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Abstract 
 

Ar$culators such as the so. palate play an essen$al role in the produc$on of speech. In 

combina$on with the levator veli pala+ni (LVP), the so. palate causes velopharyngeal 

closure, a key requirement for the produc$on of most speech sounds. 

Velopharyngeal insufficiency (VPI) is an anatomical or structural defect that prevents 

velopharyngeal closure and consequently impairs speech. While several well-established 

surgical techniques to treat VPI exist, there is currently no consensus on which is most 

effec$ve and consequently a variety of techniques are used. In addi$on, treatment is not 

always successful and further surgery is required. 

 Typically in clinical assessments of speech, imaging is used to enable iden$fica$on of 

the defects preven$ng velopharyngeal closure and inform the choice of treatment. While 

currently the most commonly used imaging techniques are videofluoroscopy and 

nasendoscopy, use of magne$c resonance imaging (MRI) is increasing due to its unique 

ability to dynamically image the ar$culators during speech and acquire detailed three-

dimensional (3D) images of the LVP. In addi$on, there is increasing interest in extrac$ng 

quan$ta$ve informa$on about the vocal tract, ar$culators and LVP from the images. The 

work presented in this thesis makes several contribu$ons towards addressing the unmet 

need for this quan$ta$ve informa$on. 

 Segmenta$on of medical images is a common first step to enable automa$c 

measurement of anatomical features. In the work presented in this thesis, two segmenta$on 

methods, both of them deep learning based, were developed and evaluated. One method 

segments the vocal tract, so. palate and four other relevant anatomical features in two-

dimensional (2D) magne$c resonance (MR) images of speech. At the $me it was published, 

the method overcame the limita$ons of exis$ng segmenta$on methods that either only 

segmented air-$ssue boundaries between the vocal tract and adjacent $ssues or only fully 

segmented the vocal tract. The other method segments the LVP and pharynx in 3D MR 

images of the vocal tract. 

In addi$on, a framework for quan$fica$on of ar$culator mo$on in 2D MR images of 

speech was developed and evaluated. This deep learning framework for nonlinear 

registra$on builds on the 2D image segmenta$on method by employing knowledge of 



 

region boundaries as well as images to es$mate displacement fields between 2D MR images 

of speech. The framework was compared with several state-of-the-art tradi$onal 

registra$on methods and deep learning frameworks for nonlinear registra$on and found to 

es$mate displacement fields that more accurately captured velopharyngeal closures. 

 To enable the development and evalua$on of the segmenta$on methods and mo$on 

quan$fica$on framework, a new dataset of 15 3D MR images of the vocal tract was acquired 

and ground-truth (GT) segmenta$ons were created for it and an exis$ng dataset of 392 2D 

MR images of speech. Prior to acquiring the new dataset, an inves$ga$on was performed to 

iden$fy the parameters that resulted in the op$mal image contrast for LVP visualisa$on. 

To be suitable for use in clinical speech assessment, a key requirement of 

segmenta$on and mo$on quan$fica$on methods is that they capture any velopharyngeal 

closures that occur. Since standard evalua$on metrics do not provide such informa$on, a 

novel metric based on velopharyngeal closure was developed to enable more clinically 

relevant evalua$on. Par$cularly in the comparison of mo$on quan$fica$on frameworks, the 

metric revealed differences between the frameworks that standard metrics did not. 

To conclude, while future work is required to fully address the unmet need for 

quan$ta$ve informa$on about the vocal tract, so. palate and LVP in MR images, the work 

presented in this thesis has nevertheless contributed towards addressing this need and 

created several new opportuni$es to contribute to the ul$mate goal of improving the 

treatment outcomes of pa$ents with VPI. 
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Chapter 1: Introduction 
1 Introduc*on 
1.1 Mo*va*on 

Speech is one of the principal forms of human communica$on. Its produc$on is a complex 

process involving several body parts including ar$culators such as the tongue and so. 

palate. A phenomenon called velopharyngeal closure regularly occurs during normal speech. 

Velopharyngeal closure prevents airflow into the nasal cavity and is required to produce 

most speech sounds. For velopharyngeal closure to occur, the so. palate must elevate and 

come into contact with the pharyngeal walls. The muscle primarily responsible for eleva$ng 

the so. palate is called the levator veli pala+ni (LVP). 

 Velopharyngeal insufficiency (VPI) is an anatomical or structural defect that prevents 

velopharyngeal closure and consequently impairs speech [1]. Speech impairments nega$vely 

affect social and educa$onal development as well as quality of life [2]. Mi$ga$ng such 

impairments is therefore crucial in order to avoid these nega$ve effects. 

Since VPI is an anatomical or structural defect, it can only be treated via surgery [1]. 

Several well-established surgical techniques to treat VPI exist, however, there is no 

consensus on which is most effec$ve and consequently a variety of techniques are used [3–

5]. The technique most likely to improve the speech of a pa$ent depends on the defect(s) 

preven$ng velopharyngeal closure. If the defect is a poorly func$oning LVP, a treatment that 

aims to improve LVP func$on is performed, while if the defect is an abnormally deep 

pharynx or an insufficiently long so. palate, a treatment that aims to address these defects 

is performed. However, treatment is not always successful and consequently further surgery 

can be required: studies have reported persistence of VPI requiring further surgery in 0-50% 

of cases [5,6]. Key drawbacks of further surgery are addi$onal distress and disrup$on for 

pa$ents and their carers, increased workloads for clinicians and addi$onal costs for 

healthcare services. 

 Typically in clinical assessments of speech, imaging is used to enable iden$fica$on of 

the defects preven$ng velopharyngeal closure. Since the treatment most likely to improve 

the speech of a pa$ent depends on the defect(s) preven$ng velopharyngeal closure, imaging 

has an important role in the management of pa$ents with VPI by providing clinicians with 
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informa$on that aids treatment decision making. Imaging enables visualisa$on of the vocal 

tract and so. palate during speech and therefore provides informa$on about the size, shape 

and mo$on of these anatomical features. Visualisa$on of vocal tract and so. palate size and 

shape enables clinicians to iden$fy if the defect is an abnormally deep pharynx or an 

insufficiently long so. palate, while visualisa$on of so. palate mo$on enables clinical teams 

to infer if the LVP is func$oning adequately. Currently, the imaging techniques most 

commonly used in clinical speech assessment are videofluoroscopy and nasendoscopy [3,4]. 

These imaging techniques enable two-dimensional (2D) visualisa$on of the vocal tract and 

so. palate during speech. However, neither technique enables visualisa$on of the LVP. 

 There is increasing interest in using magne$c resonance imaging (MRI) in clinical 

speech assessment, due to the unique ability of MRI to noninvasively and dynamically image 

the vocal tract and ar$culators during speech and acquire detailed three-dimensional (3D) 

images of the LVP without using ionising radia$on [7,8]. Three-dimensional visualisa$on of 

the LVP would provide clinicians with addi$onal clinically relevant informa$on that could aid 

VPI treatment decision making. 

A range of MRI techniques to dynamically image the vocal tract and ar$culators 

during speech have been developed [9–11]. While techniques that enable imaging at very 

high spa$o-temporal resolu$ons have been developed, these require specialised MRI 

equipment and so.ware [9,10] and are therefore very challenging to implement in other 

centres. This barrier to adop$on has mo$vated the development of techniques that only 

require standard MRI equipment and so.ware [11]. While these techniques image at lower 

spa$o-temporal resolu$ons, the resolu$ons are nevertheless sufficient to capture the 

general mo$on of ar$culators such as the so. palate [12].  

Due to the small size of the LVP and its 3D structure, 3D MRI at a high spa$al 

resolu$on is required to fully visualise the muscle. The LVP and the so. $ssue that surrounds 

it have very similar $ssue proper$es. Consequently, a key challenge when imaging the LVP is 

ensuring that the image contrast is sufficient to discriminate between the two. In previous 

work, T2-weighted images of the LVP have predominantly been acquired [8]. However, the 

results of recent work suggest that the image contrast in T1-weighted or proton-density-

weighted (PD-weighted) images may result in improved LVP visualisa$on [13]. There is 

therefore currently no consensus on the op$mal image contrast for LVP visualisa$on. 
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Currently in clinical speech assessment, analysis of vocal tract and so. palate size, 

shape and mo$on is qualita$ve and no analysis of the size, shape and configura$on of the 

LVP is performed. However, in combina$on with the increasing interest in using MRI in 

clinical speech assessment, there is increasing interest in quan$ta$ve analysis of vocal tract 

and so. palate size, shape and mo$on, and also LVP size, shape and configura$on in 

magne$c resonance (MR) images [7,8]. Such quan$ta$ve analysis would provide objec$ve 

informa$on to aid treatment decision-making. In previous work, measurement of the size, 

shape and configura$on of the so. palate and LVP was manually performed [7,8]. Such 

measurements are $me consuming, require input from specialists, are prone to intra- and 

inter-observer variability and are consequently not feasible on a large scale. There is 

therefore a growing unmet need for methods to automa$cally perform these 

measurements. This unmet need is not limited to the clinical speech assessment 

community; the speech science community is increasingly using MRI to visualise the vocal 

tract and ar$culators during speech and is also increasingly interested in methods to 

automa$cally measure the vocal tract and ar$culators in MR images. 

Segmenta$on of medical images is a common first step to enable automa$c 

measurement of anatomical structures. Several methods have been developed to segment 

air-$ssue boundaries between the vocal tract and adjacent ar$culators in MR images of 

speech [14–16], however, these methods do not fully segment ar$culators such as the so. 

palate and therefore do not enable analysis of ar$culator size, shape and mo$on. Instead, 

methods that fully segment ar$culators in MR images of speech are required. Regarding 

methods to automa$cally segment the LVP in 3D MR images, there is only one report in the 

literature of such methods: in very recent work (postda$ng the work described in this thesis) 

deep-learning-based (DL-based) methods to perform this task were developed and 

compared [17]. 

