reason(s) for inclusion

Primary: segmentation of the posterior pharyngeal wall would enable

automatic measurement of the distance between the soft palate and the
Head posterior pharyngeal wall

Secondary: segmentation of the upper lip would enable automatic lip

motion tracking

Segmentation would enable soft palate size, shape, motion and position
Soft palate analysis, and also automatic measurement of the distance between the

soft palate and the posterior pharyngeal wall

Jaw Segmentation of the lower lip would enable automatic lip motion tracking

Segmentation would enable tongue size, shape, motion and position
Tongue
analysis

Vocal tract Segmentation would enable vocal tract size and shape analysis

Included so that there were no holes in the ground-truth segmentations,
Tooth space
thus facilitating the post-processing of estimated segmentations

Wherever possible, the boundaries of the classes were chosen to be clear anatomical

boundaries in order to minimise the subjectivity of the GT segmentations. Apart from the
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tooth space class, the majority of the class boundaries were easily distinguishable air-tissue
boundaries. However, there were no clear anatomical boundaries for some sections of the
class boundaries. Instead, the following artificial boundaries were devised for these sections.
The two main goals when devising these boundaries were firstly to include only relevant
anatomical features and secondly to minimise the subjectivity of the boundaries.

The inferior boundary of the head class in the neck was defined as the horizontal line
parallel to the inferior surface of the intervertebral disc between vertebrae C3 and C4 (see
blue arrows in Figure 30). This choice was made to exclude the inferior section of the neck in
the head class as this section was not required for the desired analyses and would have
otherwise increased the imbalance between the number of pixels in the head class and the
other classes.

The posterior boundary of the jaw class was defined as the anterior edge of the
hyoid bone (see dotted green arrows in Figure 30), while the inferior boundary of the jaw
class in the neck was defined as the horizontal line intersecting the point where the jaw
meets the neck (see solid green arrows in Figure 30).

The inferior boundary of the vocal tract class was defined in the same way as that of
the head class (see pink arrows in Figure 30), and the inferior boundary of the tongue class
in the neck was defined in the same way as that of the jaw class in the neck (see yellow
arrows in Figure 30).

GT segmentations were created by the MRI Physicist with four years of speech MRI
experience (the author of this thesis), using bespoke software developed in house and
implemented in MATLAB R2019b (MathWorks, Natick, MA). GT segmentations were
consistent with the GT velopharyngeal closure label for the images: segmentations of the
soft palate and posterior pharyngeal wall (part of the head class) were in contact for images
labelled as showing contact and not in contact otherwise. To enable investigation of intra-
rater agreement and therefore uncertainty in the segmentations, the Physicist created GT
segmentations again for seven (approximately 10%) randomly chosen images in each series.

The agreement was quantified using two metrics: the DSC and the HD.
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Figure 30: A real-time magnetic resonance image of speech cropped to only show the vocal tract (A) with ground-truth
segmentations of anatomical features overlaid (B). The blue arrows point to the inferior surface of the intervertebral disc
between vertebrae C3 and C4. The dotted green arrows point to the anterior edge of the hyoid bone, while the solid green
arrows point to where the neck meets the jaw. The yellow arrows point to the inferior boundary of the tongue class in the

neck, while the pink arrows point to the inferior boundary of the vocal tract class.

The process for creating the GT segmentations of an image series was as follows:

1. Initial binary mask creation: a series of binary masks of the entire head were created
by applying a manually chosen threshold to the image series (see Figure 31). The
chosen threshold was the minimum integer that resulted in as many of the binary
masks as possible meeting the following criteria:

a. Minimal noise in the vocal tract (see Figure 32A).

b. Clear air-tissue boundaries.

c. Jaw not divided into two or more regions (see Figure 32B).

d. Tip of epiglottis not artificially in contact with tongue (see Figure 32C).
No single threshold resulted in all the binary masks meeting all the criteria. The
following iterative process was used to identify a suitable threshold:

a. Athreshold was applied to the image series to create a series of binary masks

of the entire head.
b. The series was visually inspected.
c. If necessary, the threshold was modified and steps (a) and (b) above were

repeated.
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Once a suitable threshold has been identified, holes in the binary mask were
manually removed (see Figure 31).
Head class GT segmentation creation: a series binary masks of the head class were
created by:

a. Manually defining an approximate outline of the head class in each image

(see Figure 33A).
b. Extracting the sections of the initial binary mask within the approximate
outline (see Figure 33B).

c. Manually refining the extracted binary masks (see Figure 33C).
Soft palate class GT segmentation creation: a series of binary masks of the soft
palate class were created by following the same process as in step 2 above.
Jaw class GT segmentation creation: a series of binary masks of the jaw class were
created by following the same process as in step 2 above.
Tongue class GT segmentation creation: a series of binary masks of the tongue class
were created by following the same process as in step 2 above.
Tooth space class GT segmentation creation: a series of binary masks of the tooth
space class were created using the binary masks of the jaw and tongue classes, as
shown in Figure 34.
Vocal tract class GT segmentation creation: a series of binary masks of the vocal
tract class were created using the binary masks of the head, soft palate, jaw, tongue

and tooth space classes, as shown in Figure 35.
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(C)

' |

Figure 31: A series of real-time magnetic resonance images of speech (A), corresponding binary masks of the entire head

created by applying a manually chosen threshold (B), and the binary masks after holes in them have been filled (C).
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Figure 32: Pairs of binary masks of the entire head created from the same images but using different thresholds, one
suitable and the other unsuitable. In row (A), the threshold used to create the left-hand mask is too low, resulting in noise in
the vocal tract (indicated by blue arrow). In row (B), the threshold used to create the right-hand mask is too high, resulting
in the jaw being divided into two regions. In row (C), the threshold used to create the left-hand mask is too low, resulting in

the tip of the epiglottis being artificially in contact with the tongue.
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(A)

(B)

(C)

(D)

Figure 33: A series of real-time magnetic resonance images of speech with an approximate manually drawn outline of the
head class overlaid in blue (A), with the section of the entire head binary mask (see Figure 31B) contained in the
approximate outline overlaid (B), with the manually refined version of the binary mask in (B) overlaid (C). (D) shows the

binary mask in (C) only.
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Figure 34: The process to create a binary mask of the tooth space class. (A) A real-time magnetic resonance image with a
jaw and tongue class binary masks overlaid in blue. (B)The same binary mask except with the tooth space region manually
filled. (C) The same image with the tooth space class binary mask overlaid. The binary mask in (C) was created by

subtracting the binary mask in (A) from the binary mask in (B).

(A) (B)

Figure 35: The process to create a binary mask of the vocal tract class. (A) A binary mask of the head, soft palate, jaw,

tongue and tooth space classes combined. (B) The same binary mask except with the vocal tract region manually added to
it. (C) A real-time magnetic resonance image with the vocal tract binary mask overlaid in blue. The binary mask in (C) was

created by subtracting the binary mask in (A) from the binary mask in (B).

4.1.5 Results

4.1.5.1 Velopharyngeal Closure Identification

The GT labels of each image series are shown in Figure 36. Of the 392 images, 230 (58.7%)
images were labelled as showing contact between the soft palate and posterior pharyngeal
wall, while 162 (41.3%) were labelled as not showing contact. As shown in Figure 37, in
three image series two thirds of the images were labelled as showing contact, while in the

other two image series approximately half of the images were labelled as showing contact.
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The GT numbers of velopharyngeal closures shown in the image series are listed in Table 3.

In total, 30 velopharyngeal closures were shown in the image series.
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Figure 36: The ground-truth labels of the five real-time magnetic resonance image series. Each line chart represents a

different series and has different x-axes. Each peak in a line chart indicates a velopharyngeal closure.
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Figure 37: The number of real-time magnetic resonance images showing contact between the soft palate and posterior

pharyngeal wall, complementary information to that provided in Figure 36.

Table 3: The number of velopharyngeal closures shown in the image series and Figure 36.

Subject Velopharyngeal closures
1 8
2 4
3 4
4 6
5 8

As shown in Figure 38, there was intra-rater agreement in the labels of 385 of 392
(98.2%) images and in all 30 velopharyngeal closures. In three image series, intra-rater
agreement in the labels was 100% (220 of 220) images, while in the other two image series
intra-rater agreement in the labels was 97.0% (65 of 67) and 95.2% (100 of 105) of images
respectively. All label differences were for images at the start or end of a velopharyngeal

closure, where the soft palate is close to or in contact with the posterior pharyngeal wall.
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Such discrepancies affected the durations of velopharyngeal closures but not the number of
velopharyngeal closures.

There was complete inter-rater agreement in the labels of 357 of 392 (91.1%) images and in
25 of 30 (83.3%) velopharyngeal closures. All label differences were for images where the
soft palate was close to or in contact with the posterior pharyngeal wall. In two image series,
there was complete inter-rater agreement in all 12 velopharyngeal closures. In the other
three image series, there was complete inter-rater agreement in 5 of 6 (83.3%), 3 of 4
(75.0%) and 5 of 8 (62.5%) velopharyngeal closures respectively. As shown in Figure 38,
raters one and two (the two raters with the most experience of rtMRI of speech) had the
highest inter-rater agreement, with agreement in the labels of 384 of 392 (98.0%) images
and in all 30 velopharyngeal closures. There was inter-rater agreement between at least
three raters in the labels of 385 of 392 (98.2%) images and in all 30 velopharyngeal closures.
Figure 39 shows images where inter-rater agreement in labels was lower. In all five cases
where there was inter-rater disagreement in a velopharyngeal closure, one rater considered

there to be two closures instead of one.
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Figure 38: The intra- and inter-rater agreement in the labels of the 392 images (A) and in the velopharyngeal closures (B).
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Figure 39: Real-time magnetic resonance images cropped to only show the vocal tract (A) and soft palate (B) where only
two out of four raters agreed on the label.

4.1.5.2 Ground-Truth Segmentation Creation

GT segmentations for one of the image series are shown in Figure 29. In terms of number of
pixels, as shown in Figure 40, the largest class was the head class with a median of 23633
pixels per segmentation, while the smallest class was the tooth space class with a median of
164 pixels per segmentation, closely followed by the soft palate class with a median of 277

pixels per segmentation.
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Figure 40: The number of pixels of each class per ground-truth segmentation. (B) is identical to (A) except the y-axis

maximum value has been reduced to 2750.
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Quantified using the DSC and HD, the median intra-rater agreement was 0.97 and 1.4
pixels respectively. As shown in Figure 41, inter-rater agreement was highest for
segmentations of the head class with a median DSC of 1.0 and a median HD of 1.2 pixels,
while inter-rater agreement was lowest for segmentations of the tooth space and soft palate
classes, with median DSCs of 0.95 and 0.97 respectively, and a median HD of 1.4 pixels.
Segmentations of the soft palate class had the largest range in DSC, closely followed by
segmentations of the tooth space. A small number of segmentations of the tongue and vocal
tract classes had larger HDs. Two of these larger distances were caused by the epiglottis
being included in one of the segmentations of the tongue class but not the other (see Figure
42). The other larger distance was caused by contact between the head and tongue classes
in one of the segmentations but not in the other (see Figure 42).

As shown in Figure 43, intra-rater agreement was consistently lower in the
segmentations of images showing contact between the soft palate and posterior pharyngeal
wall, across all classes and metrics. Figure 44 shows images where intra-rater agreement in

segmentations was low.
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Figure 41: The intra-rater agreement in the ground-truth segmentations, evaluated using the Dice coefficient (A) and

general Hausdorff distance (B).
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(A)

(B)

(C)

Figure 42: Pairs of ground-truth segmentations with large intra-rater differences. In rows (A) and (B), the vocal tract
between the epiglottis and the anterior surface of the tongue has been included in the tongue class in the left-hand
segmentation (first attempt) but not in the right-hand one (second attempt). In row (C), the head and tongue classes are in
contact in the right-hand segmentation but not in the left-hand one. The ground-truth segmentations are of the head (dark

blue), soft palate (light blue), jaw (green), tongue (yellow), vocal tract (pink) and tooth space (red) classes.
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Figure 43: The intra-rater agreement in the ground-truth segmentations, evaluated using the Dice coefficient (A) and
general Hausdorff distance (B), and grouped according to whether there is contact between the soft palate and posterior

pharyngeal wall or not.
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Figure 44: Real-time magnetic resonance images cropped to only show the vocal tract (A) and soft palate (B) whose ground-

(A)

(B)

truth segmentations had lower intra-rater agreement. The images show examples (indicated by white arrows) of the three
main image quality related challenges faced by the MRI Physicist while creating the segmentations. In the left-hand image
pair, there is fluid between the soft palate and posterior pharyngeal wall. In the central image pair, there is fluid in the vocal
tract and also blurring of the soft palate-vocal tract boundary as a result of motion. In the right-hand image pair, the

boundary between the soft palate and posterior pharyngeal wall is unclear.



Materials 110

4.1.6 Discussion

4.1.6.1 Velopharyngeal Closure Identification

Labelling each image as either showing contact between the soft palate and posterior
pharyngeal wall or not enabled identification of the number of velopharyngeal closures
shown in the image series. Labelling of the images by multiple raters gave an indication of
the subjectivity of the labels, and enabled this subjectivity to be reduced. Complete inter-
rater agreement in the labels of 357 of 392 (91.1%) images demonstrates that the majority
of the images clearly showed if there was contact or not. In all 35 images whose labels had
lower intra-rater agreement, the soft palate was very close to the posterior pharyngeal wall,
making it challenging to distinguish if there was contact or not. In 28 (80%) of these images,
there was intra-rater agreement between the majority of the raters and therefore a clear
consensus on what the labels for these images should be. The other seven images whose
labels had the lowest intra-rater agreement were all at the start or end of a velopharyngeal
closure. As a result, they only affected the duration of velopharyngeal closures and not the
number of velopharyngeal closures. This suggests that there is minimal subjectivity in the
identified number of velopharyngeal closures. Comparison of inter-rater agreement in image
labels with other studies is not possible as there is currently no published work reporting
such agreement.

The number of velopharyngeal closures shown in the image series ranged from four
to eight. This range is consistent with the expected number of velopharyngeal closures for
the speech task that the volunteers performed: between four and nine, depending on the
rate of speech. Assuming normal speech, the start and end points of the velopharyngeal
closures were also consistent with the expected points for the speech task: new

”

velopharyngeal closures should always start when the volunteer begins saying “one”, “two”,
“eight” and “ten”, and always end while the volunteer is saying “one”, “seven”, “nine” and
“ten” as these four words contain the speech sound [n] whose production requires no
contact between the soft palate and posterior pharyngeal wall. Depending on the rate of

speech, there can be a velopharyngeal closure during production of each of the following

n A

numbers in the speech task: “two”, “three”, “four”, “five”, “six” and “seven”.
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4.1.6.2 Ground-Truth Segmentation Creation

GT segmentations of six regions in rtMR images of the vocal tract during speech were
successfully created. The six regions were chosen because of their relevance to speech
scientists as well as clinicians assessing speech. Particularly important for this study,
segmentations of the soft palate and posterior pharyngeal wall (part of the head class) were
created. Automatic segmentation of these anatomical features would enable automatic
measurement of the distance between the soft palate and posterior pharyngeal wall as well
as automatic soft palate shape and size analyses. These are measurements and analyses that
clinicians are increasingly interested in performing to investigate if these can inform
treatment decisions.

In every segmentation, the head class has a much larger number of pixels than all the
other classes combined. This difference in the number of pixels should be a key
consideration when developing DL-based methods to segment images, as the performance
of these methods can be detrimentally affected by such differences. Strategies to
compensate for this difference will therefore need to be found. A strategy to compensate for
this difference was used in the work presented in chapter 5 of this thesis.

Intra-rater agreement in segmentations, quantified using the DSC, was highest for
segmentations of the head class, and lowest for segmentations of the soft palate and tooth
space classes. This result is unsurprising as the head class has a much larger number of
pixels than the soft palate and tooth space classes, therefore the effect of a pixel label
discrepancy on the DSC is much larger for the latter two classes. Intra-rater agreement,
guantified using the HD, was similar for all three classes with a median value of 1.4 pixels.
Since the HD measures discrepancies between boundaries, this result suggests that the class
boundaries including the artificial ones such as the inferior boundary of the head class in the
neck (see Figure 30) were usually reproducible to within a pixel or two.

The Physicist faced three main image quality related challenges while creating the
segmentations, examples of which are shown in Figure 44. First, in images in which the soft
palate and posterior pharyngeal wall were in contact, there was often no clear boundary
between these two anatomical features. Second, distinguishing between fluid and soft tissue
in the vocal tract was challenging as both have similar intensities in the images. The third
challenge was the blurring of air-tissue boundaries in the images as a result of articulator

motion during image acquisition. In images with these issues, the Physicist used knowledge
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about the shape and position of the soft palate and posterior pharyngeal wall in earlier
images to help to infer the boundaries. These three challenges are likely to be the reason
why intra-rater agreement was consistently lower in segmentations of images showing
contact between the soft palate and posterior pharyngeal wall, across all classes and
metrics.

A few segmentations of the tongue and vocal tract classes had much larger HDs than
average. These larger distances highlight two limitations of the segmentations. First, that the
epiglottis was not always accurately segmented. Second, that contact between the tongue
and head classes was not always consistent in the segmentations. These limitations need not
be addressed for the work presented in chapters 5 and 6, as for these experiments the main
requirement is that the segmentations of the soft palate and posterior pharyngeal wall are
as accurate as possible. However, these limitations should be addressed for work whose
main requirement is that segmentations of the tongue are as accurate as possible.

Comparison of intra-rater agreement in segmentations with other studies is not
possible as there is currently no published work reporting such agreement.

Creation of the dataset is an important step towards addressing the unmet need for
automatic methods to quantify the vocal tract and articulators in 2D rtMR images of the
vocal tract, as it allows investigation of the feasibility of developing vocal tract and
articulator segmentation methods. While the dataset is appropriate for demonstrating the
feasibility of automatic vocal tract and articulator segmentation, further work is required to
address two limitations of the dataset.

First, a larger and more diverse dataset, both in terms of subjects and image
acquisition, and one that is more representative of the target patient population is required
to develop methods suitable for clinical practice, especially given that DL-based methods
usually perform poorly on data with different characteristics to the datasets used to train
them. More specifically, since the target patient population primarily consists of children,
the dataset must contain images of children. In addition, since velopharyngeal closure does
not occur as expected in some of the speech of patients with VPI, the dataset must contain
image series where velopharyngeal closure does not occur as well as image series where it
does. The dataset must also be balanced in terms of gender and ethnicity, to avoid
developing biased quantification methods. Regarding image acquisition parameters, the

dataset used in this work consisted only of images acquired using a single MRI scanner and
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pulse sequence. Consequently, all the images had a very similar image contrast. Again, while
using such a dataset is appropriate for demonstrating the feasibility of segmenting 2D rtMR
images of the vocal tract during speech, a range of different pulse sequences have been
proposed for dynamic 2D imaging of the vocal tract during speech [12,27,61]. A dataset with
images acquired using many different MRI scanners and pulse sequences is therefore
required to ensure that methods developed using the dataset are generalisable and perform
well on images from different sources. While there are publicly available 2D rtMR image sets
of the vocal tract during speech [18,19], these do not have corresponding GT segmentations

thus limiting their use for training supervised DL-based segmentation methods.