Development and evalua$on of segmenta$on methods requires datasets with 

corresponding ground-truth (GT) segmenta$ons. While there are publicly available speech 

MRI datasets [18,19], none of these include GT segmenta$ons of ar$culators. In addi$on, 

there are no publicly available MRI datasets in which the LVP can be adequately visualised. 

Due to the lack of suitable publicly available MRI datasets, acquisi$on of new datasets and 

crea$on of GT segmenta$ons is required to enable the development and evalua$on of 

methods to segment the vocal tract, so. palate and LVP in MR images. 
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An established way to automa$cally quan$fy complex mo$on in an image series is by 

using a nonlinear registra$on method to es$mate displacement fields between the images. 

While tradi$onal registra$on methods have been used to register MR images of speech in 

several previous works [20,21], there is only a single report in the literature of these 

methods being used to quan$fy ar$culator mo$on: in [20], such methods were used to 

quan$fy tongue mo$on. However, there are no reports in the literature of such methods 

being used to quan$fy so. palate mo$on. 

To be suitable for use in clinical speech assessment, a key requirement of image 

analysis methods is that they capture any velopharyngeal closures that occur. However, 

standard metrics for evalua$ng segmenta$on and mo$on quan$fica$on method accuracy 

do not provide such informa$on. To enable clinically relevant evalua$on of the accuracy of 

image analysis methods, there is an unmet need for the development of such metrics. 

The main aim of the work presented in this thesis is to begin to address the unmet 

need for methods to perform automa$c quan$ta$ve analysis of the vocal tract, so. palate 

and LVP in MR images, by developing methods to segment such images and developing a 

framework to quan$fy mo$on in such images. 

 

1.2 Contribu*ons 

The work presented in this thesis makes several contribu$ons towards addressing the unmet 

need for methods to perform automa$c quan$ta$ve analysis of the vocal tract, so. palate 

and LVP in MR images. More specifically, as part of the work two segmenta$on methods and 

a mo$on quan$fica$on framework were developed, GT segmenta$ons were created for an 

exis$ng speech MRI dataset, a new MRI dataset including GT segmenta$ons was created 

and a novel metric based on velopharyngeal closure was developed to enable a more 

clinically relevant evalua$on of segmenta$on method and mo$on quan$fica$on framework 

accuracy. More informa$on about these contribu$ons is provided in the following sec$ons. 

 

1.2.1 Ar&culator Segmenta&on in MR Images of Speech 

As a first step towards enabling automa$c measurement of vocal tract and so. palate size, 

shape and mo$on in 2D MR images of speech, a method to automa$cally segment the vocal 

tract, so. palate and four other anatomical features in this type of image was developed. 
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The DL-based method includes an extension to automa$cally calculate the minimum 

distance between the so. palate and the posterior pharyngeal wall, a measurement of 

par$cular interest to clinicians who perform clinical speech assessments. Although primarily 

designed to enable automa$c measurement of vocal tract and so. palate size, shape and 

mo$on in 2D MR images of speech, the 2D segmenta$on method was designed to also 

enable measurement of tongue size, shape and mo$on in order to broaden its poten$al 

applica$ons and u$lity. 

 

1.2.2 Quan&fica&on of Ar&culator Mo&on in MR Images of Speech 

As an addi$onal step towards enabling automa$c measurement of so. palate mo$on in 2D 

MR images of speech, a framework to automa$cally es$mate the mo$on of the so. palate 

and five other anatomical features in this type of image was developed. This deep learning 

framework for nonlinear registra$on of 2D MR images of speech builds on the 2D image 

segmenta$on method by incorpora$ng knowledge of region boundaries into the registra$on 

and automa$cally es$mates displacement fields between this type of image. 

 

1.2.3 LVP Segmenta&on in 3D MR Images 

As a first step towards enabling automa$c measurement of LVP size, shape and configura$on 

in 3D MR images of the vocal tract, a method to automa$cally segment the LVP and pharynx 

in this type of image was developed. Similarly to the 2D image segmenta$on method and 

the mo$on quan$fica$on framework, the 3D image segmenta$on method is deep learning 

based. 

 

1.2.4 Speech MRI Dataset GT Segmenta&on Crea&on 

There are currently no publicly available speech MRI datasets that include GT segmenta$ons 

of the en$re vocal tract or so. palate. To enable the development and evalua$on of a 

method to segment such images, GT segmenta$ons for an exis$ng speech MRI dataset were 

created. A dataset acquired using a speech MRI technique that does not require specialised 

MRI equipment and so.ware was deliberately chosen in order to facilitate acquisi$on of 

similar images in other centres and consequently applica$on of the 2D image segmenta$on 
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method presented in this thesis. GT segmenta$ons of the vocal tract, so. palate and four 

other anatomical structures were manually created for each image in the dataset. 

 

1.2.5 New MRI Dataset and GT Segmenta&on Crea&on 

There is currently no consensus on the op$mal image contrast for visualising the LVP in 3D 

MR images. In addi$on, there are currently no publicly available MRI datasets that include 

GT segmenta$ons of the LVP. To enable the development and evalua$on of a method to 

segment the LVP in 3D MR images, a new dataset of 3D MR images of the vocal tract was 

acquired a.er performing an inves$ga$on to iden$fy the parameters that result in the 

op$mal image contrast for visualising the LVP in this type of image. GT segmenta$ons of the 

LVP and pharynx were manually created for each image in the dataset. 

 

1.2.6 Novel Metric for Clinically Relevant Method Accuracy Evalua&on 

To be suitable for use in clinical speech assessment, a key requirement of segmenta$on and 

mo$on quan$fica$on methods is that they capture any velopharyngeal closures that occur. 

However, standard metrics for evalua$ng segmenta$on and mo$on quan$fica$on method 

accuracy do not provide such informa$on. To enable more clinically relevant evalua$on of 

the accuracy of segmenta$on methods and mo$on quan$fica$on frameworks, a novel 

metric based on velopharyngeal closure was developed. 

 

1.3 Outline 

This thesis is divided into eight chapters, including this Introduc$on. The other seven 

chapters of this thesis are outlined below: 

 

Chapter 2: Clinical Background 

Chapter 2 provides the clinical background to the work presented in this thesis. As this work 

involves developing methods to analyse images of speech, the chapter provides an overview 

of speech produc$on. The chapter also provides an overview of VPI, the health problem that 

this work ul$mately aims to address, and the management of pa$ents with VPI. 
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Chapter 3: Technical Introduc8on 

Chapter 3 introduces the technical background to this work. First, as MRI data was acquired 

and used in this work, the chapter provides an overview of MRI and then reviews speech 

MRI techniques and MRI techniques for LVP visualisa$on. Second, as DL-based methods 

were developed in this work, the chapter provides an overview of deep learning and its 

applica$on to medical image analysis. Third, as DL-based segmenta$on methods were 

developed in this work, the chapter provides an overview of medical image segmenta$on 

focusing on DL-based methods and then reviews the literature on the segmenta$on of 

speech MR images and the segmenta$on of the LVP in MR images. Fourth, as a mo$on 

quan$fica$on framework based on image registra$on was developed in this work, the 

chapter provides an overview of medical image registra$on and then reviews the literature 

on the registra$on of speech MR images. 

 

Chapter 4: Materials 

Chapter 4 describes the datasets acquired and used in this work. First, the chapter describes 

the previously acquired speech MRI dataset that was used in this work and how GT 

segmenta$ons were created for this dataset. Second, the chapter describes the new MRI 

dataset that was acquired in this work, including the image contrast op$misa$on 

inves$ga$on that was performed prior to acquiring the dataset. The chapter then describes 

how GT segmenta$ons were created for this new dataset. The speech MRI dataset and 

corresponding GT segmenta$ons were used to develop the segmenta$on method presented 

in chapter 5 and the registra$on framework presented in chapter 6, while the new MRI 

dataset and corresponding GT segmenta$ons were used to develop the segmenta$on 

method presented in chapter 7. 

 

Chapter 5: DL-Based Segmenta8on of Speech MRI Data 

Chapter 5 presents a DL-based method to segment the vocal tract and ar$culators in 2D MR 

images of speech. The chapter also presents an extension to the method to calculate the 

minimum distance between the so. palate and the posterior pharyngeal wall. Finally, the 

chapter presents a novel clinically relevant metric based on velopharyngeal closure to 

evaluate the accuracy of segmenta$ons es$mated by the method. The speech MRI dataset 

described in chapter 4 was used to develop the segmenta$on method. 
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Chapter 6: DL-Based Nonlinear Registra8on of Speech MRI Data 

Chapter 6 presents a deep learning framework for nonlinear registra$on of 2D MR images of 

speech. The framework builds on the segmenta$on method presented in chapter 5. Chapter 

6 also presents the results of experiments comparing the performance of the proposed 

framework to state-of-the-art tradi$onal nonlinear registra$on methods and deep learning 

frameworks for nonlinear registra$on. One of the metrics used in this comparison was the 

novel clinically relevant metric based on velopharyngeal closure presented in chapter 5. The 

speech MRI dataset and corresponding GT segmenta$ons described in chapter 4 were used 

to develop the proposed framework and in the performance comparison experiments. 

 

Chapter 7: DL-Based LVP Segmenta8on in 3D MR Images 

Chapter 7 presents a DL-based method to segment the LVP and pharynx in 3D MR images of 

the vocal tract. It also presents the results of experiments inves$ga$ng the effect of different 

data augmenta$on methods on the accuracy of the segmenta$on method. The new MRI 

dataset and corresponding GT segmenta$ons described in chapter 4 were used to develop 

the segmenta$on method and in the data augmenta$on experiments. 