4.1.7 Conclusions

GT labels and segmentations were successfully created for five series of 2D rtMR images of
speech. Such segmentations are a prerequisite for the development of DL-based methods to
analyse this type of image.

The GT labels enabled identification of the number of velopharyngeal closures shown
in the series. Inter-rater agreement between labels was high in almost all the images. The
seven images where inter-rater agreement was lower were all at the start or end of a
velopharyngeal closure. As a result, they only affected the duration of velopharyngeal
closures and not the number of velopharyngeal closures.

Intra-rater agreement between the GT segmentations was also high, suggesting that
the process described in section 4.1.4 results in reproducible creation of segmentations. One
class in the segmentations has a much larger number of pixels than all the others. This
imbalance in the number of pixels should be taken into consideration when developing DL-
based methods to analyse the images, as otherwise the performance of the methods may
be compromised.

In the next chapter, work in which the rtMR images and their corresponding labels
and GT segmentations were used for the development of an automated DL-based

segmentation tool is presented.
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4.2 3D Vocal Tract MRI Dataset

4.2.1 Introduction

As explained in section 3.1.9, use of MRI to visualise the LVP is increasing due to the growing
availability of MRI scanners and the unique ability of MRI to non-invasively acquire 3D
images with excellent soft tissue contrast and a high spatial resolution. As the LVP and the
soft tissue that surrounds it have very similar tissue properties, a challenge when imaging
the LVP is ensuring that the image contrast between the LVP and the surrounding soft tissue
is sufficient to discriminate between the two. Previous work has predominantly acquired T,-
weighted 3D images of the LVP at 3.0 T using TSE pulse sequences [25,126,139,140,127-
129,131,134,136-138]. In addition, a recommendation to acquire T,-weighted images for
assessing the LVP in clinical practice was recently made [8]. However, the results of recent
work which investigated the optimal image contrast for identification of LVP landmarks in 3D
images acquired at 1.5 T suggest that T1- or PD-weighted images may enable more accurate
identification [13]. However, the literature contains no reports of equivalent investigations
into the optimal image contrast for 3D LVP visualisation at 3.0 T. This lack of consensus on
the optimal MR image contrast for 3D LVP visualisation at 3.0 T motivated the image
optimisation experiment presented in this section.

To verify the optimal image contrast for LVP visualisation, a dataset with the
following properties is required. First, to increase the generalisability of the results, the
dataset should consist of images of multiple subjects. Second, to enable comparison of
different image contrasts, the dataset should consist of multiple images per subject. For
each subject, these images should be acquired using the same set of pulse sequences. Third,
for fair comparison between images acquired using different pulse sequences, all images
should have the same spatial resolution. While a dataset with these properties has been
acquired [13], unfortunately this dataset is not publicly available. There are publicly available
MRI datasets that include 3D images of the vocal tract [18,19,117,118,220,221], however,
these datasets were not intended to be used for verifying the optimal image contrast for LVP
visualisation and therefore do not have the second and third properties that are required for
this purpose. Consequently, a new dataset is required to enable verification of the optimal

contrast for LVP visualisation.



Materials 115

As explained in section 3.3.5, there is increasing interest in measuring aspects of the
LVP in MR images [13,25,130-139,122,140-143,123-129]. In all previous work [13,25,130—
139,122,140-143,123-129], measurements such as the length and thickness of the LVP
were manually obtained from MR images. However, obtaining measurements in this way is
time-consuming, requires input by specialists and is prone to intra- and inter-observer
variability. To avoid the burden of manual measurements and to facilitate LVP measurement
on a larger scale, there is currently an unmet need for automatic LVP measurement
methods. A common approach for automating the measurement of anatomical features in
biomedical images is to first segment the features and then perform measurements using
the segmentations. As a first step towards developing an automatic LVP measurement
method, in very recent work [17], four state-of-the-art DL-based methods were used to
segment the LVP in 3D Ti-weighted MR images. However, there are no reports in the
literature of any methods for segmenting the LVP in 3D T,-weighted MR images. In order to
develop such a method GT segmentations are required.

GT segmentations of the LVP have been created in previous work [17,144,146],
however, these segmentations have not been made publicly available. While there are
publicly available MRI datasets that include 3D images of the vocal tract
[18,19,117,118,220,221], these datasets either do not include GT segmentations of
anatomical features [18,19,117,118] or only include GT segmentations of the vocal tract
[220,221]. The current lack of publicly available LVP GT segmentations is a barrier to the
development of DL-based methods to segment (and ultimately quantify aspects of) the LVP
in MR images, in addition to preventing rigorous comparison of segmentation methods.

The work presented in this section makes two main contributions. First, via an image
optimisation experiment, it provides new evidence on the optimal image contrast for LVP
visualisation in 3D MR images acquired at 3.0 T. Second, it creates the first dataset consisting
of 3D T,-weighted MR images and GT segmentations of the LVP, a key step towards

addressing the unmet need for methods to automatically segment the LVP in such images.
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4.2.2 Image Optimisation Experiment
4.2.2.1 Methods

4.2.2.1.1 Image Acquisition

Five healthy adult volunteers (two females, three males; age range 21 to 31 years)
participated in the experiment, after providing informed consent in accordance with ethics
committee requirements. The volunteers were imaged in a supine position usinga3.0 T
SIGNA Architect MRI scanner, a 45-channel head and neck receive coil (both GE HealthCare,
Milwaulkee, WI) and 3D TSE pulse sequences. Three 3D images were acquired per volunteer,
using three TSE pulse sequences (more specifically, CUBE pulse sequences) with parameters
that resulted in the acquisition of one T1-weighted image, one PD-weighted image and one
T,-weighted image. CUBE pulse sequences were chosen as these are already highly
optimised to enable acquisition of images with specific contrasts and a high spatial
resolution. In total, 15 images were acquired in the experiment. Pulse sequence parameters
and scan durations are listed in Table 4. In total, 15 images of the entire head (example
images are shown in Figure 45) were acquired in the experiment. The reason why images of
the entire head were acquired, rather than images of a smaller volume centred on the LVP
and pharynx, was to avoid “phase wrap-around” artefacts in the images, as these artefacts

can obscure anatomical features of interest [273].
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Table 4: Parameters of the three pulse sequences used in the experiments. PD: proton-density; FOV: field of view; TR:

repetition time; TE: echo time.
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Pulse sequence

Parameter
T1-weighted PD-weighted T,-weighted
FOV (mm?3) 256x243x168
Acquired voxel size
0.8x0.8x1.2
(mm?3)
Reconstructed voxel
0.5x0.5x0.6
size (mm3)
Signal averages 1
TR (ms) 550 3000 3000
TE (ms) 16 60 100
Echo train length 22 130 130
Bandwidth per pixel
390.6
(Hz)
2 (in both phase and
GRAPPA factor slice encoding

directions)

Scan time (s) 231 208 208
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Midsagittal Axial

Figure 45: Example midsagittal and axial slices from the three-dimensional images acquired in the image optimisation
experiment. T;, PD (proton density) and T, indicate the contrast weighting of the images.

4.2.2.1.2 Image Analysis

The image contrast at the location where the LVP is connected to the soft palate was
assessed as this location is the most relevant for clinical teams treating patients with VPI.

More specifically, the location of the connection and the structure of the muscle are factors
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that affect VPI treatment decisions. To assess its contrast, each 3D image was analysed in the
following way:
1. The image was visually inspected and an axial slice in which the LVP was clearly
visible was identified.
2. Two regions of interest (ROIs) were manually drawn on the image. One was drawn on
the LVP while the other was drawn in the adjacent soft tissue. Example ROls are
shown in Figure 46.
3. The mean voxel value in each ROI was calculated.
4. The contrast between the LVP and the adjacent soft tissue in an image was

qguantified using the following equation [274]:

C = (19)

GLVP—0A|
oLyptoa

where o;p and g, are the mean voxel intensities in the LVP and adjacent soft tissue ROIs
respectively. C was used as an indicator of the ease with which the LVP could be
distinguished from the soft tissue surrounding it: a higher value indicated that the LVP was
more easily distinguishable.

To identify the optimal contrast for visualising the LVP, the values of C of the three
images of a subject were compared.

The visual inspection in step 1 and manual ROl drawing in step 2 was performed by
an MRI Physicist with five years of experience of speech MRI. The image analysis was

performed using the medical image viewer Horos v3.3.6 [275].
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Figure 46: Example regions of interest (ROIs). Image (B) is a cropped version of image (A). The yellow ROl is on the levator

veli palatini (LVP) while the light blue ROl is on the soft tissue adjacent to the LVP.

4.2.2.2 Results

Example images are shown in Figure 45, while Figure 47 shows the values of C in the images.
In four of five subjects, C was greatest in their T,-weighted image, while in the other subject,
C was greatest in their T1-weighted image. In four of five subjects, C was lowest in their PD-

weighted image, while in the other subject, C was lowest in their T1-weighted image.

Subject
0.26

0.24

o00O0GO
a b~ N

0.22

0.20

Contrast

0.18

0.16

0.14

0.12
T1 Proton Density T>
Image Contrast Weighting

Figure 47: The contrast between the levator veli palatini and the adjacent soft tissue in the T;-, proton-density- and T,-

weighted magnetic resonance images.
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4.2.2.3 Discussion

Only To-weighted images of the LVP were acquired in almost all previous work involving 3D
imaging of the LVP at 3.0 T [13,25,137-142,126-129,131-133,136]. However, the results of
recent work which investigated the optimal image contrast for identification of LVP
landmarks suggest that T1- or PD-weighted images may enable more accurate identification
[13]. The aim of the image optimisation experiment was to quantitatively compare the
contrast between the LVP and the adjacent soft tissue in T1-, PD- and T,-weighted images, to
identify the type of image with optimal contrast for visualising the LVP.

As shown in Figure 47, in four of five subjects, the contrast between the LVP and
adjacent soft tissue was greatest in their To-weighted image. This result shows that the
difference in voxel intensities was largest in T,-weighted images, suggesting that the LVP is
more easily distinguishable in these images than in T1- and PD-weighted images acquired at
3.0 T. This finding provides evidence to support the recently-made recommendation to
acquire T-weighted images for assessing the LVP in clinical practice [8] and the choice made
in all previous work involving 3D imaging of the LVP at 3.0 T to acquire T,-weighted images
[13,25,137-142,126-129,131-133,136].

Conversely, in four of five subjects, the contrast between the LVP and adjacent soft
tissue was lowest in their PD-weighted image. This result shows that the difference in voxel
intensities was smallest in PD-weighted images, suggesting that the LVP would be more
challenging to distinguish in these images than in T1- and T>-weighted images acquired at 3.0
T.

The main limitations of the image optimisation experiment are its small sample size
(15 images of five subjects), the assessment of contrast at a single location only and the
limited number of different contrasts that were investigated. Regarding the sample size,
further work is required to increase the sample size and verify the findings of this image
optimisation experiment. Regarding contrast assessment location, the image contrast was
assessed at the location where the LVP is connected to the soft palate as this location is the
most relevant for clinical teams treating patients with VPI. More specifically, the location of
the connection and the structure of the muscle at this location are factors that affect VPI
treatment decisions. However, further work is required to identify the optimal contrast for
visualising other sections of the LVP using 3D MRI. Regarding the limited number of

contrasts, while the investigation provides an indication of the optimal image contrast for
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LVP visualisation in 3D MR images of the vocal tract, further work is required to pinpoint the
key pulse sequence parameters (i.e. TR and TE) that result in optimal image contrast. This
pinpointing could be achieved by, for example, acquiring a wider range of T,-weighted

images and analysing these images in the way described in section 4.2.2.1.2.

4.2.2.4 Conclusions

The visibility of the LVP relative to adjacent soft tissue was found to be greatest in T»-
weighted images. Based on this finding, a larger dataset of T,-weighted images was created
and then used in the development of a DL-based method to segment the LVP, work

described in chapter 7 of this thesis.

4.2.3 Image and GT Segmentation Dataset Creation

The results of the image optimisation experiment described in section 4.2.2 suggest that T»-
weighted images are optimal for visualising the LVP. Based on this result, T>-weighted images
were acquired and then manually segmented to create a dataset to enable the development

of automatic LVP segmentation methods.

4.2.3.1 Methods

4.2.3.1.1 Image Acquisition

Fifteen healthy volunteers (eight females, seven males; age range 21 to 31 years)
participated in the experiment, after providing informed consent in accordance with ethics
committee requirements: the five volunteers from the image optimisation experiment and
10 additional volunteers. The additional volunteers were imaged in the same way as
described in section 4.2.2.1.1, but only using the TSE pulse sequence with parameters that
resulted in the acquisition of T>-weighted 3D images. One T>-weighted image per volunteer
was included in the dataset. The dataset therefore included 15 images in total. Pulse
sequence parameters and scan durations are listed in Table 4. Example images are shown in

Figure 45.
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4.2.3.1.2 GT Segmentation Creation

GT segmentations were created by manually labelling voxels in the images. The
segmentations consisted of three classes: LVP, pharynx and background. There was no
overlap between the classes: a pixel could not belong to more than one class. The two
reasons for including the pharynx in the GT segmentations were as follows. First, to provide
information about the orientation of the LVP relative to the soft palate. A segmentation of
the pharynx can provide such information as the anterior boundary of the pharynx is the
superior surface of the soft palate. Second, to enable measurement of its volume and shape,
aspects of the pharynx that are clinically relevant for VPI treatment planning.

The boundaries of a large section of the pharynx are clearly defined: they are the
pharyngeal wall and the superior surface of the soft palate. However, the superior and
inferior boundaries of the pharynx are not so clear. Instead, the following artificial
boundaries were devised for these sections. The two main goals when devising these
boundaries were firstly to include only relevant anatomical features and secondly to make
the boundaries as easily reproducible as possible. The superior boundary of the pharynx was
defined as the axial slice at the level of the hard palate (see Figure 49D), while the inferior
boundary was defined as the axial slice level with the tip of the soft palate (see Figure 49D).
These definitions were considered to provide an acceptable trade-off between
reproducibility and inclusion of relevant sections of the pharynx.

GT segmentations were created by an MRI Physicist with six years of speech MRI
experience using 3D Slicer version 4.11.20210226 [276]. The process for creating a GT
segmentation of the LVP in a 3D image was as follows:

1. Oblique axial slice identification: an oblique axial slice of the 3D image showing a
longitudinal section of the LVP was identified via visual inspection (see Figure 48A).

2. Initial manual segmentation: voxels showing the LVP in the oblique axial slice
identified in step 1 and in adjacent oblique axial slices were manually labelled (see

Figure 48B).

3. Axial slice identification: an axial slice of the 3D image showing the LVP was
identified via visual inspection (see Figure 48C).

4. Initial segmentation refinement: in the axial slice and in adjacent axial slices showing
the LVP, the initial LVP segmentation was manually refined to fill “holes” in it (see

Figure 48D).
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5. Segmentation post-processing: the LVP segmentation was morphologically closed
using a kernel size of 3x3x1 to fill any remaining “holes” in it.

The process for creating a GT segmentation of the pharynx in a 3D image was as follows:

1. Initial binary mask creation: a binary mask of the entire head was created by
applying a threshold to the image (see Figure 49B).

2. Binary mask cropping: the binary mask created in step 1 was manually cropped to a
smaller cuboid containing the pharynx. The superior surface of the cuboid was the
axial slice at the level of the hard palate, while the inferior surface was the axial slice
level with the tip of the soft palate (see Figure 49C).

3. Binary mask refinement: the binary mask was manually refined. More specifically,
voxels corresponding to fluid on the surface of the soft palate and pharyngeal walls
in the image were identified via visual inspection and then manually removed from
the binary mask.

4. Pharynx segmentation creation: the voxel values in the binary mask created in step 2
were switched (i.e. voxels labelled as 0 were changed to voxels labelled as 1 and vice
versa). This created several connected components, the largest of which was the
pharynx GT segmentation (see Figure 49D).

The number of voxels in the LVP and pharynx GT segmentations was calculated, to enable

comparison of the size of the two classes.
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(1) (2)

(B)

(C)
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Figure 48: Two-dimensional slices of one of the three-dimensional magnetic resonance images. Column (1) shows an
oblique axial slice (A and B) and an axial slice (C and D), while column (2) shows a midsagittal slice. In the slices, light blue
shading indicates the levator veli palatini (LVP) ground-truth (GT) segmentation, while the orange dashed lines in column (2)
indicate the plane of the slice shown in column 1. In column (1), rows (A) and (B) show the same oblique axial slice without
and with the LVP GT segmentation overlaid, while rows (C) and (D) show the same axial slice without and with the LVP GT

segmentation overlaid.
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Figure 49: Two-dimensional slices of one of the three-dimensional magnetic resonance images. Column (1) shows an axial
slice, while column (2) shows a midsagittal one. Row D shows slices with the pharynx ground-truth segmentation overlaid,
while rows B and C show preliminary segmentations. Green shading indicates a segmentation, while the orange dashed

lines in column (2) indicate the plane of the slice shown in column (1).
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4.2.3.2 Results and Discussion

A dataset consisting of 15 3D MR images of the entire head, each of a different healthy adult
volunteer, and GT segmentations of the LVP and pharynx in the images was successfully
created. Similarly to previous work [13,25,137-141,126-129,131-133,136], in this work
imaging was at 3.0 T and a TSE pulse sequence was used to acquire T>-weighted images of
the entire head at a spatial resolution of 0.8x0.8x0.8 mm3. The reason why images of the
entire head were acquired, rather than images of a smaller volume centred on the LVP and
pharynx, was to avoid “phase wrap-around” artefacts in the images, as these artefacts can
obscure anatomical features of interest [273].

The dataset includes GT segmentations of the LVP and pharynx, thus enabling the
development of methods to automatically segment these anatomical features, key steps
towards addressing the current unmet need for automatic methods to measure the LVP in
3D MR images. GT segmentations of the LVP have been created in previous work, however,
only for single images [144,146] or for T1-weighted images [17].

Figure 50 shows all 15 GT segmentations, while Figure 51 shows the number of
voxels per class in the GT segmentations. As shown in Figure 51, there were more voxels of
the pharynx than the LVP in all GT segmentations: the median number of voxels of the LVP
and pharynx was approximately 10,000 and 43,000 respectively. Given that the images each
consisted of 512x512x272 voxels, only a small proportion of their voxels corresponded to a
segmentation class: approximately 0.01% and 0.06% corresponded to the LVP and pharynx
respectively. Cropped versions of the images were used in the development of a DL-based
method to segment the LVP in 3D MR images (work described in chapter 7), for two main
reasons. First, to reduce the computational burden of the method development. Second, to
reduce the complexity of the segmentation task by reducing the number of anatomical
features in the image and by increasing the proportion of voxels corresponding to the LVP
and pharynx.