 

Chapter 8: Conclusions 

Chapter 8 first summarises the contribu$ons of the work presented in this thesis. The 

chapter then discusses limita$ons of this work and makes sugges$ons on future work. 
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Chapter 2: Clinical Background 
2 Clinical Background 
 

This chapter introduces the clinical background to the work presented in this thesis. It 

consists of an overview of speech and its produc$on, followed by an overview of VPI, the 

health problem that this work ul$mately aims to tackle. 

 

2.1 Speech 

Speech is one of the principal forms of human communica$on. Its produc$on is a complex 

process involving several body parts (see Figure 1), notably the lungs, vocal folds (also 

known as the vocal cords) and ar$culators including the lips, tongue and so. palate (also 

known as the velum) [1,22]. 

 

 
Figure 1: (A) A diagram of a midsagi3al slice of the head, showing anatomical features with key roles in speech produc>on 

(modified from [23]). (B) A real->me magne>c resonance image of a midsagi3al slice of the head. PPW: posterior 

pharyngeal wall. 

Speech produc$on requires a flow of air from the lungs. For the majority of speech 

sounds, the airflow passes through the trachea, larynx (which contains the vocal folds), 

pharynx and oral cavity, and leaves the body via the mouth. For a few speech sounds, such 

as [m], [n], [ng] in English, the airflow passes through the trachea, larynx, pharynx, oral 

cavity and nasal cavity, and leaves the body via the nose. 

Vocal folds

Trachea

Soft palate
PPW

(A) (B)

Lower
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 Airflow past the vocal folds causes them to vibrate. This vibra$on modulates the 

airflow and generates sound. The tension of the vocal folds and their separa$on, both of 

which can be controlled by the speaker, determine the frequencies of the sound that is 

generated. 

 The oral cavity acts as a resonator that modifies the sound generated by the vocal 

folds to the desired speech sound. The sound modifica$on depends on the size and shape of 

the oral cavity. The speaker can control these proper$es of the cavity by moving ar$culators 

including the lips, tongue and so. palate to different posi$ons. 

 As well as modifying the shape of the oral cavity, the so. palate is responsible for 

preven$ng airflow into the nasal cavity. Preven$on of such airflow is required to produce all 

speech sounds in English apart from [m], [n] and [ŋ]. The so. palate prevents such airflow by 

blocking the opening between the pharynx and the nasal cavity. It achieves this by eleva$ng 

and coming into contact with the pharyngeal walls (see Figure 2). Blockage of the opening in 

this way is known as velopharyngeal closure. 

 

 
Figure 2: (A) A diagram of a midsagi3al slice of the head showing velopharyngeal closure: the soG palate is elevated and in 

contact with the posterior pharyngeal wall (PPW) (modified from [24]). (B) A real->me magne>c resonance image of a 

midsagi3al slice of the head showing velopharyngeal closure. 

 

Eleva$on of the so. palate is primarily caused by a muscle called the LVP. The LVP forms a U-

shaped sling that li.s the so. palate (see Figure 3). The muscle originates from the base of 

the skull, close to the petrous part of the temporal bone, and connects to the midsec$on of 

the so. palate at approximately 40% of the length of the so. palate [25,26] (see Figure 4). 

Soft palate

PPW

(A) (B)
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Figure 3: A diagram of an open mouth, showing the tongue, velum (soG palate), hard palate and levator veli pala>ni 

(modified from [27]). 

 

 
Figure 4: A diagram of a midsagi3al view of the soG palate and its muscles [28]: the levator veli pala>ni (LVP), tensor veli 

pala>ni (TVP), salphingopharyngeus (SP), superior pharyngeal constrictor (SC), and the transverse fascicle (tPP), dorsal 

fascicle (dPP) and ventral fascicle (vPP) of the palatopharyngeus muscle (PP). 
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2.2 Velopharyngeal Insufficiency 

2.2.1 Causes and Effects 

VPI is an anatomical or structural defect that prevents velopharyngeal closure [1]. Examples 

of defects include the pharynx being abnormally deep, the LVP not eleva$ng the so. palate 

sufficiently to block the opening between the pharynx and the nasal cavity, and the so. 

palate not being sufficiently large to block the opening between the pharynx and the nasal 

cavity [29]. As a result of the defect, airflow during speech is disrupted as air flows into the 

nasal cavity when it should not. This disrup$on can make it challenging or impossible to 

produce certain speech sounds and therefore impairs speech. The extent to which speech is 

impaired by VPI is variable. In cases where the defect is minor, individuals can produce most 

speech sounds correctly. However, in more severe cases, individuals can only produce a few 

speech sounds correctly. Speech and language impairments have been found to nega$vely 

affect social and educa$onal development [2,30–33]. VPI is the health problem which the 

work described in this thesis ul$mately aims to address. 

 

2.2.2 Prevalence 

Two popula$ons of individuals are par$cularly prone to VPI: individuals with a repaired cle. 

palate and individuals with velocardiofacial syndrome [34–38]. The incidence of VPI has 

been found to be 16-37% in individuals with a repaired cle. palate [34,35] and 27-92% in 

individuals with velocardiofacial syndrome [38]. 

Orofacial cle.s are abnormal fissures in the lip and/or palate that are present from 

birth (see Figure 5). They occur when different sec$ons of the lip and/or palate do not fuse 

together correctly during prenatal development. A cle. can be in the lip only (cle. lip), the 

palate only (cle. palate) or both (cle. lip and palate). Cle. lips can be further categorised as 

being either unilateral or bilateral depending on whether they are on both sides of the face 

(see Figure 5). A cle. in the palate results in an abnormal opening between the oral and 

nasal cavi$es that nega$vely affects feeding and speech. 

In the United Kingdom (UK), approximately 800 babies per year are born with a 

orofacial cle. that involves the palate [39,40]. Cle. palates are surgically repaired, usually six 

to 12 months a.er birth. Since children with a repaired cle. palate are known to be prone to 
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speech impairments, their speech is assessed by Speech and Language Therapists (SLTs) 

every two years un$l the age of 18. 

Velocardiofacial syndrome is a gene$c condi$on caused by a hemizygous dele$on of 

chromosome 22q11.2 [38]. It is characterised by heart anomalies and mild-to-moderate 

immune deficiencies. Addi$onal common characteris$cs of individuals with the syndrome 

include facial dysmorphia, developmental delay and VPI. The prevalence of velocardiofacial 

syndrome in the UK has been found to be approximately 1 per 4000 births [46]. 

 

 

 
Figure 5: Different types of orofacial cleGs: (A) normal palate (modified from [41]), (B) unilateral cleG lip [42], (C) bilateral 

cleG lip [43], (D) cleG palate [41], (E) unilateral cleG lip and palate [44], (F) bilateral cleG lip and palate [45]. White arrows 

indicate cleGs. 

 

2.2.3 Treatment 

Since VPI is an anatomical or structural defect, it can only be treated via surgery [1]. As part 

of their rehabilita$on following surgery, pa$ents receive speech therapy to help them learn 

to use the modified anatomy effec$vely and to eliminate compensatory placements (i.e. 

abnormal ar$culator posi$oning during speech produc$on in order to compensate for the 

anatomical or structural defect). Several well-established surgical techniques to treat VPI 

exist, including intravelar veloplasty, palate re-repair, pharyngeal flap, sphincter 

pharyngoplasty and Furlow Z-palatoplasty [47]. Intravelar veloplasty and palate re-repair 

(A) (B) (C)
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both aim to change the posi$on and orienta$on of the LVP to improve the func$on of the 

muscle. Pharyngeal flap and sphincter pharyngoplasty both aim to reduce the size of the 

opening between the pharynx and nasal cavity. Furlow Z-palatoplasty aims to both change 

the posi$on and orienta$on of the LVP and reduce the size of the opening between the 

pharynx and nasal cavity. However, there is no consensus on which technique is most 

effec$ve and consequently a variety of techniques are used [4–6,47]. The technique most 

likely to improve the speech of a pa$ent depends on the defect(s) preven$ng 

velopharyngeal closure, however, the choice of technique can also be influenced by surgeon 

experience [47]. If the defect is a poorly func$oning LVP, a technique that aims to improve 

LVP func$on such as a palate re-repair is performed, while if the defect is an abnormally 

deep pharynx or an insufficiently large so. palate, a technique that aims to reduce the size 

of the opening between the pharynx and nasal cavity is performed. Surgical treatment is 

most o.en performed when the pa$ent is approximately six years old [48–52]. However, 

treatment is not always successful: studies have reported persistence of VPI following 

surgery in 16-100% of cases [48–52]. VPI persistence can necessitate further surgery 

[48,49,52]. For pa$ents and their carers, further surgery results in addi$onal hospital visits. 

These visits can be distressing and inconvenient, and usually cause pa$ents to miss school. 

In addi$on, accompanying carers must usually take $me off work for the visits and post-

surgery care at home. For health and care services, further surgery results in addi$onal 

workloads for clinical teams and addi$onal costs. In the UK, the cost of a surgery and its 

planning and follow-up is approximately £8500. Avoiding further surgery would therefore 

avoid large addi$onal costs. The ul$mate goal of the work presented in this thesis is to 

develop methods to help clinical teams improve the treatment outcomes of pa$ents with 

VPI and therefore reduce the rates of further surgery. 