There is increasing interest in visualising and measuring aspects of the LVP, to better
understand variations in its shape and configuration [25,122,131-140,123,141-143,124—
130], to aid planning of surgical treatment of VPI [144,145], and for medical education
purposes [146]. While the dataset presented in this work was primarily created to enable
the development of automatic LVP measurement methods, it also provides opportunities to

develop novel LVP visualisation methods such as patient-specific computer or physical 3D
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models of the LVP for use in VPI treatment planning. Further work is required to explore
these opportunities with clinical teams and investigate if segmentations of the LVP and
pharynx provide enough anatomical context for use in VPI treatment planning. For example,
additional segmentations of anatomical features such as the soft palate may be required to
provide enough anatomical context. Creating segmentations of the soft palate is not
essential for enabling automatic LVP measurement and was therefore not prioritised in this
work. However, a key challenge that would need to be addressed to reproducibly create GT
segmentations of the soft palate is the lack of clear anatomical boundaries between the
lateral sections of the soft palate and the adjacent soft tissue. Instead, artificial boundaries
that are easily reproducible would need to be devised for these sections of the soft palate.

Creation of the dataset is an important step towards addressing the unmet need for
automatic methods to measure the LVP in 3D MR images, as it allows investigation of the
feasibility of developing automatic methods to segment the LVP in these images. While the
dataset is appropriate for demonstrating the feasibility of automatic LVP segmentation,
further work is required to address two limitations of the dataset.

First, a larger and more diverse dataset, both in terms of subjects and image
acquisition, and one that is more representative of the target patient population is required
to develop automatic LVP measurement methods suitable for use in clinical practice. More
specifically, since the target patient population primarily consists of children, the dataset
must contain images of children. In addition, since LVP anomalies are prevalent in the target
population, the dataset must contain images of LVPs with anomalies as well as LVPs without.
The dataset must also be balanced in terms of gender and ethnicity, to avoid potentially
developing biased LVP measurement methods. Regarding image acquisition, the images in
the dataset were all acquired using the same MRI scanner and pulse sequence. A dataset of
images acquired using many different MRI scanners and pulse sequences is required to
ensure that methods developed using the dataset perform well on images from different
sources. This generalisability is a key requirement for methods suitable for use in clinical
practice.

Second, the dataset presented in this work includes GT segmentations created by a
single expert only. Future work should investigate the intra- and inter-rater reliability of the
GT segmentations for two main reasons. First, to verify that the GT segmentation creation

process described in section 4.2.3.1.2 is reproducible. Second, to provide insights into the
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accuracy and reliability of manual LVP segmentation (for example, through identification of
sections of the LVP where agreement between raters is lower) and thus provide information
about the maximum accuracy that can be achieved by automatic LVP segmentation
methods. Such an investigation would require manual creation of GT segmentations by

several experts and would therefore be very time-consuming.
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Figure 50: Ground-truth segmentations of the levator veli palatini (dark grey) and pharynx (light grey) in each of the 15

images.
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Figure 51: Number of voxels per segmentation class in the ground-truth segmentations of the 15 magnetic resonance

images.

4.2.3.3 Conclusions

For the first time, a dataset consisting of 3D T,-weighted MR images of the vocal tract and
GT segmentations of the LVP and pharynx was created. This dataset enabled the
development of automatic methods to segment the LVP in 3D MR images (work described in

chapter 7), a key step towards addressing the current unmet need for automatic methods to

measure the LVP in such images.
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Chapter 5: Articulator Segmentation in MR Images of
Speech

5.1 Introduction

5.1.1 Motivation

As explained in section 3.1.7, use of rtMRI to visualise articulators and the vocal tract during
speech is increasing in both research and clinical settings [12,27,61]. This increase is a result
of the development of rtMRI techniques with relatively high spatio-temporal resolutions and
the unique ability of rtMRI to noninvasively acquire images of any view without using
ionising radiation [12,27,61]. Visualisation of articulators and the vocal tract during speech
provides information about their shape, size, position and motion. This information is
helping researchers to answer open questions about speech production
[14,18,196,197,277-279,19,27,61,68,69,72,75,76], while in the clinical speech assessment
of patients with VPI this information aids clinicians to diagnose the cause(s) of VPl and then
make treatment decisions [3,4,8,280].

Typically during rtMRI of speech, series of 2D images of a midsagittal slice of the
vocal tract are acquired. As explained in section 3.3.3, there is increasing interest in
extracting quantitative information about the vocal tract and articulators from such images
[7,14,75,76,84,88,195-198,20,68—74]. More specifically, there is interest in measuring the
size and shape of the vocal tract [14,68,197,198,70,74-76,84,88,195,196], the size, shape
and motion of the soft palate [72,73,75,84,198], lip motion [69,75,84], tongue motion
[20,84] and the distance between the soft palate and the posterior pharyngeal wall
[7,72,198]. Manual measurement to obtain this information is time-consuming, requires
input by specialists and is prone to intra- and inter-observer variability. The increasing
interest in extracting quantitative information, in combination with the need to avoid
manual measurement, have motivated the development of a range of methods to (semi-
Jautomatically extract this information [15,16,206,207,20,199-205]. Almost all these
methods are segmentation based [15,16,207,199-206].



Articulator Segmentation in MR Images of Speech 133

5.1.2 Related Work

Several methods to semi-automatically measure the shape of the vocal tract in 2D rtMR
images of speech have been developed [15,16,199-204,208]. One of these methods
segmented the entire vocal tract [208], while the others labelled pixels at air-tissue
boundaries between the vocal tract and adjacent tissues and therefore only created partial
contours of articulators [15,16,199-204]. The methods have been based on a variety of
approaches. In [203], the air-tissue boundaries between the vocal tract and adjacent tissues
were automatically labelled using an optimisation algorithm to adjust an anatomically
informed synthetic image of the vocal tract until the k-space of the synthetic image was as
similar as possible to the k-space of the MR image. Other methods performed the labelling
by analysing pixel values along gridlines superposed on the MR image [199] or by using
active shape models [15,204].

More recently, DL-based methods have been developed to automatically label air-
tissue boundaries between the vocal tract and adjacent tissues [16,200-202,208]. In [16]
and [201], FCNs with an architecture similar to SegNet [209] were developed to label the air-
tissue boundaries and, in [16], identify which articulators the boundary pixels belonged to.
In [200] and [202], FCNs with architectures similar to the original FCN [162] and the FCN in
[210] respectively were developed to label the air-tissue boundaries. An FCN with an
architecture similar to the original U-Net [175] was developed in [208] to segment the entire
vocal tract, not just its boundaries with adjacent tissues.

However, none of the methods described in the two paragraphs above segment
entire articulators. Such segmentation is desirable as it would enable measurement of
articulator shape, size, position and motion.

This chapter presents a DL-based framework to address this limitation, and is based
on a peer reviewed and published journal article [205]. Since the publication of [205], three
further related works have been published by other researchers. Two of these works are
methods to analyse 2D rtMR images of speech [72,206], while the other is a method to
segment the pharynx and entire articulators (tongue and soft palate) in 2D static MR images
of the vocal tract [218]. In [72], a method that used generalised additive mixed models [196]
to measure the distance between the soft palate and posterior pharyngeal wall was
developed, while in [206] a DL-based method to segment entire articulators (soft palate,

hard palate, tongue, jaw and upper lip) was developed.
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5.1.3 Clinical Considerations

As explained in section 2.1, velopharyngeal closure is a key requirement in the production of
the majority of speech sounds [1,22]. During velopharyngeal closure, the soft palate
elevates and comes into contact with the pharyngeal wall. However, in patients with VPI,
velopharyngeal closure does not always occur, thus causing speech problems [1]. There are
large variations in the speech sounds where velopharyngeal closure does not occur in
patients with VPI: in some patients velopharyngeal closure does not occur in a few speech
sounds only, while in others velopharyngeal closure never occurs. An important
consideration when making treatment decisions is the speech sounds where velopharyngeal
closure does not occur. Therefore, to be suitable for use in clinical practice, a key
requirement for articulator analysis methods is the accurate detection of any
velopharyngeal closures that occur. In addition, it is important that articulator analysis
methods do not falsely detect velopharyngeal closures when none have occurred. However,
standard metrics for evaluating segmentation accuracy do not provide information about
the accurate detection of velopharyngeal closure. By comparing the velopharyngeal closures
in GT segmentations with those in segmentations estimated by an automated method, the

ability of the method to accurately capture velopharyngeal closures can be assessed.

5.1.4 Contributions
The work presented in this chapter makes two contributions. First, it develops a fully
automatic DL-based method for segmenting entire articulators and the vocal tract in 2D
rtMR images of speech. The method also includes an extension to automatically measure
the minimum distance between the soft palate and the posterior pharyngeal wall. This
contribution is a step towards addressing the unmet need of automatic measurement of
articulator shape, size, position and motion in 2D rtMR images of speech. Second, this work
proposes a new metric for evaluating the accuracy of estimated segmentations. This metric
is based on velopharyngeal closure, a quantifiable and clinically relevant aspect of
articulator motion.

As stated earlier, part of the work presented in this chapter was published as a
journal article [205]. Two extensions to the published work are presented in this chapter.

First, an extension to the segmentation method in order to enable automatic measurement
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of the minimum distance between the soft palate and the posterior pharyngeal wall is

presented. Second, an additional loss function weighting investigation is presented.

5.2 Method

5.2.1 Qverview

Figure 52 shows an overview of the proposed DL-based method. Given a 2D rtMR image of
the vocal tract, the method will estimate segmentations for six different anatomical features
in the image and then measure the minimum distance between the soft palate and the
posterior pharyngeal wall. Segmentations are estimated using a CNN with a similar
architecture to the original U-Net [175]. The estimated segmentations are then post-
processed to remove anatomically impossible regions in the images. Finally, the minimum
distance between the soft palate and the posterior pharyngeal wall is measured from the

post-processed segmentations.

Post- Distance
l‘\ processing 2‘\ measurement

—i de—

Figure 52: An overview of the proposed deep-learning-based segmentation method. The method consists of three steps: (1)
a convolutional neural network (CNN) for estimating segmentations of seven different classes; (2) a post-processing step to
remove anatomically impossible regions in the estimated segmentations; (3) further post-processing steps to measure the
minimum distance between the soft palate and the posterior pharyngeal wall. The input to the method is a two-dimensional

real-time magnetic resonance image of the vocal tract.

5.2.2  CNN Architecture, Implementation and Training

Segmentations were estimated using a CNN with a similar architecture to the original U-Net
[175]. The CNN had a five-layer encoding path followed by a four-layer decoding path. More
information on its architecture is provided in Figure 53. Dropout (introduced in section
3.2.4) with a probability of 0.5 was included in the fourth and fifth encoding layers. The
outputs of the network were seven probability maps, one for each class. The network was
implemented using PyTorch 1.4.0 [281] and training was performed on a NVIDIA TITAN RTX

graphics card. Cross entropy was used as the loss function during network training. The



Articulator Segmentation in MR Images of Speech 136

Adam optimiser [151] with hyperparameters 31=0.9, 3,=0.999 and e=1e-8 was used to
adjust network weights. In each experiment, the network was trained for 200 epochs. Data
augmentation (introduced in section 3.2.4) was performed to increase the number of
images in the training dataset by a factor of four. Augmented images were created by
randomly translating, rotating, cropping and rescaling the original images. Translation was
by between -30 and 30 pixels in the x-direction and between 0 and -30 in the y-direction.
Rotation was by between -10° and 30° clockwise. The reason for the asymmetric ranges of
augmentation parameters was to avoid causing anatomically implausible artefacts in the
image such as a gap between the base of the neck and the edge of the image. Image
cropping was to a matrix size of either 220x220 if followed by rescaling or between 210x210
and 255x255 if followed by zero padding. All augmented images had the same matrix size as
the original images. This was achieved by cropping and then zero padding the translated

images and the rotated images, and rescaling or zero padding the cropped images.
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Figure 53: The architecture of the convolutional neural network of the proposed method [205]). BN: batch normalisation,

RelU: rectified linear unit, conv: convolution.

5.2.3 Loss Function Weighting

Use of training datasets with large imbalances in the number of pixels of each class is known
to detrimentally affect the accuracy of CNNs [282,283]. A wide variety of approaches have
been proposed to compensate for such imbalances [153,175,283-285], the majority of
which involve weighting loss functions according to class frequency. To compensate for the
class frequency imbalance in the training dataset, the loss function used to train the CNN

(cross entropy) was weighted according to class frequency. More specifically, inspired by
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[175,284,285], the losses of pixels of class k € {1, 2, ..., 7} were multiplied by the following

weight:

2kNk
Wy = _N
k

(20)
where Ny, is the number of pixels of class k in the training dataset. The motivation for
compensating for the class frequency imbalance was to improve the accuracy with which
the method segmented the soft palate.

Inspired by [175] and motivated by a desire to improve the accuracy with which
velopharyngeal closures were captured in segmentations estimated by the method, an
additional experiment was performed where the loss function was weighted according to
both class pixel frequency and the minimum pixel distance from the nearest class boundary.
In this experiment, the loss of a pixel was multiplied by both the weight in Equation (20) and

the following weight:

Wp = — (21)

where d is the minimum Euclidean distance of the pixel from the nearest boundary. The
rationale for including a boundary distance weight was to encourage accurate segmentation
of pixels at the boundaries between classes. This weight is similar to the one used in the

training of the original U-Net [175].

5.2.4 Segmentation Post-Processing
At test time, connected-component-analysis-based post-processing was performed on each
segmentation estimated by the CNN in order to remove anatomically impossible regions.
More specifically, each region (i.e. connected component) in the estimated segmentation
was automatically analysed in the following way:

1. The classes of the regions in contact with it were identified.

2. If the region was surrounded by another region, its class was changed to that of the

surrounding region.
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3. If the region was either in contact with an anatomically impossible region (for
example, if a jaw region was in contact with a soft palate region) or not in contact
with anatomically expected regions (for example, if a tooth space region was not in
contact with a jaw region and a tongue region), the classes of the pixels surrounding
the region were identified and the class of the region was changed to the mode class
of these pixels. The rules for determining if a region was anatomically plausible are
listed in Table 5.

This analysis was performed using MATLAB R2019b.

Table 5: The rules for determining the anatomical plausibility of a region in a segmentation. “Class” indicates the
segmentation class, “Forbidden Contact” indicates segmentation classes that the region must not be in contact with to be
anatomically plausible, while “Required Contact” indicates the segmentation classes that the region must be in contact with

to be anatomically plausible.

Class Forbidden Contact Required Contact

Head Tooth space Soft palate, vocal tract
Soft palate Jaw Head, vocal tract

Jaw Soft palate Tongue, tooth space
Vocal tract N/A Head, soft palate, tongue
Tooth space Soft palate Jaw, tongue

5.2.5 Distance Measurements
Additional post-processing steps to automatically measure the minimum distance between
the soft palate and the posterior pharyngeal wall in each estimated segmentation were
performed. Figure 54 shows an overview of the steps. The steps were as follows and were
implemented in MATLAB R2019b:
1. The coordinates of the centroid of the soft palate were identified.
2. Soft palate and head pixels with x-coordinates less than that of the centroid were
removed.
3. For each head pixel, the Euclidean distance to the nearest soft palate pixel was
calculated.
4. The minimum distance was identified and converted from pixel dimensions to mm by

multiplying it by a scaling factor.
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Centroid Anterior pixel Distance .
identification . removal measurement

Figure 54: An overview of the post-processing steps to measure the minimum Euclidean distance between the soft palate

and the posterior pharyngeal wall.

5.3 Experiments

5.3.1 Data
The five MR image series described in section 4.1.2 were used in the experiments, along

with their corresponding GT segmentations described in section 4.1.4.

5.3.2 Segmentation Accuracy Assessment
The segmentation accuracy of the proposed method was assessed using two metrics. First,
the DSC [194] was used to quantify the overlap between the GT segmentations and the
segmentations estimated by the method. Second, the HD was used to quantify the
maximum discrepancy between the boundaries of the GT and estimated segmentations.
The segmentation accuracy of the proposed method was also indirectly assessed by
comparing the minimum distance between the soft palate and the posterior pharyngeal wall
in corresponding estimated and GT segmentations. For each corresponding pair of

segmentations, the absolute difference between the minimum distances was calculated:

ddiff = |dGT - destimated (22)

where d;r is the minimum distance in the GT segmentation, while d.gtimatea is the
minimum distance in the estimated segmentation. Minimum distances were calculated in

the way described in section 5.2.5.

5.3.3 Velopharyngeal Closure Assessment
The accuracy with which the estimated segmentations showed velopharyngeal closures was
assessed by manually comparing the closures in the GT and estimated segmentations. To

enable the comparison, each segmentation in a series was visually inspected and labelled as
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either showing contact between the soft palate and posterior pharyngeal wall or not
showing contact. Contact was defined as three or more soft palate pixels in contact with
head pixels in the head class region corresponding to the posterior pharyngeal wall.
Sequences of labels were then plotted (see Figure 55 for an example) and manually
compared to identify the number of:

e “Correct” closures: closures that were shown in both the GT and estimated
segmentations.

e “Additional” closures: closures that were shown in the estimated segmentations but
not the GT segmentations.

e “Merged” closures: one or more consecutive closures that were shown as separate
closures in the GT segmentations and a single closure in the estimated
segmentations.

e “Missed” closures: closures that were shown in the GT segmentations but not in the
estimate segmentations.

An example of each type of closure is shown in Figure 55.

Correct Additional Merged Missed

Yes -

—— Estimated
------- Ground Truth

Contact

No+

Figure 55: Examples of each type of velopharyngeal closure. On the y-axis, “Yes” indicates contact between the soft palate

and posterior pharyngeal wall, while “No” indicates no contact.

5.3.4 Cross-Validation

To evaluate the generalisability of the proposed method, a five-fold cross-validation was
performed with the dataset of each subject being left out once. Hyperparameter
optimisation was achieved by carrying out a nested cross-validation for each fold of the
main cross-validation, in the way described in [286]. This nested cross-validation was a four-
fold cross-validation with the dataset of each of the remaining four subjects being left out
once. Six different learning rate {0.003, 0.0003, 0.00003} and mini-batch size {4, 8}

combinations were evaluated in this way, and the hyperparameter combination that
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resulted in the highest mean DSC on the left-out dataset (of the nested cross-validation)
after post-processing was chosen as the optimal hyperparameter combination. Once the
optimal hyperparameter combination had been identified for a fold of the main cross-
validation, the CNN of the proposed method was trained using all the datasets except the
left-out dataset for that fold, and then the entire method (including the post-processing

steps) was tested using the left-out dataset.

5.3.5 Unseen Vocal Tract Shape Investigation

Different vocal tract shapes and articulator positions are required to produce different
speech sounds. The data used to train the CNN of the proposed method does not contain
images of all the different possible vocal tract shapes in English. To investigate the ability of
the method to segment vocal tract shapes not present in the training dataset, 15 additional
rtMR images were segmented using the method. The images (three per subject) were of the
same five subjects described in 4.1.2 of this thesis producing three sounds which require
vocal tract shapes not present in the training dataset: /o/ and /b/ in “Bob” and /a/. The
accuracy of the segmentations was assessed as described in section 5.3.2. The images were
acquired and GT segmentations created in the ways described in sections 4.1.2 and 4.1.4

respectively.