Clinical assessments of speech are performed to iden$fy the defect preven$ng 

velopharyngeal closure and thus inform treatment decisions. These assessments are 

performed by SLTs and Plas$c Surgeons. Clinical speech assessments usually involve imaging 

to enable clinical teams to visualise the pharynx and so. palate of a pa$ent while (s)he is 

speaking [3,4,53]. Visualisa$on of the shape of the pharynx and so. palate enables clinical 

teams to iden$fy if the defect preven$ng velopharyngeal closure is an abnormally deep 

pharynx or an insufficiently long so. palate. Visualisa$on of the mo$on of the so. palate 

during speech enables clinical teams to infer how well the LVP is func$oning and whether it 
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is connected to the so. palate at an abnormal loca$on. Iden$fica$on of the defect 

preven$ng velopharyngeal closure in turn aids clinical teams to decide on the treatment 

required to correct the defect. Imaging therefore has an important role in the management 

of pa$ents with VPI, by providing key informa$on for treatment decision-making. In the UK, 

the imaging techniques most commonly used in clinical speech assessments are 

videofluoroscopy and nasendoscopy [4,53]. Videofluoroscopy is a technique that uses X-rays 

to visualise the inside of the body. Nasendoscopy is when a small camera is threaded into 

the nasal cavity via the nose, enabling visualisa$on of the top of the so. palate. Both these 

imaging techniques enable 2D visualisa$on of the pharynx and so. palate, however, neither 

enables visualisa$on of the LVP. 

 

2.3 Conclusions 

Ar$culators such as the so. palate play an essen$al role in the produc$on of speech. In 

combina$on with the LVP, the so. palate causes velopharyngeal closure, a key requirement 

for the produc$on of most speech sounds. VPI is an anatomical or structural defect that 

prevents velopharyngeal closure and consequently impairs speech. While several well-

established surgical techniques to treat VPI exist, there is currently no consensus on which is 

most effec$ve and consequently a variety of techniques are used. The technique most likely 

to improve the speech of a pa$ent depends on the defect(s) preven$ng velopharyngeal 

closure. Imaging is used in clinical speech assessments to aid iden$fica$on of the defect(s) 

and therefore inform treatment decisions. However, treatment is not always successful and 

further surgery can be required, causing addi$onal distress and disrup$on for pa$ents and 

their carers, addi$onal workloads for clinical teams and addi$onal costs for health and care 

services. The ul$mate goal of the work presented in this thesis is to develop methods to 

help to improve the treatment outcomes of pa$ents with VPI. 
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Chapter 3: Technical Introduction 
3 Technical Introduc*on 
 
This chapter introduces the technical background to the work presented in this thesis. The 

first sec$on provides an overview of MRI and its use for visualising the ar$culators and LVP. 

The second sec$on provides an overview of deep learning and its use for medical image 

analysis tasks. The third sec$on provides an overview of DL-based image segmenta$on 

methods, followed by a review of exis$ng methods for segmen$ng ar$culators and the LVP 

in MR images. The final sec$on provides an overview of medical image registra$on methods, 

followed by a summary of previous work in which these methods were applied to MR 

images of speech. 

 

3.1 Magne*c Resonance Imaging 

3.1.1 Introduc&on 

MRI is a non-invasive imaging technique primarily used to acquire images of the inside of 

the body. It is widely used in clinical prac$ce and has an important role in the diagnosis and 

monitoring of a wide range of diseases including cancer and demen$a. In addi$on, MRI is 

widely used in mul$ple research areas and is itself a topic of much research and 

development. MRI is primarily known for its ability to acquire detailed 2D or 3D images of 

sta$c parts of the body. However, due to advances in MRI technology and data acquisi$on 

accelera$on strategies, MRI can now be used to acquire images of dynamic processes such 

as speech produc$on. 

Providing a detailed coverage of all relevant aspects of MRI is beyond the scope of this 

sec$on. Instead, brief introduc$ons to the fundamentals of key aspects are provided in the 

following sec$ons. For further details, readers are referred to [54] for an introduc$on to the 

components of an MRI scanner, [55] for an introduc$on to MR signal crea$on and 

relaxa$on, [56] for an introduc$on to MR image acquisi$on and k-space, and [57] and [58] 

for introduc$ons to pulse sequences. 
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3.1.2 Pulse Sequences 

In MRI, a sequence of radiofrequency (RF) pulses and magne$c field gradients are applied to 

produce the signals required for image forma$on. This sequence is known as a pulse 

sequence. There are many different types of pulse sequence, the most basic of which are 

spin echo (SE) and gradient echo (GE) [59]. In prac$ce, variants of SE and GE pulse 

sequences that enable faster image acquisi$on are primarily used. Par$cularly widely used 

sequences include turbo SE (TSE) sequences and fast GE sequences [60]. 

 While an SE sequence produces a single MR signal per RF excita$on pulse, a TSE 

sequence produces mul$ple signals, thus accelera$ng image acquisi$on. TSE sequences 

produce mul$ple signals by applying addi$onal RF pulses and magne$c field gradients 

between the RF excita$on pulses [57]. The number of signals that are produced per RF 

excita$on pulse is known as the echo train length or the turbo factor. TSE sequences are 

primarily used to acquire detailed 2D or 3D images of sta$c parts of the body. A key 

advantage of TSE sequences is that they can acquire images with a wide range of different 

contrasts. However, while TSE sequences accelerate image acquisi$on, the accelera$on is 

not usually sufficient to enable dynamic imaging. 

 Fast GE sequences sufficiently accelerate image acquisi$on to enable dynamic 

imaging. The most commonly used types of fast GE sequences are spoiled GE sequences and 

refocused GE sequences [58]. Spoiled GE sequences are almost iden$cal to GE sequences, 

except that an addi$onal magne$c field gradient, known as a spoiler gradient, is applied 

a.er signal acquisi$on in order to remove any remaining transverse magne$sa$on and 

therefore prevent it from affec$ng the produc$on of subsequent signals. In refocused GE 

sequences, addi$onal magne$c field gradients are applied to manipulate the residual 

transverse magne$sa$on so that it contributes to the produc$on of subsequent signals. 

While fast GE sequences enable more rapid image acquisi$on than other types of sequences 

such as TSE sequences, the range of image contrasts in images acquired using such 

sequences is more limited. 

Pulse sequences have a range of parameters that can be modified to affect the image 

acquisi$on speed, the spa$al resolu$on of imaging and the contrast of the images that are 

acquired. The key parameter that affects image acquisi$on speed is the repe$$on $me (TR). 
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Figure 6 Magne>c resonance images with different contrasts: T1-weighted (T1w), proton-density-weighted (PDw) and T2-

weighted (T2w). The x- and y-axes are repe>>on >me (TR) and echo >me (TE) respec>vely. 

 
3.1.3 Relaxa&on and Image Contrast 

In MRI, a.er the applica$on of an RF excita$on pulse, the recovery of the longitudinal 

magne$sa$on (𝑀!) is characterised by the spin-lalce relaxa$on $me (𝑇") and is commonly 

modelled using the following equa$on: 

 

𝑀! ∝ 1 − 𝑒#$/&!           (1) 

 

where 𝑡 is $me. The decay of the transverse magne$sa$on (𝑀'() is characterised by the 

spin-spin relaxa$on $me (𝑇)) and is commonly modelled using the following equa$on: 

 

𝑀'( ∝ 𝑒#$/&"            (2) 

 

TR

TE

T1w

PDw T2w
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𝑇" and 𝑇) are substance dependent. For example, in the body at a magne$c field of 3.0 T, the 

𝑇" of fat and muscle is approximately 400 ms and 900 ms respec$vely, while the 𝑇) of fat 

and muscle is approximately 70 ms and 30 ms respec$vely [55]. In MRI, these differences in 

relaxa$on $mes are exploited in order to acquire images with different contrasts. 

A key advantage of MRI over other imaging techniques is its ability to acquire images 

with a range of different contrasts. Several factors affect MR image contrast including the 

proton density and the relaxa$on $mes of the volume being imaged, the strength of the 

main magne$c field, the type of pulse sequence used in image acquisi$on and the 

parameters of the pulse sequence. It is common to describe an MR image as T1-, T2- or 

proton-density-weighted (PD-weighted), depending on the factor that most influenced the 

image contrast. Examples of images with different contrasts are shown in Figure 6. The 

contrast in a T1-weighted image depends primarily on the differences in the amplitudes of 

the longitudinal magne$sa$ons in different regions of the volume being imaged, while the 

contrast in a T2-weighted image depends primarily on the differences in the amplitudes of 

the transverse magne$sa$ons. The contrast in a PD-weighted image depends primarily on 

the proton density of the volume being imaged. 

The parameters of pulse sequences can be modified in order to acquire images with 

different contrasts. The key parameters that affect the image contrast are the TR, echo $me 

(TE) and, for GE-based sequences, the flip angle. Generally, to acquire a T1-weighted image, 

a pulse sequence with a rela$vely short TR and TE is required. Conversely, to acquire a T2-

weighted image, a pulse sequence with a rela$vely long TR and TE is required. To acquire a 

PD-weighted image, a pulse sequence with a rela$vely long TR and a rela$vely short TE is 

required. 

A suitable image contrast is required to be able to dis$nguish between different 

regions in an image and ul$mately visualise anatomical features in medical images. In MRI, 

the process to iden$fy the pulse sequence parameters that result in an op$mal contrast for 

anatomical feature visualisa$on is known as pulse sequence op$misa$on. 

 

3.1.4 Tradeoffs in MRI 

MRI involves an unavoidable tradeoff between the image acquisi$on speed, image quality 

and spa$al resolu$on. The op$mal tradeoff for a given applica$on depends on the rela$ve 
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importance of these three factors. MRI of dynamic processes such as speech produc$on 

requires fast image acquisi$on to ensure that the temporal resolu$on of imaging is 

sufficiently high to capture the processes as they occur. Nevertheless, visualisa$on of the 

processes also requires adequate image quality and a sufficiently high spa$al resolu$on. 

Commonly used strategies for accelera$ng MR image acquisi$on include using faster 

pulse sequences, parallel imaging, non-Cartesian k-space sampling, novel image 

reconstruc$on methods and custom receive coils. While some strategies such as faster pulse 

sequences and parallel imaging are widely available on standard MRI scanners, others such 

as non-Cartesian k-space sampling, novel reconstruc$on methods and bespoke receive coils 

are only available on specialised MRI scanners. Generally, the former type of scanner is 

much more common in clinical prac$ce than the laXer. 