5.4 Results

The hyperparameter combinations that resulted in the highest segmentation accuracy in the
nested cross-validations are listed in Table 6.

Examples of segmentations estimated by the class frequency weighted version of the
proposed method are shown in Figure 56. Figure 56A(2), Figure 56B(2) and Figure 56C(2)
show estimated segmentations with relatively low, average and high DSCs respectively,
while Figure 56D(2), Figure 56E(2) and Figure 56F(2) show estimated segmentations with
relatively large, average and small HDs respectively. Column 3 in Figure 56 shows the

estimated segmentations after post-processing.
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Table 6: Optimal hyperparameter combinations. The 'Fold' column indicates the fold of the cross-validation, while the ‘Loss
Function Weighting’ column indicates the way the loss function of the convolutional neural network of the proposed method
was weighted during training. ‘CF’ indicates class frequency weighting, while ‘CF and BD’ indicates class frequency and

boundary distance weighting.

Fold Loss Function Weighting Learning Rate Mini-Batch Size
1 CF 0.0003 4
CF and BD 0.0003 8
2 CF 0.0003 4
CF and BD 0.00003 8
3 CF 0.0003 4
CF and BD 0.00003 4
4 CF 0.0003 4
CF and BD 0.0003 8
5 CF 0.003 8
CF and BD 0.0003 4

Figure 57 shows the accuracy of the segmentations estimated by both versions of
the proposed method. Figure 57A shows the DSCs of each class in the estimated
segmentations, while Figure 57B shows the HDs of each class. The median DSC of the
segmentations estimated by the version of the method where the loss function was
weighted using class frequency only was 0.96, while the median HD was 5 mm. In 93% of
segmentations (365 of 392 images in the test dataset), the DSCs of all the classes were
above 0.85. The median DSC of the segmentations estimated by the version of the method
where the loss function was weighted using both class frequency and boundary weighting
was 0.95, while the median HD was 5 mm. In 86% of segmentations (339 of 392 images in
the test dataset), the DSCs of all the classes were above 0.85.

Figure 58 shows the minimum distances between the soft palate and the posterior
pharyngeal wall measured in the GT segmentations and corresponding segmentations
estimated by both versions of the proposed method, while Figure 59 shows the absolute
differences between the measurements in GT and corresponding estimated segmentation

pairs.
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The velopharyngeal closures in the GT and estimated segmentations of all the
subjects are shown in Figure 60, while the number of each type of velopharyngeal closure
(“correct”, “merged”, “additional” and “missed”) in the segmentations is summarised in
Table 7. Figure 61 shows rtMR images whose estimated segmentations incorrectly showed
velopharyngeal closure.

Five examples of segmentations estimated by the proposed method when it was
inputted with additional rtMR images of vocal tract shapes that were not present in the

training dataset are shown in Figure 62. The median DSC of the estimated segmentations of

the 15 additional rtMR images was 0.96, while the median HD was 6 mm.
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(1) (2) (3)

Figure 56: Examples of ground-truth segmentations (column 1) and corresponding segmentations estimated by the class
frequency weighted version of the proposed method before and after the post-processing step (columns 2 and 3

respectively). Rows A to C show estimated segmentations with low, average and high Dice coefficients respectively. Rows D
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to F show estimated segmentations with large, average and small general Hausdorff distances respectively. The sounds
being produced by the subjects are /t/ in “two” (row A), /r/ in “three” (row B), /n/ at the end of “nine” (row C), /w/ in “one”
(row D), /f/ in “four” (row E) and /n/ in “ten” (row F). The segmentations have been cropped to only show the vocal tract

region. Image source: [205].
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Figure 57: (A) Dice coefficients and (B) general Hausdorff distances of the segmentations estimated by both versions of the
proposed method. In the Figure legend, ‘Class Frequency (CF)’ and ‘CF and Boundary Distance’ indicate the loss function

weighting used during the training of the proposed method.
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Figure 58: Minimum distances between the soft palate and posterior pharyngeal wall measured in the ground-truth

segmentations and segmentations estimated by both versions of the proposed method. Each row corresponds to a different

subject. In the Figure legend, ‘Class Frequency (CF)’ and ‘CF and Boundary Distance’ indicates the loss function weighting

used during the training of the proposed method.
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Figure 59: Absolute differences in the minimum distance (between the soft palate and posterior pharyngeal wall) measured
in the ground-truth segmentations (dsr) and corresponding segmentations estimated by both versions of the proposed
method (destimated). The x-axis label ‘Loss Function Weighting’ indicates the loss function weighting used during the training

of the proposed method.
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Figure 60: Velopharyngeal closures in the ground-truth segmentations and segmentations estimated by both versions of the

proposed method. Each row corresponds to a different subject. In the Figure legend, ‘Class Frequency (CF)’ and ‘CF and

Boundary Distance’ indicates the loss function weighting used during the training of the proposed method.
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(1) | (2) (3)

(A)

(B)

Figure 61: Magnetic resonance images (column 1) whose estimated segmentations after post-processing (column 3)
incorrectly showed velopharyngeal closure. Column 2 is the ground-truth segmentation of the images. In both images, the
soft palate is close to the posterior pharyngeal wall but not in contact with it. Row A shows the subject pausing between
saying “four” and “five”, while row B shows the subject producing the sound /n/ at the end of “nine”. The images and
segmentations have been cropped to only show the vocal tract region.

Table 7: Number of velopharyngeal closures in the ground-truth segmentations and segmentations estimated by the
proposed method. Total: total number of closures in the segmentations. Correct: closures that were shown in both the
ground-truth and estimated segmentations. Additional: closures that were shown in the estimated segmentations but not
the ground-truth segmentations. Merged: one or more consecutive closures that were shown as separate closures in the
ground-truth segmentations and a single closure in the estimated segmentations. Missed: closures that were shown in the
ground-truth segmentations but not in the estimated segmentations. The columns ‘Class Frequency’ and ‘Class Frequency

and Boundary Distance’ indicate the loss function weighting used during the training of the proposed method.

Ground truth Class Frequency Class Frequency and

Boundary Distance

Total 30 33 32
Correct 30 27 27
Additional 0 5 4
Merged 0 3 3

Missed 0

o
o
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Figure 62: Ground-truth segmentations (column 1) and corresponding segmentations estimated by the proposed method

(column 2) when inputted with images of vocal tract shapes that were not present in the training dataset. The

segmentations have been cropped to only show the vocal tract region.
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5.5 Discussion

At the time the work presented in this chapter was published [205], the main contribution
and novelty of the work was the development of an automatic method to fully segment
multiple groups of articulators as well as the vocal tract in 2D rtMR images of the vocal tract
during speech. This novelty overcame the limitations of existing methods that either only
segmented the air-tissue boundaries between the vocal tract and neighbouring tissues
[15,16,199-204] or fully segmented the vocal tract only [208]. However, since the work was
published three further related works have been completed. Two of these works are
methods to analyse 2D rtMR images of the vocal tract during speech [72,206], while the
other is a method to segment the pharynx and entire articulators (tongue and soft palate) in
2D static images of the vocal tract [218]. In [206] a DL-based method to segment entire
articulators (soft palate, hard palate, tongue, jaw and upper lip) inspired by the method
presented in this chapter was developed, while in [72] a method to measure the minimum
distance between the soft palate and posterior pharyngeal wall was developed.

Another contribution and novelty of the work presented in this chapter is the
development of a clinically relevant metric for assessing the accuracy of segmentations
created by vocal tract and articulator segmentation methods. This novel metric was used to
assess the accuracy of the segmentations estimated by the proposed method.

The final contribution and novelty of the work presented in this chapter is the
extension of the method to enable automatic calculation of the minimum distance between
the soft palate and the posterior pharyngeal wall, a measurement of particular interest in
clinical speech assessment [7].

The proposed segmentation method is deep learning based and consists of three
steps: first, segmentations are created by inputting rtMR images into a trained CNN with a
similar architecture to the original U-Net [175]; second, a connected component analysis
based post-processing is performed on the segmentations to remove anatomically
impossible regions; third, the minimum distance between the soft palate and posterior
pharyngeal wall is measured, a measurement that is of growing interest to clinicians
managing patients with VPI [7,72,135,198,287,288]. This method is a step towards the

ultimate goal of automatic articulator segmentation and measurement in clinical practice.
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Two different CNN loss function weightings were investigated. The first was intended
to compensate for the class pixel frequency imbalance in the dataset used to train the
proposed method, while the second also included a weighting intended to prioritise
accurate segmentation of boundary pixels. The two main motivations for this prioritisation
were to increase the accuracy with which the proposed method captured velopharyngeal
closures and the accuracy of the minimum distance (between the soft palate and posterior
pharyngeal wall) measurements. However, as shown in Figure 57, Figure 58, Figure 59,
Figure 60 and Table 7, the additional weighting did not improve the segmentation accuracy
of the proposed method. A possible explanation for this result is that the additional
weighting reduced the number of pixels that had a large effect on the loss function and the
CNN struggled to learn to identify this smaller number of pixels.

The proposed method (the version trained without the additional loss function
weighting) segmented each class with a high accuracy, as shown by its segmentations
achieving a median DSC of 0.96 and a median HD of 5 mm. On average, the head was
segmented most accurately (median DSC of 0.99). This result is unsurprising as this class has
the largest number of pixels and the least variation in shape and position in the rtMR
images. It is therefore the least challenging class for the proposed method to learn to
segment. On average, the soft palate and tooth space were segmented least accurately
(median DSCs of 0.92 and 0.93 respectively). This result is also unsurprising as these classes
have the smallest number of pixels and so small errors at the boundaries will have a bigger
impact on the DSC. In addition, the soft palate is the class with the largest variation in shape
and position in the rtMR images. It is therefore the most challenging class for the proposed
method to learn to segment.

The proposed method (the version trained without the additional loss function
weighting) segmented the vocal tract with a higher accuracy (mean DSC of 0.95) than the
only other published method for fully segmenting the vocal tract (mean DSC of 0.90) [208].
Both methods are deep learning based and have a similar architecture, therefore one
possible reason for the higher accuracy of the proposed method is because it was trained
using a larger number of images (up to 1625 images, while [208] was trained using 300
images). A possible reason for the lower accuracy of the other published method could be
greater variability in the dataset used to train it. The training dataset of the other published

method consisted of images of 10 healthy adult volunteers while the dataset of the
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proposed method consisted of images of five health adult volunteers. Another possible
reason for the higher accuracy of the proposed method could be that the method captured
more contextual information as a result of segmenting a larger number of classes, thus
improving the accuracy with which it segmented the vocal tract.

The proposed method (the version trained without the additional loss function
weighting) segmented the soft palate, jaw and tongue with greater median DSCs (0.92, 0.95
and 0.97 respectively) to the method published in [206], which segmented these
articulators with median DSCs of 0.89, 0.91 and 0.97 respectively. In addition, the proposed
method segmented the soft palate and tongue with a greater accuracy than the method
proposed in [218], which segmented these articulators with a median DSCs of 0.79 and 0.89
respectively. However, the method proposed in [218] was developed for segmenting 2D
static MR images of the vocal tract, rather than 2D rtMR images of the vocal tract during
speech. All these methods are deep learning based and have a similar architecture,
therefore possible reasons for the higher accuracy of the proposed method are similar to
those discussed in the preceding paragraph. The proposed method was trained on up to
1625 images, while [206] was trained using 820 images and [218] was trained using 151
images.

In 93% of cases (365 of 392 images), the DSC of each of the six estimated
segmentations (one per class) was 0.85 or above. This result suggests that the
generalisability of the proposed method is good.

The proposed method includes steps to measure the minimum distance between the
soft palate and posterior pharyngeal wall. As shown in Figure 59, the median error in the
distances measured in the segmentations estimated was close to zero. Comparison of this
error with the only other published method to measure the minimum distance between the
soft palate and posterior pharyngeal wall [72] is not possible as no errors were reported. A
limitation of the distance measurement steps is that they make large assumptions about the
way the head is orientated in the images. For example, the steps assume that the head is
facing towards the left of the images. To be suitable for use in clinical practice, the method
should be able to identify images where the head is not orientated in this way, to avoid
spurious results.

When clinically assessing the speech of patients with speech problems, an important

consideration is whether velopharyngeal closure occurs during speech. It is therefore
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important that segmentation methods intended for use in clinical speech assessment
accurately show any velopharyngeal closures that occur, while not artificially creating
velopharyngeal closures when these do not occur (i.e. preserve gaps between the soft
palate and posterior pharyngeal wall). The segmentations estimated by the proposed
method (the version trained without the additional loss function weighting) correctly
captured 90% (27 out of 30) of the velopharyngeal closures in the GT segmentations. As
shown in Figure 60, three consecutive closures in the GT segmentations were shown as a
single closure in the estimated segmentations. It is important to note that the soft palate
motion between these three closures was different from the motion between all the other
closures: instead of moving to a position far from the pharyngeal wall, the soft palate
remained close to the wall (an example is shown in Figure 61A). Consequently, the gap
between the soft palate and posterior pharyngeal wall remained small. The estimated
segmentations also showed five closures that did not occur in the GT segmentations (two
are shown in Figure 60). All five of these additional closures occurred when the soft palate
was close to the posterior pharyngeal wall (an example is shown in Figure 61B). The merging
of closures and the occurrence of additional closures shows that the proposed method was
not always able to preserve small gaps between the soft palate and the pharyngeal wall.
Further work is required to improve the ability of the method to preserve such gaps. A
factor that can make preservation of such gaps particularly challenging is the presence of
fluid within them. In rtMR images, fluid has a similar intensity to the soft palate and
posterior pharyngeal wall and can therefore make it appear as though the soft palate and
posterior pharyngeal wall are in contact (an example is shown in Figure 61B). This factor
should be considered in any future work.

Different vocal tract shapes and articulator positions are required to produce different
speech sounds. Our method was trained using 2D rtMR images of vocal tract shapes that
occur in counting from one to ten (a speech task commonly performed in clinical speech
assessment) rather than using images of all the different possible shapes in English.
Nevertheless, the proposed method was able to segment rtMR images of three different
vocal tract shapes that were not present in the training dataset with a similar accuracy to
images of vocal tract shapes that were present in the training dataset. The median DSC and
median HD of segmentations of the former images were 0.96 and 6 mm respectively, while

those of the latter images were 0.96 and 5 mm. The similarity of these results suggests that
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the proposed method is able to segment images of vocal tract shapes that were not present
in the training dataset with an accuracy similar to images of vocal tract shapes that were
present in the training dataset. However, further work involving images of a larger range of
vocal tract shapes is required to investigate the extent to which this finding is true.

The proposed method does not exploit the temporal nature of the image series. In
other words, it segments images individually without considering prior or subsequent
images in the series. Future work could investigate if exploiting the temporal nature of the
image series, for example using RNNs, results in improved segmentation accuracy.

This work is a step towards the ultimate goal of automatic articulator segmentation
and measurement in clinical practice. However, a large amount of future work is required to
achieve this goal. More specifically, three major challenges must be overcome. One
challenge concerns the dataset used to develop the method, while the other two are
technical.

First, as explained in section 4.1.6, a larger and more diverse dataset, both in terms of
subjects and image contrast, must be created and used to develop and extend the method.
More specifically, a dataset more representative of the target patient population is required:
since the target patient population primarily consists of children, the dataset must contain
images of children. In addition, since velopharyngeal closure does not occur as expected in
some of the speech of patients with VPI, the dataset must contain image series where
velopharyngeal closure does not occur as well as image series where it does. In addition, a
dataset with images acquired using many different MRI scanners and pulse sequences is
required to ensure that methods developed using the dataset are generalisable and perform
well on images from different sources. While there are publicly available 2D speech MRI
dataset [18,19], these do not have corresponding GT segmentations thus limiting their use
for training supervised DL-based segmentation methods.

Second, to be suitable for use in clinical practice, the method should be extended so
that the shape and size of the soft palate and vocal tract are automatically measured in the
images. While the segmentations estimated by the method are a useful step towards
achieving this goal, further methods should be developed to automatically measure the size
and shape of these segmentations.

Third, to be suitable for use in clinical practice, the method should be extended so that

the motion of articulators can be automatically tracked. There is increasing interest in
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automatic quantification of articulator motion in 2D rtMR image series, for example to
facilitate analysis of articulator motion before and after treatment in patients with VPI. As
explained in section 3.4.1, an established way to automatically quantify complex motion in
an image series is by using a nonlinear image registration method to estimate displacement
fields between the images. Accurate displacement fields would enable clinical teams to
obtain nearly automatically clinically relevant information such as the direction in which the
soft palate elevates during speech, the speed at which it elevates and the distance by which
it elevates. Future work should extend the method in partnership with clinical teams to

ensure that the measured aspects of motion are clinically relevant.

5.6 Conclusions

A novel automatic method to fully segment multiple groups of articulators as well as the
vocal tract in 2D rtMR images of the vocal tract during speech was developed. The method
is a step towards the ultimate goal of automatic articulator and vocal tract segmentation
and measurement in clinical practice.

At the time it was published [205], the method overcame the limitations of existing
methods that either only segmented the air-tissue boundaries between the vocal tract and
adjacent tissues or only fully segmented the vocal tract. Since then, three similar works have
been developed [72,206,218], however, the proposed method remains the method that
achieved the highest accuracy.

In addition to the novel method, a novel clinically relevant metric for assessing the
accuracy of vocal tract and articulator segmentation methods was developed and used to
assess the accuracy of the novel method.

The next chapter will present work that extends the proposed method to enable

tracking of the motion of articulators in 2D rtMR images of the vocal tract during speech.
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Chapter 6: Articulator Motion Quantification in MR Images
of Speech

6.1 Introduction

6.1.1 Motivation

As explained in section 3.1.6, visualisation of the vocal tract and articulators during speech
provides information about the size, shape, motion and position of these anatomical
features during speech production. In a research context, primarily in speech science
research, this information is desirable as it provides insights into speech production, while,
as explained in section 2.2.3, in clinical speech assessment this information is desirable as it
enables identification of the defect(s) preventing velopharyngeal closure and consequently
informs treatment decisions [1,3,4].

As explained in section 3.1.7, use of rtMRI to visualise the vocal tract and articulators
during speech is increasing due to the growing availability of MRI scanners, the
development of rtMRI techniques for such visualisation, and the unique ability of MRI to
non-invasively acquire images of any orientation without using ionising radiation [12,27,61].
While currently the main application of rtMRI of speech is in speech science research [68—
76], the use of rtMRI in clinical speech assessment of patients with VPI is increasing [7,77—
82].

Real-time MRI of speech typically involves acquiring series of 2D images of a midsagittal
slice of the vocal tract [12,27]. There is increasing interest in automatic quantification of
articulator motion in these series, for example to facilitate analysis of articulator motion
before and after VPI treatment. An established way to automatically quantify complex
motion in an image series is by using a nonlinear image registration method to estimate
displacement fields between the images.

During speech, the articulators move in a complex manner. As well as changing shape
and position, they come into contact and separate from each other and anatomical
structures such as the pharyngeal wall. As described in section 2.2.3, the motion of the soft
palate informs VPI treatment decision making in clinical speech assessment. Consequently, a

key requirement of articulator motion quantification methods intended for use in clinical
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speech assessment is that the methods accurately capture soft palate motion. In particular,

the methods must capture any velopharyngeal closures that occur.

6.1.2 Related Work

As described in section 3.4, traditional nonlinear registration methods establish nonlinear
spatial correspondences (usually displacement vector fields) between two images by
iteratively optimising a cost function [225]. Many different types of methods have been
developed and used to register a wide variety of medical images [225]. Well-established
methods include FFDs [236], demons [239], discrete methods [289] and their extensions
such as [240] and [223]. Most traditional nonlinear registration methods are designed to
estimate smooth and continuous displacement fields. However, such fields cannot
accurately capture certain types of motion such as organs sliding past each other or organs
coming into contact and then separating from each other. Instead, displacement fields with
discontinuities are required to capture these types of motion. While several methods
[235,259-262] have been developed to capture the former type of motion, only one of
these [261] can capture the latter type. This method would be particularly suitable for
capturing the motion of the articulators during speech, however, unfortunately there is no
publicly available implementation of it.

Recently, inspired by the successes of DL-based methods in other medical image
analysis tasks, researchers have developed DL-based nonlinear registration methods
[228,229,243-246,290]. The latest methods [243—246,290] are unsupervised or weakly-
supervised and consist of CNNs (introduced in section 3.2.6) for estimating displacement
fields between images and spatial transformers [255] for transforming images and/or
segmentations according to the estimated displacement fields. These methods have
achieved state-of-the-art accuracy in the registration of MR images of organs including the
heart [243,244] and brain [245,246,290].

Registration and segmentation can be related tasks, and there is increasing evidence
that including segmentation information during the training of a registration CNN results in
more accurate motion estimates [245,247,257,258,248-254,256]. The motivation for
including segmentation information in the registration process is usually to provide

information about the locations of boundaries between anatomical features in the images
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and also information about which anatomical features different regions of the displacement
fields belong to. Inclusion of segmentation information is typically achieved by including
region-overlap-based terms such as the DSC (introduced in section 3.3.2) in the CNN loss
function. Joint registration and segmentation frameworks [247-250,252,257,258] have been
developed as well as “segmentation-informed” registration frameworks such as
VoxelMorph [245]. In fact, VoxelMorph can be trained in two ways: (i) using only the
estimated displacement fields and the fixed and transformed moving images in the loss
function, and (ii) in a segmentation-informed manner, where fixed and transformed moving
segmentations are also used in the loss function.

Segmentation information has also been included in the registration process in two
other ways. The first approach is to use segmentations to modify the appearance of the
images, in order to optimise the images for the registration task [251,253,256]. In this
approach, the images are modified before being used as inputs to the registration CNNs
either by multiplying them by binary masks [251,253] or by using a fully convolutional image
transformer network whose loss function includes a region-overlap-based term [256]. The
second approach is to use segmentations as well as images as inputs to the registration CNN
[254]. The rationale for inputting segmentations, even if these are estimates rather than
ground-truths, is that they provide information about the positions of anatomical features
in the images and would therefore help the CNN to estimate more accurate displacement
fields.

Similarly to traditional nonlinear registration methods, currently the majority of DL-
based methods are designed to estimate smooth and continuous displacement fields. Three
methods have been developed to estimate displacement fields with discontinuities
[253,257,267]. [267] is designed to capture sliding motion only, while [253] and [257] are
designed to capture cardiac cycle motion and their suitability for capturing motion where
organs come into contact and then separate from each other has not yet been investigated.

In previous work, only traditional registration methods have been applied to MR
images of the vocal tract [20,21,69,72,75,76,196,268—-270]. Rigid methods were used to
correct for changes in head position in series of 2D rtMR images acquired during speech
[69,72,75,76,196], while nonlinear methods were used to synthesise dynamic image series
of speech [21,268-270], create dynamic 3D atlases of the vocal tract during speech [21] and

estimate the speed at which the tongue tip moves during speech [20]. More specifically, the
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diffeomorphic demons method [240] was used in [268—-270], the FFD method [236] was
used in [21] and the method described in [271] was used in [20]. In [20,268,269], images
where articulators were in contact were registered to images where they were not and vice
versa. However, the authors did not evaluate if their chosen registration methods captured
these changes in contact. In [268], the authors reported that the diffeomorphic demons
method did not capture articulators coming into contact (for example, the lips coming into
contact). Nevertheless, the authors used the same method in similar subsequent work
[269]. In [20,269], the authors did not discuss if their chosen registration methods captured
changes in articulator contact. Tongue tip speeds estimated using the nonlinear-
registration-based method in [20] were found to be similar to those reported in the
literature, suggesting that these methods can accurately estimate the speed at which
articulators move during speech.

To accurately represent soft palate motion, displacement fields estimated by
nonlinear registration methods must capture any velopharyngeal closures that occur.
However, standard metrics such as region-overlap-based terms do not evaluate this.
Accurate velopharyngeal closure capture is especially important for methods to analyse the
soft palate motion of patients with VPI, as the presence or absence of velopharyngeal
closures can affect treatment decisions [1].

In the previous chapter and [205], a metric based on velopharyngeal closure was
proposed and used to evaluate the accuracy of a method to segment 2D rtMR images of the
vocal tract during speech. This metric quantifies how many of the velopharyngeal closures in
the GT segmentations occur in the estimated segmentations and is calculated by comparing
corresponding consecutive segmentations in the two series. It could also be used to
evaluate the accuracy of a registration method. In this case, the metric would be calculated
by comparing the GT segmentations of the fixed images with the transformed GT

segmentations of the moving images.

6.1.3 Contributions
The work presented in this chapter makes two contributions and has been peer reviewed
and published as a journal article [291]. First, it begins to address the unmet need for

automatic articular motion analysis in 2D rtMR images of the vocal tract during speech, by
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developing a segmentation-informed nonlinear registration framework to estimate
articulator-specific displacement fields between these images. This is the first time that
segmentation-informed registration has been used for this application. Second, the work
uses for the first time a metric based on a quantifiable and clinically relevant aspect of
articulator motion (velopharyngeal closure) to evaluate the accuracy of these displacement
fields.

The work builds on the work presented in the previous chapter in the following
ways. First, it uses the DL-based segmentation method presented in the previous chapter to
provide the segmentations used as inputs to the registration CNN. Second, it uses the
velopharyngeal closure evaluation metric proposed in the previous chapter to evaluate if
the displacement fields estimated by the proposed segmentation-informed nonlinear

registration method accurately capture velopharyngeal closures.

6.2 Methods

6.2.1 Proposed Registration Framework
Figure 63 shows an overview of the proposed framework. Given a pair of images from a
series of 2D rtMR images of the vocal tract, the framework will estimate a displacement field
to align the moving image to the fixed image. The framework is based on the segmentation-
informed VoxelMorph framework [245] but features two adaptations. First, it includes a
method to segment the images. Second, segmentations as well as images are used as inputs
to the registration CNN, in the same manner as the framework of Chen et al. [254]. (In the
segmentation-informed VoxelMorph, segmentations are only used to compute part of the
loss function during training.) Figure 64 shows the architecture of the registration CNN. The
segmentation method included in the framework is the DL-based method presented in the
previous chapter and [205] to segment 2D rtMR images of the vocal tract. This method
segments six anatomical features in each image. All six segmentations are used as inputs to
the registration CNN. The registration CNN therefore has 14 input channels (two for the 2D
fixed and moving images, 12 for the 2D fixed and moving segmentations), while the
registration CNN of VoxelMorph only has two (for the fixed and moving images).

Like the VoxelMorph frameworks, the proposed framework includes a spatial

transformer to transform an image or segmentation according to an estimated displacement
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field. The spatial transformer is required for framework training and evaluation, but not for

framework deployment.
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Figure 63: An overview of the proposed framework for segmentation-informed nonlinear registration. A pair of two-
dimensional (2D) real-time magnetic resonance images of the vocal tract pass through the framework as follows. First, the
image pair are used as inputs to a convolutional neural network (CNN) which estimates segmentations of six different
anatomical features in the images. Second, the segmentations are post-processed to remove anatomically impossible
regions. Third, the image pair and post-processed segmentations are used as inputs to a registration CNN which estimates a
displacement field to align the moving image to the fixed image. Fourth, the moving image and displacement field are used
as inputs to a spatial transformer to transform the moving image. During training and evaluation, the spatial transformer is
also used to transform the ground-truth (GT) segmentations of the moving image. The red boundary contains the parts of
the framework used during training and evaluation, while the green boundary contains the parts used during deployment.

The grey boundary contains the terms in the loss function used to train the framework. Image source: [291].
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Figure 64: The architecture of the registration convolutional neural network in the proposed framework (i.e. the Reg CNN
box in Figure 63). When input with a pair of two-dimensional (2D) real-time magnetic resonance images of the vocal tract
and segmentations of six different anatomical features in the pair, the network estimates a displacement field to align one

of the images to the other. The network has 14 input channels: two for the image pair, six for the segmentations of the fixed
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image and six more for the segmentations of the moving image. The network output has 2 channels: one for displacements
in the x-direction and another for displacements in the y-direction. The outputs of each 2D convolution (conv) are batch
normalised. Following batch normalisation (BN), the outputs are passed through a rectified linear unit (ReLU). Image

source: [291].

6.2.2 Framework Implementation, Training and Evaluation

The segmentation method included in the framework had been trained separately in the
way described in the previous chapter and [205]. The registration framework was trained
using the same training/validation/test dataset split as the segmentation method. The
framework was implemented in PyTorch 1.7.1 [281] and trained for 200 epochs. In each
epoch, every image in the training dataset was used once as the fixed image. Each fixed
image was randomly paired with another image of the same subject. Each mini-batch
consisted of four image pairs. Segmentations of anatomical features in these images were
estimated using the segmentation method. The images and estimated segmentations were
then used as inputs to the registration CNN. During training and evaluation, GT
segmentations of the images were transformed according to the displacement fields
estimated by the registration CNN. The Adam optimiser [151] with £;=0.9, £,=0.999 and
e=1e-8 was used during training. Data augmentation consisting of random translations,
rotations, cropping and rescaling was performed to increase the size of the training dataset
by a factor of four. More information about the augmentations is provided in 5.2.2 of this
thesis and section 2.3 of [205]. During framework evaluation, every image in the test dataset

was used as the fixed image. Each image was paired with the reference image of the dataset.

6.2.3 Loss Function

The proposed framework was trained using the same loss function as the segmentation-
informed VoxelMorph framework. This loss function consisted of three terms: an MSE term;
an L, regularisation of the spatial gradients of the displacement field (D) term and a DSC

term. MSE was used to quantify differences in image appearance:

MSE = 3, 5t 51 (F(x,7) = My (x,7))? (23)

where F(x, y) is the intensity of pixel (x, y) in the fixed image, My (x, y) is the intensity of

pixel (x,y) in the transformed moving image, and X X Y is the image matrix size.
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Spatial gradients of the displacement field were approximated using differences

between neighbouring pixels:

VD(X,y) = (D(X+ 173’) —D(x,y),D(x,y+ 1) _D(x'y)) (24)

The L, regularisation term was therefore calculated using the following equation:

D(x +1,y) = D(x,¥))?

X-
Iv1l, = : Z
2 - Y —

i

) _
T Z (DGy +1) = D(x, )Y
(25)
The full loss function was:
L = MSE + A||VD||, — yDSC (26)

where A and y are loss weighting terms. Section 6.3.4 provides details on how these

hyperparameters were optimised.

6.3 Experiments

6.3.1 Data
The five rtMR image series described in section 4.1.2 were used in the experiments, along
with their corresponding GT segmentations described in section 4.1.4. In each series, the
first image that met the following criteria was manually chosen as the reference image:

1. Upper and lower lips not in contact.

2. Tongue not in contact with roof of mouth or soft palate.

3. Soft palate not in contact with pharyngeal wall.
Figure 65 shows the reference images. During framework evaluation, these images were

used as the moving image for registration purposes.
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Figure 65: The reference image in each of the five series of two-dimensional real-time magnetic resonance images (image

from [291]). During framework evaluation, these images were used as the moving image for registration purposes.

6.3.2 Displacement Field Evaluation
Displacement fields estimated by the framework were evaluated by first transforming
moving GT segmentations according to the fields and then comparing these with fixed GT

segmentations using the three metrics described below.

6.3.2.1 Dice Coefficient and Average Symmetric Surface Distance

The DSC (introduced in section 3.3.2) was used to quantify the overlap of corresponding
classes in the fixed and transformed moving GT segmentations, while the ASD (also
introduced in section 3.3.2) was used to quantify the average discrepancy between pixels at
the surfaces of corresponding classes. Six values of each metric were calculated per moving
segmentation: one value per class. The metrics were calculated using the DiceMetric and

SurfaceDistanceMetric functions from MONAI 0.9.0 [292].

6.3.2.2 True Velopharyngeal Closures

The third metric (introduced in section 5.3.3) evaluates if velopharyngeal closures are
captured by the displacement fields. The number of true velopharyngeal closures captured
by the displacement fields was calculated in the following way. First, transformed moving GT
segmentations were automatically labelled as showing velopharyngeal closure or not. This
enabled the velopharyngeal closures in a series of segmentations to be represented as a
series of binary values (one for each frame) with zero indicating no velopharyngeal closure
and one indicating velopharyngeal closure. Second, the binary series of the fixed and
transformed moving GT segmentations was automatically compared. A velopharyngeal
closure was considered to be captured correctly if a series of ones in both binary series

overlapped. The software to label segmentations and create and compare binary series was



Articulator Motion Quantification in MR Images of Speech 166

developed in-house and implemented using MATLAB 2019b (MathWorks, Natick, MA). The
software determined if a segmentation frame showed velopharyngeal closure by identifying
if three or more posterior “soft palate” pixels in the frame were in contact with “head”

pixels.

6.3.3 Comparison with State-of-the-Art Methods and Frameworks

The proposed framework was benchmarked against five current state-of-the-art deformable
registration methods and frameworks: two traditional methods and three frameworks. The
traditional methods were FFD [236] and a segmentation-informed version of FFD (SIFFD)
where deformations in certain regions of the moving image are constrained to be rigid [293].
The frameworks were the VoxelMorph (VXM) and segmentation-informed VXM (SIVXM)
frameworks [245] and a joint registration and segmentation (JRS) framework [247].
Benchmarking was performed by comparing estimated displacement fields using the two

metrics described in section 6.3.2.

6.3.3.1 Free-Form Deformation Methods

Both FFD methods were implemented using NiftyReg version 1.5.39 [237]. The cost function
consisted of three terms: a normalised mutual information term (NMI); a bending energy
(BE) term and a term based on the symmetric and anti-symmetric parts of the Jacobian (LE)

[237]. The full cost function was:

C=(1-A—y)NMI — ABE —yLE (27)

where A and y are cost weighting terms.

Three iteration levels were used in the optimisation of the cost function, with a
maximum of 150 iterations in the final level. In SIFFD, deformations in the region of the
image corresponding to the head segmentation estimated by the segmentation method
were constrained to be rigid. While it may seem counterintuitive to use rigid constraints, the
reason for using these was to prevent the pharyngeal wall (part of the head segmentation

class) from being misregistered to the soft palate.
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For both methods, several registrations were performed using different combinations
of cost weighting term values and spline grid spacings (listed in Table 8), and then evaluated
using the metrics described in section 6.3.2, enabling identification of the optimal values

and spacings.

6.3.3.2 \VoxelMorph Frameworks

The two VoxelMorph frameworks are almost identical; the only difference between them is
the loss function used to train them. The SIVXM framework is trained using L (see Equation
26), while the VXM framework is trained using a loss function consisting of two of the three

termsin L:

The key difference between L and Ly x,, is that the former contains a segmentation-
dependent term (DSC). Use of L during training therefore results in a segmentation-
informed registration framework, while use of L, does not. The frameworks were
implemented in PyTorch 1.7.1 using the code publicly available at
https://github.com/voxelmorph/voxelmorph. Framework training and evaluation was

performed as described in section 6.2.2.

6.3.3.3 Joint Image Registration and Segmentation Framework

This framework was implemented in PyTorch 1.7.1 using the code publicly available at
https://github.com/cq615/Joint-Motion-Estimation-and-Segmentation. The framework was
trained in three stages using three different loss functions, as described in section 2.2 of
[247], and for 200 epochs in total. First, the registration CNN was trained for 67 epochs using
Lyxum (see Equation 28) as the loss function. Second, the segmentation CNN was trained for
67 epochs using cross entropy (CE,g s¢q) (introduced in section 3.3.2) as the loss function.
CE,st seg Was calculated by comparing the segmentations estimated by the segmentation
CNN to the GT segmentations. Third, both CNNs were jointly trained for 66 epochs using a

combination of Ly xy, CEs: seg and an additional cross entropy term (CE-, g¢) as the loss
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function. CEy, 4 Was calculated by comparing the fixed and transformed moving GT

segmentations. The full loss function was:

L]RS = MSE + /1”VD”2 + y1CEest_seg + VZCEtra_gt (29)

where y; and y, are loss weighting terms. All other aspects of framework training and

evaluation were performed as described in section 6.2.2.

6.3.4 Five-Fold Cross-Validation

Four separate five-fold cross-validations were carried out to evaluate the generalisability of
the VXM, SIVX, JRS and proposed frameworks respectively. Each cross-validation was carried
out as follows. A different image series was left out in each fold. Hyperparameter
optimisation was performed as part of the cross-validation, by carrying out a nested cross-
validation for each main cross-validation fold. The nested cross-validations were four-fold
cross-validations where each of the remaining four image series were left out once. In each
nested cross-validation fold, combinations of learning rates and loss term weightings (listed
in Table 8) were evaluated. The optimal hyperparameter combination was identified by
comparing the number of true velopharyngeal closures captured by the displacement fields
estimated for the left-out image series of the nested cross-validation. The combination that
resulted in the capture of the largest number of true velopharyngeal closures was chosen as
the optimal hyperparameter combination. Once the optimal combination had been
identified for a main cross-validation fold, these hyperparameters were used to train the
framework. In each main cross-validation fold, the framework was trained using all the
image series except the left-out image series for that fold, and then evaluated using the left-

out image series.

6.3.5 Ablation Study

Although the segmentations consist of six classes, only the head, soft palate and vocal tract
classes are required to determine if there is velopharyngeal closure. An ablation study was
performed to investigate the effect of these three classes on the accuracy of the proposed

framework. Three experiments were performed where different classes were used as inputs
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to the registration CNN during the training and evaluation of the framework. In the first, only
the soft palate and vocal tract classes were used as inputs. In the second, the head, soft
palate and vocal tract classes were used. In the third, all classes except the soft palate and
vocal tract were used. In all other respects, the framework was trained and evaluated in the

way described in sections 6.2.2, 6.3.2 and 6.3.4.