 

3.1.5 Dynamic MRI Techniques 

MRI is primarily known for its ability to acquire detailed 2D or 3D images of sta$c parts of 

the body. However, due to advances in MRI technology and data acquisi$on accelera$on 

strategies, MRI can now be used to acquire images of dynamic processes such as speech 

produc$on. Dynamic MRI techniques use a variety of data acquisi$on accelera$on 

strategies, usually in combina$on, to enable imaging at high temporal resolu$ons while 

maintaining adequate image quality and spa$al resolu$on [12,27,61–63]. Applica$ons of 

dynamic MRI techniques include in cardiac MRI [61–63], MRI-guided invasive procedures 

[61] and speech MRI [12,27,61]. 

Dynamic processes that regularly repeat in a similar manner, such as the bea$ng of 

the heart, can be dynamically imaged at high spa$o-temporal resolu$ons using triggered 

and gated MRI techniques [62,63]. However, these types of technique require monitoring of 

the dynamic process. For example, the bea$ng of the heart is monitored using 

electrocardiography [62,63]. Using this monitoring, triggered MRI techniques synchronise 

data acquisi$on so that it only occurs at specific stages of the process, while gated MRI 

techniques con$nuously acquire data and then retrospec$vely use the recorded monitoring 

signal to determine at which stage of the process data were acquired. To acquire all the data 

required to create an image, triggered and gated MRI techniques require several repe$$ons 
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of the dynamic process. Consequently, these techniques can require up to several minutes 

to acquire all the data required to create an image. 

Real-$me MRI (rtMRI) techniques enable imaging of dynamic processes as they 

occur, without requiring any repe$$on of the processes. This type of technique is therefore, 

unlike triggered and gated MRI techniques, not restricted to imaging dynamic processes that 

regularly repeat in a similar manner. However, achieving the desired spa$o-temporal 

resolu$ons is more challenging due to the lack of repe$$on. 

 

3.1.6 Vocal Tract and Ar&culator Visualisa&on during Speech 

Visualisa$on of the vocal tract and ar$culators during speech provides informa$on about 

the size, shape, mo$on and posi$on of these anatomical features during speech produc$on. 

In a research context, primarily in speech science research, this informa$on is desirable as it 

provides insights into speech produc$on, while, as described in sec$on 2.2.3, in clinical 

prac$ce this informa$on is desirable as it enables iden$fica$on of the causes of speech 

problems and consequently informs decisions on how to treat the problems [1,3,4]. 

Due to their loca$on in the body, imaging is required to visualise the vocal tract and 

ar$culators during speech. Several different imaging techniques enable visualisa$on of these 

anatomical features. The most commonly used techniques are nasendoscopy [1,3,4], 

videofluoroscopy [4], ultrasound (US) [64–67] and MRI [12,27,61]. Each of these techniques 

has its advantages and disadvantages. Nasendoscopy is free from ionising radia$on and 

requires rela$vely inexpensive technology but is minimally invasive, poten$ally affec$ng 

speech, and visualisa$on is limited to external surfaces of ar$culators. Videofluoroscopy is 

non-invasive and quick to perform. However, it involves exposure to ionising radia$on, 

specialist staff and facili$es are required to perform it, and visualisa$on is limited to 

projec$ons of the anatomy. US imaging is non-invasive, free from ionising radia$on and 

requires rela$vely inexpensive technology, but visualisa$on is limited to the tongue. MRI is 

non-invasive, free from ionising radia$on and enables visualisa$on of any view of the vocal 

tract and ar$culators. However, it requires expensive equipment and specialist staff and 

facili$es to perform. 
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3.1.7 Dynamic MRI of Speech 

Use of MRI to visualise the vocal tract and ar$culators during speech is increasing due to the 

growing availability of MRI scanners, the development of dynamic MRI techniques for such 

visualisa$on, and the unique ability of MRI to non-invasively acquire images of any 

orienta$on without using ionising radia$on [12,27,61]. Currently, the main applica$on of 

dynamic MRI of speech is in speech science research [68–76]. However, there is increasing 

interest in using dynamic MRI in the clinical assessment of speech of pa$ents with VPI [7,77–

82], apraxia [83], stuXer [84] or sleep apnea [85,86], or pa$ents following glossectomy 

[87,88]. Dynamic MRI has also been used to visualise the vocal tract and ar$culators during 

singing [89,90], swallowing [91–93], laughter [94], beatboxing [95,96] and the playing of 

musical instruments [97,98,107,108,99–106]. 

Accurate vocal tract and ar$culator visualisa$on during speech requires imaging at 

spa$o-temporal resolu$ons sufficient to capture the mo$on of these anatomical features. 

Recommenda$ons on dynamic speech MRI spa$o-temporal resolu$ons have been published 

by a group of dynamic speech MRI experts [12]. For example, the group recommended an 

in-plane spa$al resolu$on of <5 mm2 and a temporal resolu$on of <150 ms for capturing the 

general mo$on of the so. palate during speech. The spa$o-temporal resolu$ons 

recommended by the experts are shown in Figure 7. 

 

 
Figure 7: Spa>o-temporal resolu>ons recommended by dynamic speech MRI experts for accurate capture of vocal tract and 

ar>culator mo>on during speech [12]. 
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 A wide variety of triggered and rtMRI techniques have been developed for 2D (both 

single- and mul$-slice) [9,10,12,27,61,109], pseudo-3D (i.e. stacks of con$guous slices) [110] 

and 3D imaging [111–113] of the vocal tract and ar$culators during speech. Overviews of 

most of these techniques are given in the review ar$cles of ScoX et al. [27] and Nayak et al. 

[61]. While techniques have been developed for mul$-slice 2D, pseudo-3D and 3D imaging 

of the vocal tract and ar$culators during speech, typically a series of 2D images of a 

midsagiXal slice of the head are acquired in dynamic speech MRI studies. Examples of such 

images are shown in Figure 8. Acquisi$on of 2D midsagiXal image series is desirable in 

clinical speech assessment as the images show a view of the vocal tract and ar$culators 

similar to videofluoroscopy, one of the imaging techniques most commonly used in clinical 

speech assessment, and therefore a view that clinicians are familiar with and can more 

easily interpret. 

 
Figure 8: A series of magne>c resonance images of a midsagi3al slice of the head during speech, acquired at a temporal 

resolu>on of 100 ms. 

State-of-the-art triggered techniques enable imaging of speech at the highest spa$o-

temporal resolu$ons. More specifically, these techniques enable 2D imaging of a single slice 

at a spa$al resolu$on of 2.2´2.2 mm2 and a temporal resolu$on of 9.8 ms [109], pseudo 3D 

imaging at a spa$al resolu$on of 1.875´1.875´2.000 mm3 and a temporal resolu$on of 28 

ms [110], and 3D imaging at a spa$al resolu$on of 2.2´2.2´5.0 mm3 and a temporal 

resolu$on of 6 ms [112]. However, triggered techniques require con$nuous repe$$on of a 

speech task during an extended period of $me. For example, the state-of-the-art 2D, pseudo 

3D and 3D imaging techniques require con$nuous repe$$on of a speech task for 1.7, 19.5 

and 7.2 minutes respec$vely [109,110,112]. While con$nuous repe$$on of a speech task for 

these dura$ons may be feasible for healthy subjects, it is not for pa$ents with speech 

problems. Triggered techniques are therefore not the most suitable for use in clinical speech 

assessment. 

Time
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Real-$me techniques allow imaging of speech as it occurs, without requiring any 

repe$$ons, and are therefore more suitable for use in clinical speech assessment than 

triggered techniques. State-of-the-art real-$me techniques enable 2D imaging of a single 

slice at a spa$al resolu$on of <2.4´2.4 mm2 and a temporal resolu$on of <20 ms [9,10], and 

3D imaging at a spa$al resolu$on of 2.2´2.2´5.8 mm3 and a temporal resolu$on of 61 ms 

[113]. However, these techniques require highly specialised MRI equipment and so.ware, 

namely custom receive coils [10] and/or specialised pulse sequences and reconstruc$on 

methods [9,10], that are not widely available especially in clinical prac$ce. These 

requirements therefore prevent the widespread adop$on of the techniques, a limita$on 

that has mo$vated the development of techniques that only require widely available 

standard MRI equipment and so.ware [11,27,114,115]. Techniques that only require 

standard MRI equipment and so.ware enable 2D imaging at spa$al resolu$ons of <2.4´2.4 

mm2 and temporal resolu$ons <100ms. While these spa$o-temporal resolu$ons are lower 

than those of state-of-the-art techniques, they are nevertheless sufficient to capture the 

general mo$on of ar$culators such as the so. palate [12]. 

To widen access to real-$me speech MRI data and therefore s$mulate research in the 

field, several datasets have been made publicly available [18,19,116–121]. Most of these 

datasets include 2D midsagiXal image series of English [18,116,117] or French [19,118] 

speakers performing phonologically comprehensive speech tasks (i.e. speech tasks designed 

to include most phonemes in a wide range of contexts). The other datasets include 2D 

midsagiXal image series of English speakers producing emo$onal speech [119], repea$ng 

several speech tasks consis$ng of vowel-consonant-vowel sequences [120], and imita$ng 

unfamiliar speech sounds [121]. 

 

3.1.8 Levator Veli Pala-ni Visualisa&on 

Visualisa$on of the LVP provides informa$on about the shape and configura$on of the 

muscle. There is increasing interest in LVP visualisa$on, to beXer understand varia$ons in 

the shape and configura$on of the muscle [25,122,131–140,123,141–143,124–130], to aid 

planning of surgical treatment of VPI [144,145], and for medical educa$on purposes [146]. 

MRI is predominantly used for LVP visualisa$on [13,25,130–139,122,140,142,143,123–129], 
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due to its unique ability to acquire images of any orienta$on with excellent so. $ssue 

contrast without using ionising radia$on. 

 

3.1.9 MRI of the Levator Veli Pala-ni 

Due to the small size of the LVP and its 3D structure, 3D imaging at a high spa$al resolu$on 

is required to fully visualise the muscle. Previous work has predominantly used 3.0 T MRI at 

a spa$al resolu$on of 0.8´0.8´0.8 mm3 for 3D LVP visualisa$on [25,126,138–140,127–

129,131–133,136,137]. The mo$va$on for imaging at 3.0 T rather than at lower magne$c 

field strengths is the acquisi$on of images with greater signal-to-noise ra$os, enabling 

improved visualisa$on of anatomical features [147]. Nevertheless, a few previous works 

used 1.5 T MRI for 3D LVP visualisa$on [13,132,133]. 

 The LVP and the so. $ssue that surrounds it have very similar $ssue proper$es. 

Consequently, a challenge when imaging the LVP is ensuring that the image contrast 

between the LVP and the surrounding so. $ssue is sufficient to discriminate between the 

two. Previous work has predominantly acquired T2-weighted 3D images of the LVP at 3.0 T 

using TSE pulse sequences [25,126,139,140,127–129,131,134,136–138]. In addi$on, a 

recommenda$on to acquire T2-weighted images for assessing the LVP in clinical prac$ce was 

recently made [8]. However, the results of recent work which inves$gated the op$mal image 

contrast for iden$fica$on of LVP landmarks in 3D images acquired at 1.5 T suggest that T1- or 

PD-weighted images may enable more accurate iden$fica$on [13]. However, the literature 

contains no reports of equivalent inves$ga$ons into the op$mal image contrast for 3D LVP 

visualisa$on at 3.0 T. 

 

3.2 Deep Learning 

3.2.1 Machine Learning 

A machine learning algorithm is an algorithm that is able to learn from data [148]. In this 

context, an algorithm is considered to learn if its ability to perform a task improves with 

experience [149]. Machine learning algorithms can be broadly categorised as supervised or 

unsupervised, depending on the data they learn from. Supervised learning algorithms learn 

from data that includes ground-truth (GT) labels, while unsupervised learning algorithms 

learn from data that do not include such labels. Other categories of machine learning 
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algorithms exist. Two notable examples of these are semi-supervised learning algorithms 

and reinforcement learning algorithms. Semi-supervised learning algorithms learn from 

rela$vely small amounts of data that include GT labels and rela$vely large amounts of data 

that do not. This type of algorithm therefore lies between supervised and unsupervised 

learning algorithms. Reinforcement learning algorithms interact with a dynamic 

environment and learn from these interac$ons via feedback loops. 

Machine learning algorithms create models using data. In recent years, models based 

on ar$ficial neural networks (ANNs) have aXracted much aXen$on, in par$cular those based 

on ANNs with many layers. Since the number of layers of an ANN is referred to as its depth, 

ANNs with many layers are considered to be deep and are therefore referred to as deep 

learning models. In recent years, the field of deep learning has advanced and expanded 

rapidly. Deep learning models have been developed to perform various tasks in a wide 

variety of fields including medical image analysis. The predominant type of ANN that deep 

learning models for medical image analysis are based on is the convolu$onal neural network 

(CNN), although recently deep learning models based on vision transformers (ViTs), another 

type of ANN, have also begun to gain popularity. The next sec$ons will introduce ANNs, 

CNNs and ViTs, and provide an overview of how these models are developed. 

 

3.2.2 Ar&ficial Neural Networks 

ANNs are a type of machine learning model [150]. They are networks that consist of 

interconnected layers of units (also known as ar$ficial neurons since they aim to mimic to 

some degree the opera$on of biological neurons), as illustrated in Figure 9A. The first and 

last layers of an ANN are known as the input and output layers respec$vely, while layers 

between these are known as hidden layers. ANNs with mul$ple hidden layers are considered 

to be deep neural networks. Consequently, machine learning using deep neural networks is 

known as deep learning. 

Each unit of an ANN has one or more inputs, 𝒙, and transforms these into a scalar 

output, 𝑎, in a non-linear manner according to the following equa$on: 

 

𝑎 = 𝜎(𝒘&𝒙 + 𝑏)          (3) 
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where 𝒘 is a vector of weights, 𝑏 is a scalar bias and 𝜎 is a non-linear func$on such as the 

sigmoid func$on or the hyperbolic tangent func$on. The combina$on of the weights and 

biases of the units of an ANN are the model parameters, denoted by 𝜃, that are updated as 

the ANN learns from data. Due to the mul$ple layers in an ANN, data are transformed in a 

non-linear manner mul$ple $mes as they pass through the ANN. This series of 

transforma$ons enables ANNs to learn complex non-linear paXerns in data. Feedforward 

ANNs (also known as mul$-layer perceptrons) contain no feedback connec$ons. In other 

words, the outputs of the units in a layer are only used as inputs to units in deeper layers. 

ANNs that include feedback connec$ons are known as recurrent neural networks (RNNs). An 

example of an RNN is shown in Figure 9B. 

 

 
Figure 9: Examples of ar>ficial neural networks. (A) A mul>-layer perceptron with four layers. (B) A recurrent neural network 

with four layers. Blue circles indicate units, black arrows indicate connec>ons between units and green arrows indicate 

feedback connec>ons. 
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3.2.3 Supervised Training of ANNs 

An ANN is effec$vely a func$on, 𝑓, that maps an input, 𝒙, to an output, 𝑦: 

 

𝑦 = 𝑓(𝒙; 𝜃)           (4) 

 

An itera$ve process is carried out to enable the ANN to learn parameters that result in 𝑓 

approxima$ng the func$on, 𝑓∗, that maps the input to the corresponding GT label, 𝑦∗: 

 

𝑦∗ = 𝑓∗(𝒙)           (5) 

 

This process is known as supervised training of the network and consists of four main steps 

that are repeated mul$ple $mes. First, the network is inpuXed with data vectors, 𝑋 ∈

{𝒙𝟏, 𝒙𝟐, … , 𝒙𝒊}, and es$mates labels, 𝑌 ∈ {𝒚𝟏, 𝒚𝟐, … , 𝒚𝒊}, for these vectors: 

 

𝑌 = 𝑓(𝑋; 𝜃)           (6) 

 

This step is known as forward propaga$on and the number of data vectors that the network 

is inpuXed with, 𝑖, is known as the mini-batch size. Second, the labels es$mated by the 

network are compared with the GT labels of the data vectors, 𝑌∗ ∈ {𝒚𝟏∗ , 𝒚𝟐∗ , … , 𝒚𝒊∗}. The 

errors between the es$mated and GT labels (known as the loss) are quan$fied using a 

func$on, 𝐿(𝑌∗, 𝑌). This func$on is known as the loss func$on and can consist of one or 

more terms. Third, the deriva$ves of the loss with respect to the parameters of each unit of 

the network are calculated using the chain rule: 

 
./
.0#$

%             (7) 

 

where 𝑤123  is the weight between the 𝑘th unit in layer 𝑙 − 1 and the 𝑗th unit in layer 𝑙.  
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Finally, an op$mizer is used to update 𝜃 according to the deriva$ves calculated in the third 

step: 

 

𝑤123 ← 𝑤123 − 𝜆
./
.0#$

%           (8) 

 

where 𝜆 is a hyperparameter called the learning rate. Commonly used op$mizers include 

stochas$c gradient descent and Adam [151]. The final two steps are known as 

backpropaga$on and are a key requirement to enable 𝜃 to be updated in a way that reduces 

the loss. The goal of training is to find the network parameters, 𝜃∗, that minimise the loss 

func$on. Training can therefore be formulated as the following op$misa$on problem: 

 

𝜃∗ = argmin
4

𝐿(𝑌∗, 𝑌)          (9) 

 

Supervised training requires a dataset consis$ng of input data vectors and corresponding GT 

labels, known as a training dataset. 

 Once a network is fully trained, its performance is quan$ta$vely evaluated using one 

or more metrics. To enable evalua$on of the performance of a fully trained network, a 

dataset that does not include any of the data in the training dataset is required. This dataset 

is known as the test dataset. 

 

3.2.4 Generalisa&on of ANNs 

A key challenge in machine learning and deep learning is training networks that perform well 

on data other than those used in network training. In other words, crea$ng networks that 

generalise to new data. Techniques commonly used during network training to improve the 

generalisa$on of a network include weight decay, dropout, data augmenta$on and the use 

of a valida$on dataset. 

 Weight decay, also known as 𝐿) regularisa$on, aims to prevent individual units from 

having an excessive influence on the output of the network. It is implemented by including 

the following term to the loss func$on: 

 

𝐿56(𝑌∗, 𝑌, 𝜃) = 𝐿(𝑌∗, 𝑌) + 𝜖‖𝜃‖))                  (10) 
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where 𝜖 is a scalar constant. The purpose of this term is to prevent the values of the network 

weights from becoming too large, thus preven$ng individual units from becoming overly 

influen$al. The term achieves this by increasing the loss when the weight values increase, 

thus encouraging smaller values. 

Dropout [152] is when the outputs of a random group of units in a network are set to 

zero during network training, temporarily preven$ng the units from contribu$ng to the 

output of the network. At the end of training involving dropout, the resul$ng network is in 

effect an average of several slightly less complex networks, causing an improvement in its 

generalisa$on. 