Table 8: Cost weighting terms, spline grid spacings (GSs in pixels) and hyperparameter combinations that were evaluated.
Cost weighting terms (A, y) and spline GSs were evaluated when optimising the free-form deformations (FFD) method and
segmentation-informed FFD (SIFFD) method. Hyperparameter combinations were evaluated during hyperparameter
optimisation of the VoxelMorph (VXM), segmentation-informed VXM (SIVXM), joint registration and segmentation (JRS) and

proposed (Proposed) frameworks. N. indicates the number of combinations. Eight or more combinations of learning rate

(LR) and loss weighting terms (4, y, Y, and Y, ) were evaluated per framework.

Framework Nc LR A Y Y1 Y2 GS
FFD & SIFFD 12 {0, 0.001} {0, 0.01} {4, 5, 6}
{0.00009,
{0.001,
VXM 9 0.0003,
0.01, 0.1}
0.0009}
{0.0003, {0.001,
SIVXM 8 {0.1, 1}
0.0009} 0.01}
{0.0003, {0.001,
JRS 16 {0.1,1} {0.1,1}
0.0009} 0.01}
{0.0003, {0.001,
Proposed 8 {0.1, 1}
0.0009} 0.01}

6.3.6 Statistical Tests

Normality of DSC and ASD groups was assessed using a Chi-squared goodness-of-fit test. No
groups were found to be normally distributed using a 5% significance level. Groups of DSCs
were compared using either a two-tailed Wilcoxon signed-rank test or a two-tailed sign test,
depending on whether the distribution of differences between paired data points was
symmetric. Groups of ASDs were compared in the same way as groups of DSCs. Numbers of
true velopharyngeal closures were compared using McNemar’s test. A 5% significance level

was used for all tests, corrected using the Holm-Bonferroni method to compensate for
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multiple comparisons. All statistical tests were performed using MATLAB 2019b (MathWorks,
Natick, MA).

6.4 Results

6.4.1 Optimal Parameters
Table 9 lists the optimal parameters for the FFD methods, while Table 10 lists the optimal

hyperparameters for training each framework.

Table 9: Optimal parameters for the free-form deformations (FFD) method and segmentation-informed FFD (SIFFD) method.

GS indicates spline grid spacing in pixels, while A and y are cost weighting terms.

Method Subject A Y GS

1 0.001 0 5

2 0 0.01 6

FFD 3 0 0 4
4 0.001 0 6

5 0 0 6

1 0 0 4

2 0 0.01 4

SIFFD 3 0 0.01 4
4 0.001 0 4

5 0 0 5
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Table 10: Hyperparameters identified as being optimal during hyperparameter optimisation of the VoxelMorph (VXM),

171

segmentation-informed VXM (SIVXM), joint registration and segmentation (JRS) and proposed (Proposed) frameworks. LR

indicates learning rate and CV fold indicates the fold of the cross-validation, while 4, y, y; and y, are loss weighting terms.

Framework  CV fold LR A 14 Y1 Y2
1 0.0009 0.001
2 0.0009 0.001
VXM 3 0.0009 0.001
4 0.0003 0.001
5 0.0009 0.001
1 0.0009 0.001 1
2 0.0009 0.001 1
SIVXM 3 0.0009 0.001 1
4 0.0009 0.001 1
5 0.0003 0.001 1
1 0.0003 0.001 1 1
2 0.0003 0.01 1 1
JRS 3 0.0003 0.001 1 0.1
4 0.0003 0.001 1 1
5 0.0003 0.001 1 1
1 0.0009 0.001 0.1
2 0.0009 0.01 1
Proposed 3 0.0003 0.01 1
4 0.0009 0.001 1
5 0.0009 0.01 1

6.4.2 Example Images and Segmentations

Figure 66 shows example transformed images and GT segmentations output by each of the

methods and frameworks. In Figure 66, the fixed images are consecutive images from one of

the image series and show a velopharyngeal closure. This closure is captured by the

proposed framework: contact between the soft palate and pharyngeal wall is shown in three

of the transformed images and segmentations. However, the closure is not captured by the
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FFD methods or the VXM framework: none of the transformed images or segmentations
show contact between the soft palate and the pharyngeal wall. The closure is partially
captured by the SIVXM and JRS frameworks: two of the transformed images and
segmentations output by the former framework show contact between the soft palate and
the pharyngeal wall, while one of the transformed images and segmentations output by the

latter framework shows such contact.
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Figure 66: Transformed images and transformed ground-truth segmentations output by each method and framework,
cropped to only show the vocal tract region. In (A), the first two rows show the moving image (M) and fixed image (F) pairs.
The five fixed images are consecutive images from one of the image series and show a velopharyngeal closure. The white
arrows show where the soft palate is in contact with the pharyngeal wall. The moving images are the reference image of
the subject. The remaining rows in (A) show the transformed moving images output by the free-form deformations (FFD)
and segmentation-informed FFD (SIFFD) methods and the VoxelMorph (VXM), segmentation-informed VXM (SIVXM), joint
registration and segmentation (JRS) and proposed (Proposed) frameworks. In (B), the first two rows show the ground-truth
segmentations of the moving image (m) and fixed images (f). The remaining rows in (B) show the transformed ground-
truth segmentations output by each method or framework. (C) shows enlarged versions of the segmentations outlined in

orange in (B). Image source: [291].
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6.4.3 Displacement Field Accuracy Evaluation

6.4.3.1 Dice Coefficients and Average Symmetric Surface Distances

Figure 67 and Figure 68 show the DSCs of the transformed GT segmentations output by each
of the methods and frameworks, while Figure 69 and Figure 70 show the ASDs of the
transformed GT segmentations. In Figure 67 and Figure 69, the evaluation metric is averaged
over all segmentation classes, while in Figure 68 and Figure 70 the evaluation metric is
averaged over a single segmentation class.

The median DSCs of the segmentation-informed frameworks were consistently
higher than those of the FFD methods and VXM framework, both when DSCs were averaged
over all six segmentation classes (as shown in Figure 67) and when DSCs were averaged over
a single class (as shown in Figure 68). However, as shown in Figure 68 where the DSCs are
averaged over a single class, no segmentation-informed framework consistently achieved
statistically significantly higher DSCs than the others. Although the SIVXM framework
achieved the highest median DSC in three classes (head, soft palate and tooth space), in the
soft palate class there was no statistically significant difference between its DSCs and those
of the proposed framework, and in the head class there was no statistically significant
difference between its DSCs and those of the JRS framework. Similarly, although the
proposed framework achieved the highest median DSC in two classes (jaw and vocal tract),
in the jaw class there was no statistically significant difference between its DSCs and those of
the JRS framework. However, the ranges of the DSCs of the proposed framework were
consistently narrower than those of the other frameworks, suggesting improved robustness
in registration performance.

As shown in Figure 69 and Figure 70, almost identical trends in framework
performance were observed when the frameworks were evaluated using the ASD as when

the frameworks were evaluated using the DSC.
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Figure 67: Dice coefficients (DSCs) of the transformed ground-truth segmentations output by the free-form deformations
(FFD) and segmentation-informed FFD (SIFFD) methods and the VoxelMorph (VXM), segmentation-informed VXM (SIVXM),
joint registration and segmentation (JRS) and proposed (Proposed) frameworks. The DSCs are averaged over the six
segmentation classes. (B) shows the section of (A) where the DSCs are between 0.8 and 1.0. There were statistically

significant differences between all the DSC groups. Image source: [291].
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Figure 68: Dice coefficients (DSCs) of the transformed ground-truth segmentations output by the free-form deformations
(FFD) and segmentation-informed FFD (SIFFD) methods and the VoxelMorph (VXM), segmentation-informed VXM (SIVXM),
joint registration and segmentation (JRS) and proposed (Proposed) frameworks. The DSCs are averaged over a single
segmentation class. (B) shows the section of (A) where the DSCs are between 0.8 and 1.0. There were statistically significant
differences between all the DSC groups, except between pairs of groups indicated with black bars above the box plots.

Image source: [291].
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Figure 69: Average symmetric surface distances (ASDs) of the transformed ground-truth segmentations output by the free-
form deformations (FFD) and segmentation-informed FFD (SIFFD) methods and the VoxelMorph (VXM), segmentation-
informed VXM (SIVXM), joint registration and segmentation (JRS) and proposed (Proposed) frameworks. The ASDs are
averaged over all six segmentation classes. (B) shows the section of (A) where the ASDs are between 0.0 and 1.2. There
were statistically significant differences between all the ASD groups, except between pairs of groups indicated with black

bars above the box plots. Image source: [291].
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Figure 70: Average symmetric surface distances (ASDs) of the transformed ground-truth segmentations output by the free-
form deformations (FFD) and segmentation-informed FFD (SIFFD) methods and the VoxelMorph (VXM), segmentation-
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above the box plots. Image source: [291].
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6.4.3.2 True Velopharyngeal Closures
Figure 71 shows the number of true velopharyngeal closures in the transformed GT
segmentations output by each of the methods and frameworks.

The FFD methods failed to capture any velopharyngeal closures. Comparing the
frameworks, the VXM framework captured the smallest number of velopharyngeal closures
(3), while the proposed framework captured the largest (27). Furthermore, the proposed
framework captured all the closures in four of the five image series, while the SIVXM and JRS
frameworks only captured all the closures in one of the series and the VXM framework did
not capture all the closures in any of the series. There were statistically significant
differences between the true velopharyngeal closures captured by each framework, except

between the SIVXM and JRS frameworks.
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Figure 71: True velopharyngeal closures in the transformed ground-truth (GT) segmentations (of the moving image) output
by the free-form deformations (FFD) and segmentation-informed FFD (SIFFD) methods and the VoxelMorph (VXM),
segmentation-informed VXM (SIVXM), joint registration and segmentation (JRS) and proposed (Proposed) frameworks. The
bars labelled GT indicate the number of velopharyngeal closures in the GT segmentations of the fixed images. In (A) the true
velopharyngeal closures are summed across all five subjects, while in (B) the true velopharyngeal closures are summed
across a single subject. There were statistically significant differences between the true velopharyngeal closures captured by

each framework, except between the frameworks indicated with the black bar in (A). Image source: [291].

6.4.4 Ablation Study
Figure 72 shows the DSCs of all classes in the transformed GT segmentations output by each
version of the proposed framework, while Figure 73 shows the ASDs of all classes. The

median DSCs of the classes that were used as inputs to the registration CNN of the
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framework were consistently higher than those of the other classes, while the median ASDs
of the classes were consistently lower.

Figure 74 shows the number of true velopharyngeal closures in the transformed GT
segmentations output by each version of the proposed framework. The version where the
head, soft palate and vocal tract classes were used as inputs to the registration CNN
captured the same number of closures as the version where all classes were used as inputs,
while the version where the soft palate and vocal tract classes were used as inputs captured
one less closure. The version where the soft palate and vocal tract classes were not used as

inputs failed to capture any closures.
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Figure 72: Dice coefficients (DSCs) of the transformed ground-truth segmentations output by the proposed framework,
averaged across a single segmentation class. The colour code indicates the segmentation classes used as inputs to the
registration convolutional neural network of the proposed framework during training and evaluation. In the Figure legend,
All’ indicates that all six segmentation classes described in section 4.1.4 were used as inputs, while ‘H, SP and VT indicates
the head (H), soft palate (SP) and vocal tract (VT) classes. (B) shows the section of (A) where the DSCs are between 0.8 and

1. There were statistically significant differences between all the ASD groups, except between pairs of groups indicated with

black bars above the box plots. Image source: [291].
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Image source: [291].
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Figure 74: True velopharyngeal closures in the transformed ground-truth segmentations (of the moving image) output by
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velopharyngeal closures are summed across a single subject. Image source: [291].
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6.5 Discussion

A framework for estimating displacement fields between 2D rtMR images of the vocal tract
during speech was successfully developed. The framework is based on the SIVXM framework
[245] but features two adaptations. First, the framework includes a method to segment the
images. Second, segmentations as well as images are used as inputs to the registration CNN,
in the same manner as the framework of Chen et al. [254]. Incorporation of a segmentation
method in the framework enables its use when segmentations of the images are not already
available. This is the first time DL-based nonlinear registration of MR images of speech has
been investigated.

Evaluated using the DSC and ASD, the displacement field estimation accuracy of the
proposed framework was superior to two FFD methods and a current state-of-the-art
framework (the VXM framework), and very similar to two current state-of-the-art
segmentation-informed frameworks (the SIVXM framework and a joint registration and
segmentation framework). However, when evaluated using a metric based on
velopharyngeal closure, its performance was superior to all five state-of-the-art registration
methods and frameworks. In other words, the displacement fields estimated by the
proposed framework captured more of the velopharyngeal closures in the image series, and
therefore better captured this aspect of articulator motion than the methods and other
frameworks.

These results show that metrics based on clinically relevant and quantifiable aspects
of organ motion can be used to evaluate the accuracy of registration frameworks and can be
more sensitive to differences in accuracy than standard metrics such as the DSC and ASD.

In addition, these results show that registration CNNs input with segmentations as
well as images can estimate displacement fields that better capture aspects of articulator
motion than registration CNNs input with images only, even if the segmentations are
estimates rather than ground truths.

The FFD methods failed to capture any velopharyngeal closures. This result is
unsurprising as these methods are designed to estimate smooth and continuous
displacement fields, while discontinuous displacement fields are required to capture the
complex motion of the articulators. Removing the smooth and continuous displacement

field constraints in the cost function did not improve the registration accuracy of the
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methods, showing that there are additional reasons why they are not appropriate for
capturing articulator motion. When registering to fixed images showing velopharyngeal
closure, the FFD method consistently misregistered the pharyngeal wall to the soft palate,
instead of registering the soft palate to the soft palate. An example of this is shown in Figure
66C. The SIFFD method, which ensured that the head (which includes the pharyngeal wall)
deformed in a rigid manner, successfully prevented misregistration of the pharyngeal wall to
the soft palate but did not improve the soft palate registration accuracy. ldeally, the
proposed framework would have been compared with the FFD-based method developed by
Hua et al. [261], as this method was designed to estimate displacement fields with
discontinuities. However, unfortunately this was not possible as there is no publicly available
implementation of the method.

The results of the ablation study show that unsurprisingly the head, soft palate and
vocal tract segmentation classes are crucial for estimating displacement fields that
accurately capture soft palate motion. This highlights the importance of using segmentations
of the anatomical features whose motions are of interest but also segmentations of
neighbouring features that provide information about the positions of the features of
interest, for example whether the features of interest are in contact with other features. The
results of the ablation study also show that using additional segmentation classes such as
the jaw, tongue and tooth space did not affect the number of velopharyngeal closures
captured by the framework. However, as shown in Figure 72 and Figure 73, using these
additional classes was beneficial as it improved the accuracy with which they were
registered by the framework.

To further encourage a CNN to estimate displacement fields that capture
velopharyngeal closures, one approach for future investigation would be to use a loss
function during CNN training that measures whether the starting points and durations of any
velopharyngeal closures captured in a series of estimated displacement fields are correct.
However, to be suitable for use in CNN training, this loss term would have to be
differentiable. Developing a loss term that meets all these criteria would be challenging. A
simpler approach would be to include a loss term based on whether individual transformed
segmentations show contact between the soft palate and pharyngeal wall. This could be
achieved using a topological loss term such as the one developed by [294] which can identify

contact between different segmentation classes in a differentiable manner.
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This work is another step towards the ultimate goal of automatic articulator
segmentation and measurement in clinical practice. However, a large amount of future work
is required to achieve this goal. More specifically, three major challenges must be overcome.
One challenge concerns the dataset used to develop the method, while the other two are
technical.

First, as explained in section 4.1.6, a larger and more diverse dataset, both in terms of
subjects and image contrast, must be created and used to develop and extend the method.
More specifically, a dataset more representative of the target patient population is required:
since the target patient population primarily consists of children, the dataset must contain
images of children. In addition, since velopharyngeal closure does not occur as expected in
some of the speech of patients with VPI, the dataset must contain image series where
velopharyngeal closure does not occur as well as image series where it does. In addition, a
dataset with images acquired using many different MRI scanners and pulse sequences is
required to ensure that methods developed using the dataset are generalisable and perform
well on images from different sources. While there are publicly available 2D speech MRI
dataset [18,19], these do not have corresponding GT segmentations thus limiting their use
for training supervised DL-based segmentation-informed registration methods.

Second, to be suitable for use in clinical practice, the method should be extended so
that the motion of specific features of articulators such as the tip of the soft palate can be
automatically tracked. One way of achieving this would be to require users to manually
define a point of interest in one of the images in the series. The method would then use the
estimated displacement fields to track the motion of the given point during speech and
analyse it to provide information such as the speed and direction of motion. Such an
extension to the method would enable clinical teams to obtain nearly automatically clinically
relevant information such as the direction in which the soft palate elevates during speech,
the speed at which it elevates and the distance by which it elevates. Future work should
extend the method in partnership with clinical teams to ensure that the measured aspects
of motion are clinically relevant.

Third, to be suitable for use in clinical practice, the method should be robust to
changes in head position in the image series due to subject motion. This could be achieved
by performing a rigid registration pre-processing step before estimating displacement fields

between images. Future work should aim to extend the method by including such a step.
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6.6 Conclusions

A framework for estimating displacement fields between 2D rtMR images of the vocal tract
during speech was successfully developed and found to more accurately capture aspects of
articulator motion than five current state-of-the-art nonlinear registration methods and
frameworks. This framework builds on the segmentation method presented in the previous
chapter and is another step towards the ultimate goal of automatic articulator motion,
shape and size quantification in such image series in clinical practice. In addition, a metric
based on a clinically relevant and quantifiable aspect of articulator motion was proposed
and shown to be useful for evaluating frameworks for registering 2D rtMR images of speech.

However, three main challenges must be addressed before the method is suitable for
use in clinical practice. First, a larger, more diverse and representative dataset of 2D rtMR
images of the vocal tract during speech must be created with corresponding GT
segmentations and used to train and evaluate the method. Second, the method should be
extended to automatically track the motion of specific features of the articulators. Third, the
method should be extended to include a rigid registration pre-processing step before
estimating displacement fields between images, to ensure it is robust to changes in head
position in images as a result of subject motion.

Dynamic 2D imaging of the vocal tract provides clinical teams with 2D information
about the motion of the soft palate during speech. However, a key consideration when
making VPI treatment decisions is how well the LVP (introduced in section 2.1) is
functioning. Important factors that affect LVP function are the shape of the muscle and its
orientation relative to the soft palate. While dynamic 2D imaging provides 2D motion
information that enables clinical teams to infer how well the muscle is functioning, this type
of imaging does not allow visualisation of the muscle. It therefore does not provide clinical
teams with information about LVP shape or orientation that could influence VPI treatment
decisions and aid treatment planning. Three-dimensional imaging is required to fully
visualise the LVP and thus obtain shape and orientation information about the muscle. The
next chapter will describe the development of deep learning tools for automating the

analysis of the LVP in 3D MR images of the vocal tract.
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Chapter 7: Deep-Learning-Based LVP Segmentation in 3D
MR Images

7.1 Introduction

The LVP (introduced in section 2.1) plays an essential role in speech production. As explained
in section 2.2.1, a poorly functioning LVP can prevent velopharyngeal closure from occurring,
leading to speech impairments. Typically in clinical speech assessments, imaging is used to
visualise the motion of the soft palate during speech and LVP function is then inferred from
the motion. However, the LVP is not visualised. As explained in section 2.2.3, a key factor
that influences VPI treatment decisions is the defect(s) preventing velopharyngeal closure. If
the defect is a poorly functioning LVP, a surgical treatment that aims to improve LVP function
is performed [1].