Data augmenta$on aims to increase the generalisa$on of a network by synthe$cally 

increasing the diversity of the training dataset. This increase is achieved by crea$ng modified 

versions of the training data. When training networks for image analysis tasks, commonly 

used augmenta$ons include rota$on, transla$on and cropping, in addi$on to augmenta$ons 

that modify image pixel or voxel values such as addi$on of random Gaussian noise [153]. An 

overview of data augmenta$on techniques commonly used in the training of networks for 

medical image analysis tasks is provided in [154]. 

The dura$on of training can greatly influence the performance of a network. Training for 

an insufficient dura$on prevents the network from maximising its performance, while 

training for an excessive dura$on results in the network overfilng the training dataset, thus 

compromising network generalisa$on. Typically a valida$on dataset is used to iden$fy the 

op$mal training dura$on. Evalua$on of a network performance using this dataset, which 

does not include any data in either the training or test datasets, gives an indica$on of the 

network performance on the test dataset. During network training, regular evalua$on of 

network performance using the valida$on dataset enables iden$fica$on of overfilng and 

therefore informs when training should be stopped. A valida$on dataset is also o.en used to 

iden$fy the values of hyperparameters such as the learning rate that result in a network 

with the greatest generalisa$on, a process known as hyperparameter op$misa$on. 

 

3.2.5 Limita&ons of ANNs 

Typically in ANNs, units in adjacent layers are fully connected. In other words, in two 

adjacent layers, each unit in the shallower layer is connected to every unit in the deeper 
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layer. Increasing the number of layers and units of an ANN results in a large increase in the 

number of connec$ons and consequently the number of parameters to be learned. This 

rela$onship causes an unavoidable tradeoff between the complexity of a model and the 

computa$onal and data requirement to train and deploy it. To mi$gate this tradeoff, other 

types of ANN that are more sparsely connected have been developed, such as CNNs. 

 
Figure 10: An example of two-dimensional convolu>on. The 3´4 input is convolved with a 2´2 filter to create a 2´3 feature 

map. 

3.2.6 Convolu&onal Neural Networks 

CNNs are a specific type of ANN that are designed to learn from data with a grid-like 

arrangement such as images [155]. These networks contain one or more layers in which a 

mathema$cal opera$on called convolu$on is used to transform the input to the layers. 

These layers are known as convolu$onal layers. Typically, a convolu$onal layer consists of 

three consecu$ve mathema$cal opera$ons: convolu$on, normalisa$on and then a non-

linear transforma$on. 

The convolu$on opera$on consists of convolving the input to the layer with a set of 

filters (also known as kernels) with learnable weights and biases. The output of this 

opera$on is a set of feature maps that correspond to the response of the filters at different 

spa$al loca$ons of the input. Typically, filters for 2D and 3D convolu$ons have a size of 3´3 
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pixels and 3´3´3 voxels respec$vely, although other filter sizes are possible. An example of 

2D convolu$on is shown in Figure 10. 

Following the convolu$on opera$on, the feature maps are normalised. The method 

most commonly used to normalise feature maps is batch normalisa$on [156] where feature 

maps are normalised across a mini-batch rather than on an individual basis. The mo$va$on 

for normalising feature maps is to stabilise the distribu$on of outputs from the 

convolu$onal layer, as such stabilisa$on has been shown to accelerate the training of CNNs 

[156]. Other methods to normalise feature maps have also been developed, such as instance 

normalisa$on [157] where feature maps are normalised on an individual basis rather than 

across a mini-batch. 

Finally, normalised feature maps are transformed in an element-wise manner using a 

non-linear func$on. The most commonly used non-linear func$on in CNNs is the rec$fied 

linear unit (ReLU) which transforms a scalar value, 𝑧, in the following way: 

 

𝑅𝑒𝐿𝑈(𝑧) = max	(0, 𝑧)                    (11) 

 

Another commonly used non-linear func$on is the leaky ReLU [158] which transforms 𝑧 in 

the following way: 

 

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑧) = max(0, 𝑧) + 𝑘 ∙ 𝑚𝑖𝑛(0, 𝑧)                 (12) 

 

where 𝑘 is a scalar constant. 

 In addi$on to convolu$onal layers, CNNs contain pooling layers. Pooling layers 

typically occur a.er convolu$onal layers and reduce the spa$al dimensions of the outputs of 

convolu$onal layers, usually by a factor of two. Pooling layers achieve this by first 

par$$oning the outputs into non-overlapping regions, then calcula$ng a summary sta$s$c 

such as the maximum value in each region and finally crea$ng a new output consis$ng of 

the summary sta$s$cs. The aim of pooling layers is to make CNNs approximately invariant to 

small transla$ons of the input image. The operator most commonly used in pooling layers is 

max pooling. Max pooling layers iden$fy the maximum value in each region and then create 

a new output consis$ng of these values, as illustrated in Figure 11. 
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Figure 11: An example of a max pooling layer. The input to the layer is a feature map of size 4´4. First, the feature map is 

par>>oned into non-overlapping regions of size 2´2 pixels (different colours indicate different regions). The maximum value 

in each region is then iden>fied (do3ed red line indicates pixel with maximum value in each region). The output of the layer 

is a feature map of the maximum values. 

 
3.2.7 CNN-Based Image Analysis 

CNN-based methods have been developed to perform a range of image analysis tasks. The 

most common of these tasks include image classifica$on, object detec$on and image 

segmenta$on. Image classifica$on is the process of assigning a label to an image according 

to its content. For example, given a set of images of handwriXen digits, an image 

classifica$on method would label the images according to the digit they show. Object 

detec$on is the process of detec$ng and loca$ng instances of objects in images. Typically, 

CNN-based object detec$on methods es$mate the coordinates of the bounding box that 

contains the object. Image segmenta$on is the process of par$$oning images into regions of 

pixels (or voxels) [159]. It consists of assigning a label to each pixel in an image, in such a way 

that pixels with shared characteris$cs (such as pixels of the same object) are assigned the 

same label. There are two main types of image segmenta$on: seman$c segmenta$on and 

instance segmenta$on. Seman$c segmenta$on assigns a class label to every pixel in an 

image. If there are mul$ple instances of an object in an image, a seman$c segmenta$on 

method would assign the same label to each pixel showing an instance of the object. 

Instance segmenta$on assigns a different label to pixels of different instances of an object in 

an image. If there are mul$ple instances of an object in an image, an instance segmenta$on 

method would assign a different label to pixels showing a different instance of the object. 

Several CNN-based image analysis methods have par$cularly influenced the deep 

learning and image analysis communi$es in recent years. These methods include AlexNet 

[160], VGG [161], the method developed by [162] and ResNet [163]. AlexNet [160], a 
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method for image classifica$on, is credited for triggering renewed interest in CNN-based 

methods for image analysis a.er winning the ImageNet Large Scale Visual Recogni$on 

Challenge 2012 by a large margin. Inspired by AlexNet, Simonyan and Zisserman [161] 

developed several CNN-based methods for image classifica$on with different depths, and 

showed that increased CNN depth resulted in improved CNN performance. This work is also 

credited for triggering the trend of using 3´3 filters in convolu$onal layers. Long et al. [162], 

were the first to develop a fully convolu$onal neural network (FCN) for seman$c 

segmenta$on. This network consisted of convolu$onal layers and pooling layers only, hence 

its descrip$on as an FCN. Inspired by the work of Simonyan and Zisserman, He et al. [163] 

developed residual blocks for CNNs that enabled the training of even deeper CNNs with 

improved performance. 

 

3.2.8 Vision Transformers 

Transformers are a type of deep learning model ini$ally developed for natural language 

processing (NLP) that are par$cularly effec$ve at capturing long range correla$ons in data 

[164]. Unlike CNNs, transformers do not involve convolu$ons and instead use self-aXen$on 

mechanisms. Following their great success in NLP, transformers were extended to be 

suitable for image analysis tasks [165]. Such transformers, known as vision transformers 

(ViTs), have aXracted much interest from the medical image analysis community, resul$ng in 

their applica$on to a range of medical image analysis tasks including image classifica$on, 

segmenta$on and registra$on. Two recent review ar$cles provide overviews of ViT-based 

medical image analysis methods [166,167]. The emergence of ViTs has prompted the 

community to reconsider the supremacy of CNNs for medical image analysis tasks. 

 

3.3 Medical Image Segmenta*on 

Image segmenta$on has numerous clinical applica$ons ranging from radiotherapy [168,169] 

to neuroimaging [170] and cardiac imaging [171,172]. In many of these applica$ons, image 

segmenta$on is an important step to enable measurement of clinical biomarkers that inform 

diagnosis or treatment decisions. For example, segmenta$on of the heart chambers in 

cardiac MR images enables measurement of biomarkers such as ejec$on frac$on [171,172]. 

A wide variety of medical image segmenta$on methods have been developed, to segment 
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anatomy/pathology ranging from the heart to the brain in medical images acquired using 

imaging techniques ranging from US to MRI. Consistent with trends in other image analysis 

fields, recently most of the medical image segmenta$on methods that have been developed 

are DL-based. Several recent review ar$cles provide overviews of these methods 

[154,166,168–174]. However, a key requirement for the development of such methods is the 

availability of GT segmenta$ons. Obtaining such segmenta$ons is typically a $me-consuming 

manual process which, par$cularly for medical images, requires input by specialists and is 

prone to intra-and inter-observer variability. 

 

3.3.1 Deep-Learning-Based Medical Image Segmenta&on 

The majority of medical image segmenta$on methods that have been developed in recent 

years have been based on FCNs. To begin with, vanilla FCN-based methods were developed 

and then widely applied. Notable examples of such methods include U-Net [175] and SegNet 

[176] for 2D segmenta$on and 3D U-Net [177] for 3D segmenta$on. 