As explained in section 3.1.8, there is increasing interest in LVP visualisation, to
better understand variations in the shape and configuration of the muscle [25,122,131-
140,123,141-143,124-130], to aid planning of surgical treatment of VPI [144,145], and for
medical education purposes [146]. MRI is predominantly used for LVP visualisation
[13,25,130-139,122,140,142,143,123-129], due to its unique ability to acquire images of
any orientation with excellent soft tissue contrast without using ionising radiation. As
explained in section 3.1.9, due to the small size of the LVP and its 3D structure, 3D imaging
at a high spatial resolution is required to fully visualise the muscle. In previous work, 3.0 T
MRI at a spatial resolution of 0.8x0.8x0.8 mm?3 has predominantly been used for 3D LVP
visualisation [25,126,138-140,127-129,131-133,136,137]. The LVP and the soft tissue that
surrounds it have very similar tissue properties. Consequently, a challenge when imaging the
LVP is ensuring that the image contrast between the LVP and the surrounding soft tissue is
sufficient to discriminate between the two. Previous work has predominantly acquired T»-
weighted 3D images of the LVP at 3.0 T using TSE pulse sequences [25,126,139,140,127—-
129,131,134,136-138]. In addition, a recommendation to acquire T,-weighted images for
assessing the LVP in clinical practice was recently made [8].

As explained in section 3.3.5, there is increasing interest in quantifying the LVP in MR

images [13,25,130-139,122,140-143,123-129]. In all previous work [13,25,130—
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139,122,140-143,123-129], measurements such as the length and thickness of the LVP
were manually obtained from MR images. However, obtaining measurements in this way is
time-consuming, requires input by specialists and is prone to intra- and inter-observer
variability. To avoid the burden of manual measurements and to facilitate LVP measurement
on a larger scale, there is currently an unmet need for automatic LVP measurement
methods. A common approach for automating the measurement of anatomical features in
biomedical images is to first segment the features and then perform measurements using
the segmentations. As a first step towards developing an automatic LVP measurement
method, in very recent work [17], four state-of-the-art DL-based methods were used to
segment the LVP and five other anatomical features (adenoids, lateral pharyngeal wall,
posterior pharyngeal wall, pterygoid raphe and soft palate) in 3D Ti-weighted MR images.
More specifically, two methods based on 3D U-Net [177] (one of which was developed using
nnU-Net [187]), the Swin UNETR method [185] and the 3D UX-Net method [219] were used.
Evaluated using the DSC, the 3D UX-Net method was found to most accurately segment the
LVP and three of the other anatomical features. However, there are no reports in the
literature of methods to segment the LVP in MR images with other contrasts such as T,-
weighted images, the contrast that was recently recommended for LVP visualisation in
clinical practice [8].

As well as providing a step towards automatic LVP measurement, LVP segmentation
offers the opportunity for 3D printing of physical models of the LVP for use in surgical
treatment planning and for educational purposes [146]. However, such models would
require more anatomical context than simply the LVP. Of particular interest to clinicians is
the orientation of the LVP relative to the soft palate and pharynx [144]. Since the soft palate
and pharynx are adjacent anatomical features, a segmentation of the latter feature would
provide information about the posterior surface of the former.

As explained in section 3.3.1, recently, DL-based methods have achieved state-of-the-
art accuracy in the segmentation of 3D images of body organs such as the heart
[171,188,191], brain [191] and kidneys [189]. While a wide range of different DL-based
segmentation methods have been proposed [295,296], extensions of 3D U-Net [177] such as
V-Net [178] and those created by nnU-Net [187] have consistently achieved state-of-the-art

accuracy in the segmentation in 3D images of the heart [188,191], brain [191] and kidneys
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[189]. In fact, as explained in section 3.3.1, nnU-Net is a framework for configuring and
training U-Net effectively.

Typically, CNNs must be trained using large amounts of data to perform a task
[153,154]. When large amounts of training data are not available, it is common to use data
augmentation methods (introduced in section 3.2.4) to artificially increase the amount of
training data [153,154]. Methods to increase the variability of the appearance and layout of
medical images are most frequently used [154]. The former methods change the
appearance of images by for example adding random noise to the pixel or voxel values, while
the latter methods change the layout of images by for example rotating and translating
them. However, ideally data augmentation methods should also increase the anatomical
variability in the training data. A commonly used way to increase this variability is to
augment the training data using random elastic deformations [154], however, such
augmentation does not always result in anatomically plausible data [297]. To increase the
anatomical variability of training data while maintaining anatomical plausibility, data
augmentation methods based on non-linear registration methods have been proposed
[297-300]. Data augmentation methods based purely on non-linear registration have been
shown to improve the accuracy of DL-based methods to segment the brain [297,298,301]
and knee [298] in 3D MR images, while data augmentation methods based on statistical
deformation models (SDMs) have been shown to improve the accuracy of DL-based
methods to segment the heart in 2D MR images [299,300].

The main contribution of the work presented in this chapter is the development of a
method to segment the LVP in 3D MR images of the vocal tract with the contrast that was
recently recommended for LVP visualisation in clinical practice [8]. The development of such
a method is a step towards the ultimate goal of automatic LVP segmentation and

guantification in clinical practice.

7.2 Methods

A DL-based method to automatically segment the pharynx and LVP in 3D MR images of the
vocal tract was developed using the nnU-Net framework [187]. The method consists of three
sequential steps: image pre-processing, segmentation estimation using a CNN and then

segmentation post-processing. The image pre-processing step is identical to that of nnU-Net.
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A suitable architecture for the segmentation CNN was identified using the nnU-Net process
for this purpose. The nnU-Net CNN training process was then almost fully followed to train
the segmentation CNN. Deviations from the nnU-Net CNN training process are described in
section 7.2.1. The nnU-Net framework was implemented using the code publicly available at

https://github.com/MIC-DKFZ/nnUNet.

7.2.1 Proposed Method Implementation and CNN Training

The image pre-processing step of the method is as follows: each image is normalised
independently by first subtracting its mean voxel intensity and then dividing by the standard
deviation of its voxel intensities. This pre-processing step is performed during training and at

test time.
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Figure 75: Segmentation convolutional neural network architecture. IN: instance normalization; IReLU: leaky rectified linear

unit with negative slope 0.01; conv: convolution.

The CNN architecture is based on that of the 3D U-Net [177] and is depicted in Figure
75. CNN training was performed on a 24 GB NVIDIA TITAN RTX graphics card. During CNN
training, the image patch size was 128x128x128 voxels and the mini-batch size was two
image patches, and stochastic gradient descent with Nesterov momentum (u=0.99) and an
initial learning rate, LR, of 0.01 were used. Following each epoch, LR was decayed according

to the following equation:

LR = (1 - ﬂ)o'9 (30)

epochmax
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The loss function consisted of the sum of the cross entropy loss and the Dice loss, both
introduced in section 3.3.2. Hyperparameter optimisation was not performed as nnU-Net
instead identifies suitable hyperparameter values using heuristic rules.

The three deviations from the nnU-Net training process were as follows. First, the
default nnU-Net data augmentation methods were not used in all experiments. Second, the
CNN was trained for 200 epochs instead of the default of 1000. Third, the number of mini-
batches per epoch was 23 instead of the default of 250 in all experiments except the one
without data augmentation, where the number of mini-batches per epoch was five. The
rationale for the first deviation was to investigate the effect of different data augmentation
methods on the segmentation method accuracy, while the rationale for the other two
deviations was to avoid the CNN overfitting as a result of the small amount of training data.
In addition, a further rationale for the number of mini-batches per epoch was to ensure the
number of patches inputted to the CNN per epoch was equal to the number of images in the
training dataset. The training process deviations were motivated by the observation that
during CNN training the validation loss stabilised after approximately 50 epochs, as shown in
Figure 80 in section 7.4.

The segmentation post-processing step of the method is as follows: for each
segmentation class, the number of connected components in the segmentation is identified
and all regions except the one with the largest number of voxels are removed. This post-

processing step is performed at test time only.

7.3 Experiments

7.3.1 Data

Cropped versions of the 15 images and corresponding GT segmentations presented in
section 4.2.3 were used in the experiments. Images and GT segmentations were cropped
centred on the LVP and pharynx to ensure they only contained relevant anatomy and to also
reduce the computational burden of the experiments. All images and GT segmentations
were cropped to a size of 160x160x192 voxels. This size was chosen based on the following

analysis:
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1. For each full-size image and corresponding GT segmentation, the centroid
coordinates and dimensions of the smallest 3D bounding box that fully contained the
LVP and pharynx was identified.

2. The dimensions of the bounding boxes were compared, to identify the largest x-, y-
and z-dimensions (128, 132 and 172 voxels respectively).

3. The largest dimensions were slightly increased to 160, 160 and 192 voxels
respectively to ensure that the cropped images and corresponding GT segmentations
included a buffer region around the LVP and pharynx.

4. Each full-size image and corresponding GT segmentation was cropped to a size of
160x160x192 voxels centred on the corresponding centroid coordinates identified in
step 1.

In all experiments, nine of the 15 images were used either as training data for the proposed
method or as the data used to synthetically create new training data. Of the remaining six
images, three were used as validation data and three as test data. More details about the

train/validation/test dataset splits used in the experiments are provided in section 7.3.5.

7.3.2 Data Augmentation

The effect of different data augmentation methods on the accuracy of the segmentation
method was investigated. To achieve this, separate experiments were performed where the
segmentation method was developed from training data augmented using different
methods. The accuracy of the segmentation methods was then compared using the
evaluation metrics described in section 7.3.3. Three augmentation methods along with
combinations of these methods were investigated. The methods are described in the
sections 7.3.2.1, 7.3.2.2 and 7.3.2.3. Data augmentation was used to synthesise 45 images
from the nine original images in the training dataset, and then only the 45 synthesised
images were used to train the segmentation CNN of the proposed method. When training
the segmentation CNN of the proposed method without data augmentation, the training

dataset consisted of nine original images
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7.3.2.1 Default nnU-Net Augmentation
By default, nnU-Net applies the augmentations listed in Table 11 to the images in the

training dataset and modifies the corresponding GT segmentations accordingly.

Table 11: Default augmentations applied to training data by nnU-Net. x~U (a, b) indicates that x is sampled from a uniform
distribution with lower limit a and upper limit b. For the brightness and contrast augmentations, effectively the image patch

is multiplied pixel-wise with a mask of random values sampled from U(a, b).

Augmentation  Probability Description
Rotation 0.2 Image rotated by angle in range U(—180°, 180°)
Scaling 0.2 Image scaled by factor in range U(0.7, 1.4)
Zero-centred Gaussian noise with variance in range
Gaussian noise 0.15
U(0,0.1) added to voxel intensities
Gaussian blur with kernel width in voxels in range
Gaussian blur 0.1
U(0.5,1.5) applied to image
Brightness 0.15 Voxel intensities multiplied by x~U (0.7, 1.3)
Voxel intensities multiplied by x~U(0.65, 1.5) and then
Contrast 0.15
clipped to the original intensity range
Mirroring 0.5 Image is mirrored along an axis

7.3.2.2 Registration-Based Augmentation

This method was inspired by a registration-based interpolation method [302] and was used
to create a new and larger training dataset of 45 images from the nine images in the original
training dataset. The method consisted of the following steps, as shown in Figure 76:

1. A pair of images, M and F, was randomly chosen from the nine images in the original
training dataset.

2. Avector displacement field, D, mapping how the voxels in M should be displaced to
align them with corresponding voxels in F was estimated using affine followed by
non-linear image registration. Section 7.3.3 provides more details about the image
registration and its optimisation.

3. D was interpolated by multiplying it by a value randomly sampled from a continuous

uniform distribution with lower limit 0.2 and upper limit 0.8:
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D interp =aD

where a is a weighting term between 0.2 and 0.8.

4. An augmented image and corresponding GT segmentation was created by

transforming M and its corresponding GT segmentation according to Diyterp-

The following conditions were imposed when randomly choosing the image pairs:
[ ]

Each image in the original training dataset must be:

o M in five image pairs

o Fin five image pairs
e Every pair must be unique

e The images in a pair must be different

Examples of GT segmentations created using the registration-based augmentation method
are shown in Figure 77.

F

T(M

| Registration |

Interpolation

!

Dinterp

T(M, Dinterp)

ﬁﬁ

Figure 76: An overview of the registration-based augmentation method. A moving image (M) is nonlinearly registered to a

fixed image (F). The resulting displacement field, D, is interpolated to Dinterp by multiplication by a weighting term between
0.2 and 0.8. An augmented version of M is created by transforming M according to Dijnterp.
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Fixed Moving Augmented

Figure 77: Examples of ground-truth segmentations created using the registration-based augmentation method. 'Fixed' and
'Moving' indicate segmentations of the fixed and moving images respectively, while Augmented’ indicates a segmentation

created using the augmentation method.

7.3.2.3 SDM-Based Augmentation
SDMs were created from the nine images in the original training dataset and then used to
synthesise new and larger training datasets of 45 images and their corresponding GT
segmentations. SDMs were created using the method developed by Rueckert et al. [303].
The full process for synthesising the images and corresponding segmentations was as
follows:

1. Areference image, I, was randomly chosen from the nine images in the original

training dataset.

2. The other eight images were rigidly registered to I,.¢.
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3. Eight vector displacement fields, u, were created by first affinely and then non-
linearly registering I..¢ to each of the eight images created in step 2.

4. The mean displacement field, @, and the first n € {1, 2, ..., 7} principal modes of
variation of the fields, p,,, were determined using principal component analysis.

5. New displacement fields were created by adding principal modes of variation to the

mean displacement field:

unew = ﬁ + ﬁpn (32)

where 3 is a weighting term. As recommended by Rueckert et al. [303], values of 8

were randomly chosen within the range +£3 X \//1_,1 where 4,, is the eigenvalue of p,,.
6. Images and corresponding segmentations were synthesised by deforming I..¢ and its

corresponding segmentations according to the displacement fields created in step 5.
In one experiment, only one SDM was created from the nine images in the original dataset.
Forty-five images and their corresponding segmentations were synthesised using this SDM
and then used as the training dataset. In another experiment, nine SDMs were created, each
using a different I..¢ so that each image in the original training dataset was used as I,.s. Five
images and their corresponding segmentations were synthesised using each SDM and the 45
resulting images were then used as the training dataset. Section 7.3.3 provides more details
about the image registration and its optimisation. Examples of GT segmentations created

using the SDM-based augmentation method are shown in Figure 78.
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Reference Augmented

Figure 78: Examples of ground-truth segmentations created using the stastistical-deformation-model-based augmentation
method. 'Reference’ indicates the segmentation of the reference image used to create a model, while '‘Augmented’ indicates

a segmentation created using the augmentation method.
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7.3.3 Image Registration

The registration-based and SDM-based augmentation methods described in sections 7.3.2.2
and 7.3.2.3 respectively both require image registration. This section describes the
registration that was used in these methods. NiftyReg version 1.5.39 [237,241] was used to
perform rigid, affine and non-linear registration. NiftyReg performs rigid and affine
registration using a block-matching method [238] and non-linear registration using a FFD
method (introduced in section 3.4.2) [236]. Several registrations were performed per
method using different combinations of parameter values (listed in Table 12), and then
evaluated using the DSC (introduced in section 3.3.2), enabling identification of optimal

values. Default values were used for all other parameters.

Table 12: Image registration parameter values. ‘Rigid and affine’ and ‘Non-linear’ indicate the registration method. N g5

and N are parameters in the block-matching method. N,,,,.,s indicates the number of levels to use to generate the

iterations

pyramids for the coarse-to-fine approach, while N is the maximum number of iterations of the least trimmed

iterations
squares method. Grid spacing, A and y are parameters in the free-form deformation method. Grid spacing is the spline grid

spacing in voxels, A is the weighting of the bending energy term, while y is the weighting of the first order penalty term.

Parameter Rigid and affine Non-linear
Nievels {2,3,4} N/A
Nijterations {4, 5, 6} N/A
Grid spacing N/A {4,5, 6}
y) N/A {0, 0.001}
% N/A {0, 0.01}

7.3.4 Evaluation Metrics
At test time, the accuracy of the segmentations estimated by the segmentation method
developed using each augmentation approach were evaluated using two metrics: the DSC

and the HD (introduced in section 3.3.2).

7.3.5 Five-Fold Cross-Validation
A five-fold cross-validation was performed to evaluate the generalisability of the

segmentation method. In each fold, the train/validation/test dataset split was 9/3/3
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respectively. Test datasets were created by randomly splitting the 15 images into five groups
of three images. Validation datasets were created in the same way, while ensuring that in
each fold the images in the validation dataset were all different from the images in the test
dataset. As a result, each image was included in the validation dataset of one fold, the
testing dataset of another fold, and the training datasets of the remaining three folds. Table
13 lists the images in each dataset. Since hyperparameter optimisation was not performed
as nnU-Net instead identifies suitable hyperparameter values using heuristic rules, a nested

cross-validation was not required and the test dataset was held out until test time.

Table 13: The identifiers of the images in the validation and test datasets of each fold, and the identifiers of the images used

as the reference images during statistical deformation model creation.

Fold Reference Validation dataset Test dataset
1 1 2,10,12 6,7,9

2 4 1,5,13 3,8,15

3 13 4,9, 11 5, 10, 14

4 14 6, 8, 15 1,12,13

5 15 3,7,14 2,4,11

7.3.6 Statistical Tests

Paired sample t-tests were performed to compare the DSCs of the segmentations estimated
by different versions of the segmentation method. Groups of HDs were compared in the
same way as groups of DSCs. Since each of the 15 image was included in one of the test
datasets in the cross-validation, each group consisted of 15 values (one per image). The
normality of a group was assessed using a Chi-squared goodness-of-fit test. All values were
normally distributed. All statistical tests were performed using MATLAB 2019b (MathWorks,
Natick, MA). A significance level of 5% was used, corrected using the Holm-Bonferroni

method to compensate for multiple comparisons.



Deep-Learning-Based LVP Segmentation in 3D MR Images 197

7.4 Results

Examples of segmentations estimated by different versions of the proposed method are
shown in Figure 79. Columns (A), (B) and (C) in Figure 79 show examples with relatively low,
average and high DSCs respectively.

The segmentation CNN training and validation losses are shown in Figure 80. The
number of epochs required for validation loss stabilisation depended on the data
augmentation method used during CNN training. On average (median), stabilisation required
approximately 40 epochs. Stabilisation was fastest, requiring approximately 20 epochs, when
only SDM-based data augmentation was used. Conversely, stabilisation was slowest,
requiring approximately 60 epochs, when no data augmentation was used.

The effect of the post-processing step of the proposed method on the accuracy of the
estimated segmentations is shown in Figure 81. In most cases, the step improved the
accuracy of the estimated segmentations. On average (median), the step increased the DSCs
of the estimated LVP and pharynx segmentations in 60% (9 of 15) and 80% (12 of 15) cases
respectively, and decreased the HDs of the segmentations in 67% (10 of 15) cases. However,
on average (median), the step also decreased the DSCs of the estimated LVP segmentations
in 13% (2 of 15) cases. The only version of the proposed method where the step did not
reduce the accuracy of any of the segmentations was the one where only the default nnU-

Net data augmentations were used during training.
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Figure 79: Segmentations estimated by different versions of the proposed method. The “Aug” column indicates the type of
data augmentation used during segmentation convolutional neural network training: “None” indicates no augmentation;
“D” indicates the default nnU-Net augmentations; “RB” indicates registration-based augmentation,; “SiSDM” indicates
single statistical deformation model (SDM) based augmentation; “MuSDM” indicates multiple SDM based augmentation; “+
D” indicates that the default nnU-Net augmentations were also used; “GT” indicates ground-truth segmentations. Each
column shows segmentations of a different image. Columns (A), (B) and (C) show segmentations with relatively low,
average and high Dice coefficients respectively. Dark and light grey indicate the levator veli palatini and pharynx

respectively.
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Figure 80: Training and validation losses of the segmentation convolutional neural network (CNN). “Aug” indicates the type
of data augmentation used during segmentation convolutional neural network training: “None” indicates no augmentation;
“Default” indicates the default nnU-Net augmentation; “Reg-based” indicates registration-based augmentation; “Single
SDM” indicates single statistical deformation model (SDM) based augmentation; “Multiple SDM” indicates multiple SDM
based augmentation; “+ Default” indicates that the default nnU-Net augmentations were also used. In the figure legend,

“Fold” indicates the cross-validation fold. Solid lines indicate training losses, while dashed lines indicate validation losses.
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Figure 81: Effect of post-processing step of proposed method on segmentation estimation accuracy. The colour code
indicates the type of data augmentation used during segmentation convolutional neural network training: “None” indicates
no augmentation; “Default” indicates the default nnU-Net augmentation,; “Registration-based” indicates registration-based
augmentation; “Single SDM” indicates single statistical deformation model (SDM) based augmentation,; “Multiple SDM”

indicates multiple SDM based augmentation; “+ Default” indicates that the default nnU-Net augmentations were also used.

The accuracy of the segmentations estimated by different versions of the proposed
method are shown in Figure 82. In all cases, the DSC of the LVP segmentation was lower
than that of the pharynx segmentation. However, on average (median), in 47% (7 of 15)
cases the HD of the LVP segmentation was lower than that of the pharynx segmentation.
Two versions of the proposed method consistently segmented both the LVP and pharynx
with a lower accuracy than the other methods: the versions where single SDM based data

augmentation was used during segmentation CNN training. No version consistently
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segmented both the LVP and pharynx with a higher accuracy than all the other versions. In
fact, there were no statistically significant differences between the accuracies of the
segmentations (neither LVP nor pharynx) estimated by the other six versions of the method.
On average (median), the DSC and HD of the LVP segmentation estimated by the other six
versions of the method was approximately 0.70 and 6 mm respectively, while the DSC and

HD of the pharynx segmentation was approximately 0.85 and 6 mm respectively.
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Figure 82: Dice coefficients and general Hausdorff distances of segmentations estimated by different versions of the
proposed method. The colour code indicates the type of data augmentation used during segmentation convolutional neural
network training: “None” indicates no augmentation; “Default” indicates the default nnU-Net augmentation; “Registration-
based” indicates registration-based augmentation; “Single SDM” indicates single statistical deformation model (SDM) based
augmentation,; “Multiple SDM” indicates multiple SDM based augmentation; “+ Default” indicates that the default nnU-Net
augmentations were also used. Black bars above box plots indicate statistically significant differences (5% significance level,
p<0.001 unless indicated) between groups of Dice coefficients. There were no statistically significant differences between

groups of general Hausdorff distances.

7.5 Discussion

A DL-based method to automatically segment the LVP and pharynx in 3D T,-weighted MR
images of the vocal tract was successfully developed using a state-of-the-art framework
(nnU-Net). The method consists of three sequential steps: a pre-processing step to
normalise the image voxel values, segmentation estimation using a CNN and then a post-
processing step to ensure there is only a single region of voxels per class in the estimated

segmentations.
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The method segmented the pharynx more accurately than the LVP, with a median
DSC of 0.85 and 0.70 respectively and a median HD of 6 mm for both classes. This result is
unsurprising for two main reasons. First, the image contrast between the pharynx and the
soft tissue that surrounds it is much greater than that of the LVP, thus facilitating pharynx
boundary identification. Second, since the LVP is a smaller anatomical feature than the
pharynx, its segmentations consist of a smaller number of voxels and segmentation errors
therefore have a larger impact on the DSC.

As shown in Figure 80, in almost all cases during segmentation CNN training the
validation loss stabilised and then stayed approximately constant in the later stages of
training. This result suggests that 200 epochs was a suitable training duration that did not
result in the segmentation CNN overfitting the training data, thus justifying the reduction in
training duration from the default nnU-Net one of 1000 epochs.

Several different data augmentation methods were investigated to try to improve the
generalisation of the proposed method. None of the methods caused a statistically
significant improvement in performance compared with no augmentation, when evaluated
using the DSC and HD. This result suggests that the methods did not sufficiently increase the
anatomical variability in the training dataset images to cause an improvement in the
generalisability of the segmentation CNN. This result is not surprising for the default nnU-
Net data augmentations as these do not increase anatomical variability.

Registration-based augmentation methods have been shown to cause improvements
in the performance of DL-based methods to segment the brain [297,298] and knee [298] in
3D MR images, even when the training dataset is created from a small number of images
[298]. In [297,298], the size of each training dataset created using registration-based
augmentation methods was at least 1500 images, while in this work the size was 45 images.
The former datasets will contain more anatomical variability than the latter. It is therefore
possible that a larger training dataset than 45 images is required before a segmentation
method performance improvement occurs.

Single SDM based data augmentation caused statistically significant decreases in
segmentation method performance. This result was most likely caused by insufficient
anatomical variability in the augmented images, as a result of them being synthesised from a
single image. In contrast, multiple SDM based data augmentation did not cause a decrease

in segmentation method performance.
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The LVP and pharynx GT segmentations each consist of a single region of voxels.
However, most LVP and pharynx segmentations estimated by the CNN of the proposed
method consisted of several unconnected voxel regions. The purpose of the post-processing
step of the proposed method is to remove all connected components apart from the largest
one. As shown in Figure 81, in most cases the post-processing step improved the accuracy of
the estimated segmentations. This shows that most of the unconnected regions in the
estimated segmentations were spurious. However, in several cases the post-processing step
decreased the accuracy of the estimated LVP segmentations. In these cases, the estimated
segmentations consisted of several relatively large unconnected regions as well as relatively
small unconnected regions. The removal of these relatively large regions decreased the
accuracy of the estimated LVP segmentations (see Figure 79 column (A) for example). A
more sophisticated post-processing step which considers the size of each connected
component may be able to avoid removing such regions, however, ideally there should only
be a single region per class in the segmentations estimated by the CNN. The only version of
the proposed method where the step did not reduce the accuracy of any of the
segmentations was the one where only the default nnU-Net data augmentations were used
during CNN training. However, it should be noted that the step only decreased the accuracy
of a single LVP segmentation estimated by the version of the proposed method where no
data augmentation was used during CNN training.

In very recent work [17], four state-of-the-art DL-based methods, including a 3D U-
Net created using nnU-Net, were used to segment the LVP and five other anatomical
features (adenoids, lateral pharyngeal wall, posterior pharyngeal wall, pterygoid raphe and
soft palate) in 3D Ti-weighted MR images. The best performing method (3D UX-Net [219])
segmented the LVP with an average DSC of 0.56, while the proposed method, developed to
segment 3D T,-weighted rather than Ti-weighted MR images, segmented the LVP with an
average DSC of 0.70. One likely reason for the difference in performance is that images
cropped about the vocal tract were used to train the proposed method, while images of the
entire head were used in [17]. Identification of the location of the LVP within the latter
images is less challenging than in the former, thus making segmentation less challenging.
Another likely reason is greater anatomical variability in the dataset used in the previous
work, compared with the dataset used in this work. More specifically, the dataset used in

previous work included 50 images while the dataset used in this work included 15 images.
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An additional possible reason for the difference in performance is that LVP visibility is better
in T.-weighted images than T1-weighted images, thus making segmentation less challenging.

This work is a step towards the ultimate goal of automatic LVP segmentation and
measurement in clinical practice. However, a large amount of future work is required to
develop a method suitable for use in clinical practice. More specifically, three major
challenges must be overcome. One challenge concerns the dataset used to develop the
method, while the other two are technical.

First, as explained in section 4.2.3.2, a larger and more diverse dataset, both in terms
of subjects and image acquisition, must be created and used to develop the method. More
specifically, a dataset more representative of the target patient population is required: since
the target patient population primarily consists of children, the dataset must contain images
of children. In addition, since LVP anomalies are prevalent in the target population, the
dataset must contain images of LVPs with anomalies as well as LVPs without. In addition, a
dataset with images acquired using many different MRI scanners and pulse sequences is
required to ensure that methods developed using the dataset perform well on images from
different sources. This generalisability is a key requirement for methods suitable for use in
clinical practice. While there are publicly available 3D MR image sets of the vocal tract
[18,19], these do not have the required image contrast to visualise the LVP.

Second, a method suitable for clinical practice must include any image cropping pre-
processing steps so that these steps do not need to be performed separately. The inputs to
the proposed method are cropped images centred on the LVP and pharynx. However, to be
suitable for clinical practice, the input should be full images. Future work should therefore
aim to add a pre-processing step to automatically crop images.

Third, a method suitable for use in clinical practice must automatically measure
aspects of the LVP such as its length and thickness. Future work should therefore aim to
develop such methods in partnership with clinical teams to ensure that the measured
aspects are clinically relevant. The development of such methods could aid the development
of segmentation methods by informing the segmentation accuracy required for reliable

measurements.
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7.6 Conclusions

For the first time, the feasibility of automatic segmentation of the LVP and pharynx in 3D T»-
weighted MR images of the vocal tract has been demonstrated. This work is a step towards
the ultimate goal of automatic LVP segmentation and measurement in clinical practice. The
effect of different data augmentation methods on the accuracy of the proposed
segmentation method was investigated, but none of the methods was found to cause
statistically significant improvements in segmentation method accuracy.

Regarding automatic LVP segmentation and measurement, several challenges must still
be overcome to enable the development of a method suitable for use in clinical practice. In
particular, a larger, more diverse and representative dataset of 3D MR images of the vocal
tract must be created, methods to automatically crop such images must be developed, and

methods to automatically measure aspects of the LVP must be developed.
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Chapter 8: Conclusions

8.1 Summary

The main aim of the work presented in this thesis was to begin to address the unmet need
for methods to perform automatic quantitative analysis of the vocal tract, soft palate and
LVP in MR images, by developing methods to segment such images and developing a
framework for motion quantification.

The first contribution of this work was the creation of GT segmentations of the entire
vocal tract and soft palate in an existing speech MRI datasets. Creation of such
segmentations was necessary to enable the development and evaluation of segmentation
methods due to the lack of publicly available speech MRI datasets that include
segmentations. A dataset acquired using a speech MRI technique that does not require
specialised MRI equipment and software was deliberately chosen in order to facilitate
acquisition of similar images in other centres and consequently the application of image
analysis methods developed using the dataset. As described in section 4.1.4, a protocol for
creating GT segmentations was devised and used to segment the vocal tract, soft palate and
four other anatomical structures in 392 2D rtMR images of speech. Intra-rater agreement in
the segmentations was found to be high, suggesting that the GT segmentation creation
protocol enabled reproducible results.

The second contribution of this work was the development of a method to segment
the entire vocal tract and soft palate and four other anatomical structures in 2D rtMR images
of speech. The method, described in chapter 5, has been peer reviewed and published [205]
and is a step towards enabling automatic measurement of vocal tract and soft palate size,
shape and motion in 2D rtMR images of speech. It was developed and evaluated using the
speech MRI dataset and GT segmentations described in section 4.1, and is DL-based,
consisting of a CNN to segment images followed by a post-processing step to remove
anatomically impossible regions in the images. At the time it was published [205], the
method overcame the limitations of existing segmentation methods that either only

segmented the air-tissue boundaries between the vocal tract and adjacent tissues or only
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fully segmented the vocal tract. Since then, three similar methods have been developed
[206,207,218], however, the proposed method remains the method that achieved the
highest accuracy. The method includes an extension to automatically calculate the minimum
distance between the soft palate and the posterior pharyngeal wall, a measurement of
particular interest to clinicians who perform speech assessments. Although primarily
designed to enable automatic measurement of vocal tract and soft palate size, shape and
motion in 2D rtMR images of speech, the 2D segmentation method was designed to also
enable measurement of tongue size, shape and motion in order to broaden its potential
applications and utility.

The third contribution of this work was the development of a novel metric based on
velopharyngeal closure to enable more clinically relevant evaluation of the performance of
the image analysis methods. To calculate the metric, GT segmentations are compared with
the segmentations estimated by a method. The metric quantifies the number of
velopharyngeal closures in the GT segmentations that also occur in the estimated
segmentations. In chapter 5 and chapter 6, the metric was shown to be more sensitive to
differences in method performance than standard evaluation metrics.

The fourth contribution of this work was the development of a framework for motion
estimation in 2D rtMR images of speech. This deep learning framework for nonlinear
registration of 2D MR images of speech, described in chapter 6, builds on the 2D
segmentation method described in chapter 5 and estimates displacement fields between
such images. The framework was developed using the speech MRI datasets and GT
segmentations described in section 4.1 and has been peer reviewed and published [291]. It
represents another step towards enabling automatic measurement of soft palate motion in
2D rtMR images of speech. The framework was compared with several state-of-the-art
traditional registration methods and deep learning frameworks for nonlinear registration
and found to estimate displacement fields that more accurately captured velopharyngeal
closures. There are currently no other reports in the literature of the application of deep
learning frameworks for nonlinear registration to 2D rtMR images of speech.

The fifth contribution of this work was the acquisition of a new MRI dataset and the
creation of corresponding GT segmentations of the LVP and pharynx. Acquisition of such a
dataset was necessary to enable the development and evaluation of segmentation methods

due to the lack of publicly available MRI datasets in which the LVP can be adequately
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visualised. As described in section 3.1.9, due to the current lack of consensus on the optimal
image contrast for visualising the LVP in 3D MR images, an image contrast investigation was
performed prior to acquiring the dataset. In this investigation, MR images with different
image contrasts were acquired and the visibility of the LVP in these images was compared.
The results of this investigation suggested that the LVP was more visible in T,-weighted
images than in T1-weighted and PD-weighted images. Consequently, a dataset of 15 3D T»-
weighted images of the vocal tract was acquired. The dataset was acquired using a 3D MRI
technique that does not require specialised MRI equipment and software in order to
facilitate acquisition of similar images in other centres and consequently the application of
image analysis methods developed using the dataset. As described in section 4.2.3.1.2, a
protocol for creating GT segmentations was devised and used to segment the LVP and
pharynx in the images.

The sixth contribution of this work was the development of a method to segment the
LVP and pharynx in 3D T,-weighted MR images of the vocal tract. The method, described in
chapter 7, is a step towards enabling automatic measurement of LVP size, shape and
configuration in this type of image. It was developed and evaluated using the new dataset
and GT segmentations described in section 4.2 and is DL-based, consisting of a CNN to
segment images. Until very recently [17], there were no reports in the literature of any
methods to segment the LVP. CNNs trained using small amounts of data typically do not
generalise well to new data. As only a small amount of data was available to train the
segmentation method, attempts were made to improve the generalisation of the method by
using data augmentation to increase the size of the training dataset. As described in chapter
7, several different data augmentation methods were investigated, however, none of these

were found to improve the generalisation of the method.

8.2 Future work

While the work presented in this thesis makes several contributions towards addressing the
unmet need for methods to perform automatic quantitative analysis of the vocal tract, soft
palate and LVP in MR images, much future work is required to develop methods suitable for
use in clinical assessment of speech. The two main challenges to overcome are firstly to

develop methods that automatically perform the specific quantitative analysis of interest to
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clinicians and secondly to thoroughly evaluate these methods in order for them to be
accepted by clinicians and approved for use in clinical practice.

A key requirement to overcome these two main challenges is the creation of larger
and more diverse datasets with GT segmentations. More specifically, datasets that are more
diverse in terms of subjects and image contrasts are required. Future work should therefore
aim to create such datasets. Creation of this type of dataset is essential for two main
reasons. First, it would enable the development of DL-based methods that are more
generalisable and consequently perform as intended on a wider range of data. Second, it
would enable more thorough evaluation of the methods, providing the evidence required
for approval of the methods for use in clinical practice and for promotion of trust in the
methods by clinicians.

Regarding subjects, the datasets used in this work consisted of healthy adult
volunteers. While using such datasets is appropriate for demonstrating the feasibility of
developing specific image analysis methods, datasets that better represent the target
patient population are required to develop methods suitable for use in clinical practice,
especially given that DL-based methods typically perform poorly on data with different
characteristics to the data used to train them. Since the target patient population primarily
consists of children, datasets that includes images of children are required. In addition, since
velopharyngeal closure does not always occur in the speech of patients with VPI, speech
MRI datasets containing image series where velopharyngeal closure does not occur as well
as image series where it does are required. Since some patients with VPl have an abnormal
LVP, MRI datasets that include images of individuals with such an LVP as well as images of
individuals with a normal LVP are required to enable the development of generalisable
methods to segment the LVP in such images. Finally, creating datasets of images of
individuals with a range of demographics is critical in order to enable the development of
methods that are generalisable and fair.

Regarding image acquisition, each dataset used in this work consisted of images
acquired using a single MRI scanner and pulse sequence. Again, while using such datasets is
appropriate for demonstrating the feasibility of specific image analysis methods, datasets of
images acquired using many different MRI scanners and pulse sequences are required to
develop methods that are more generalisable and therefore more suitable for use in clinical

practice.
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As part of the work presented in this thesis, two segmentation methods and a
motion quantification framework were developed. While the development of these
methods and framework are steps towards automatic quantitative analysis of the vocal
tract, soft palate and LVP in MR images, future work is required to extend these methods
and framework so that they automatically perform the measurements of particular interest
to clinicians. More specifically, the 2D image segmentation method should be extended so
that it automatically measures the total length, effective length and thickness of the soft
palate and the depth of the pharynx [8]. The 3D image segmentation method should be
extended so that it automatically measures LVP length and thickness and the distance
between origins of the muscle [8]. The motion quantification framework should be extended
so that it automatically measures the direction in which the soft palate elevates during
speech, the speed at which the soft palate elevates and the distance by which the soft palate
elevates.

In conclusion, the work presented in this thesis makes several contributions towards
addressing the unmet need for image analysis methods suitable for use in clinical speech
assessment. While future work is required to extend the methods and framework presented
in this thesis so that they are suitable for use in clinical practice, their development is
nevertheless an achievement and has created new opportunities to contribute to the

ultimate goal of improving the treatment outcomes of patients with VPI.
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