 
Figure 12: An overview of the architecture of the U-Net [175] fully convolu>onal network (image from [175]), consis>ng of 

two-dimensional convolu>ons (conv), transposed convolu>ons (up-conv), rec>fied linear units (ReLUs), skip connec>ons 

(grey arrows) and max pooling. 
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Inspired by the work of [162], U-Net used an FCN with the architecture shown in 

Figure 12 to segment 2D images [175]. The FCN consisted of a mul$-layer encoder to 

downsample feature maps, followed by a mul$-layer decoder to upsample feature maps. 

The network included skip connec$ons that enabled the combina$on of feature maps from 

corresponding layers in the encoder and decoder. A weighted cross entropy loss was used to 

train the FCN. This loss was weighted according to the number of pixels in each class and the 

distance of a pixel from a boundary. However, typically the laXer weigh$ng is not included in 

the training of widely-applied U-Net-based methods in medical image analysis. 

 

 
Figure 13: An overview of the architecture of the SegNet [176] fully convolu>onal network (image from [176]), consis>ng of 

two-dimensional convolu>ons (Conv), batch normalisa>on, rec>fied linear units (ReLUs), max pooling (Pooling), upsampling 

using max pooling indices (Upsampling) and a soGmax ac>va>on func>on (SoGmax). 

SegNet used an FCN with a similar architecture to U-Net to segment 2D images. 

However, the FCN did not include skip connec$ons. In addi$on, feature map upsampling in 

the mul$-layer decoder was not achieved using transposed convolu$ons. Instead, 

upsampling was achieved using max pooling indices from corresponding layers in the mul$-

layer encoder (see Figure 13). 

U-Net was extended to enable 3D segmenta$on by replacing the 2D opera$ons by 

3D opera$ons [177]. Similarly to the original U-Net, a weighted cross entropy loss was used 

to train the FCN. However, this loss was only weighted according to the number of pixels in 

each class. In addi$on, unlike the original U-Net, the 3D U-Net included batch normalisa$on. 

Since the development of vanilla FCN-based methods, there have been several 

general trends in the way these methods have been extended by the medical image analysis 

community. Unsurprisingly, these trends mirror those in other image analysis fields. These 

trends include adding residual blocks to FCNs, adding RNNs to FCNs, using series of 
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consecu$ve FCNs and, most recently, developing hybrid FCN-ViT-based segmenta$on 

methods. 

The success of CNNs with residual blocks for image classifica$on [163] mo$vated the 

inclusion of such blocks in FCN-based medical image segmenta$on methods. One such 

method that has been par$cularly widely applied and extended by the medical image 

analysis community is V-Net [178]. V-Net used an FCN with residual blocks to segment 3D 

images. Similarly to the 3D U-Net FCN, the V-Net FCN consisted of a mul$-layer encoder 

followed by a mul$-layer decoder with skip connec$ons. However, feature map 

downsampling in the V-Net FCN was achieved using 2´2´2 convolu$ons with a stride of 2 

rather than using max pooling. In addi$on, the V-Net FCN included parametric ReLUs rather 

than ReLUs and was trained using a loss func$on based on the Dice coefficient rather than 

cross entropy. 

Adjacent or consecu$ve medical images provide contextual informa$on, however, 

vanilla FCN-based segmenta$on methods were not designed to exploit this informa$on. This 

limita$on mo$vated the inclusion of RNNs, which are designed to exploit such informa$on, 

in FCN-based medical image segmenta$on methods. Examples of such methods include the 

one developed by [179] for mul$-slice cardiac MR image segmenta$on and the one 

developed by [180] for 3D electron microscopy image segmenta$on. 

Typically, the anatomical features of interest in a medical image occupy a rela$vely 

small propor$on of the image. This fact has mo$vated the development of methods that use 

mul$-stage approaches to segment an image [181,182]. Generally, the first stage aims to 

iden$fy the area or volume that contains the anatomical features of interest. Only this area 

or volume is segmented in subsequent stages. For example, in the first stage of the method 

developed by [181], a U-Net-based FCN is used to es$mate an ini$al segmenta$on of an 

en$re image. The region of the image containing the anatomical features of interest is 

determined from this segmenta$on and then another U-Net-based FCN is used to es$mate a 

more detailed segmenta$on of this region of the image only. 
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Figure 14: An overview of the TransUNet [183] hybrid network, a fully convolu>onal network with a vision transformer 

between the encoder and decoder (image from [183]). (a) An overview of a transformer layer consis>ng of layer 

normalisa>ons (Layer Norms), a mul>-head self-a3en>on block (MSA) and a mul>-layer perceptron (MLP) block. (b) An 

overview of the hybrid network consis>ng of two-dimensional convolu>ons (Conv), rec>fied linear units (ReLUs), cascaded 

upsamplers (Upsample). The height (H) and width (W) of the feature maps are shown. 

 

 
Figure 15: An overview of the UNETR [184] hybrid network consis>ng of a vision transformer (ViT) as the encoder and a fully 

convolu>onal network (FCN) as the decoder (image from [184]). Each of the 12 layers in the ViT include layer normalisa>ons 

(Norms), a mul>-head self-a3en>on block (Mul>-Head A3en>on) and a mul>-layer perceptron (MLP) block. The FCN 

includes three-dimensional convolu>ons (Conv), rec>fied linear units (ReLUs), batch normalisa>on (BN), transposed 

convolu>ons (Deconv). The height (H), width (W) and depth (D) of the feature maps are shown. 
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Most recently, the success of ViTs in other fields of deep learning has mo$vated the 

development of hybrid FCN-ViT-based medical image segmenta$on methods. A recent 

review ar$cle provides an overview of such methods [166]. The ra$onale for combining 

FCNs and ViTs is to exploit both the accurate localisa$on abili$es of the former and the 

global context iden$fica$on abili$es of the laXer. Methods such as TransUNet [183] used a 

U-Net-based FCN with a ViT between the encoder and decoder (see Figure 14) to segment 

abdominal CT images and cardiac MR images, while methods such as UNETR [185] and Swin 

UNETR [185] used a U-Net-based FCN with the encoder replaced by a ViT and a swin 

transformer respec$vely to segment MR and CT images of various body organs (see Figure 

15). 

As noted earlier, the U-Net architecture [175,177] has proved to be par$cularly 

popular in the medical image analysis field, influencing the development of a range of other 

methods [186]. While a wide variety of complex FCN-based medical image segmenta$on 

methods have been developed, recent work has shown that vanilla U-Net-based methods 

can outperform these more complex ones if configured and trained effec$vely [187]. Based 

on this observa$on, nnU-Net, an automa$c method for configuring and training U-Net 

effec$vely has been developed [187]. Given a training dataset, the method determines a 

suitable U-Net FCN architecture, whether image pre-processing steps are required (for 

example, cropping and normalisa$on) and an effec$ve FCN training strategy including 

selec$on of key hyperparameters such as the image patch size and the mini-batch size. 

Recently, methods developed using nnU-Net have segmented a wide variety of medical 

images including 2D cardiac MR images [188], 3D CT images of the kidney [189], pseudo-3D 

MR images of the brain [190] and 3D CT images of the lungs [191,192] with state-of-the-art 

accuracy. 

 

3.3.2 Loss Func&ons and Evalua&on Metrics 

Supervised training of deep learning models for medical image segmenta$on consists of the 

four main steps described in sec$on 3.2.3. Loss func$ons commonly used in this training 

include the mean cross entropy loss, 𝐿78, and Dice loss, 𝐿697: 

 

𝐿78 = − "
:
∑ ∑ 𝑔2; log 𝑠2;:

2<"
7
;<"                    (13) 



Technical Introduction 

 

69 

where 𝐾 is the number of pixels or voxels in the image, 𝐶 is the number of segmenta$on 

classes, 𝑔2;  is the binary GT label indica$ng if pixel 𝑘 belongs to segmenta$on class 𝑐 and 𝑠2;  

is the probability es$mated by the CNN that pixel 𝑘 belongs to segmenta$on class 𝑐. 
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Once a model has been trained, its performance is quan$ta$vely evaluated. A recent 

review ar$cle provides an overview of the metrics commonly used by the medical image 

analysis community to quan$fy the accuracy of segmenta$on models [193]. Par$cularly 

commonly used metrics include the Dice coefficient (DSC) [194], the intersec$on over union 

(IoU), general Hausdorff distance (HD) and the average symmetric surface distance (ASD). 

The DSC and IoU quan$fy the overlap between two segmenta$ons, while the HD and ASD 

quan$fy the discrepancies between the boundaries of two segmenta$ons. The way in which 

the DSC and IoU are calculated is illustrated in Figure 16, while the way in which the HD and 

ASD are calculated are illustrated in Figure 17 and Figure 18 respec$vely. 

  
Figure 16: Metrics to quan>fy the overlap between two segmenta>ons A and B (image from [193]). (a) the Dice coefficient 

(DSC). (b) the intersec>on over union (IoU). 
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Figure 17: Calcula>on of the general Hausdorff distance (HD), a metric to quan>fy the maximum discrepancy between the 

boundaries of two segmenta>ons A and B (image from [193]). 𝑑(𝑎, 𝑏) indicates the Euclidean distance between pixel a (a 

boundary pixel of segmenta>on A) and pixel b (a boundary pixel of segmenta>on B). 

 
Figure 18: Metrics to quan>fy the average discrepancy between the boundaries of two segmenta>ons A and B (image from 

[193]). (a) the average symmetric surface distance. (a) the mean average surface distance. 𝑑(𝑎, 𝑏) indicates the Euclidean 

distance between pixel a (a boundary pixel of segmenta>on A) and pixel b (a boundary pixel of segmenta>on B). 
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3.3.3 Real-Time Speech MR Image Analysis 

As described in sec$on 3.1.7, use of rtMRI to visualise the vocal tract and ar$culators during 

speech is increasing in both research and clinical selngs, and typically a series of 2D images 

of a midsagiXal slice of the vocal tract is acquired using real-$me speech MRI techniques. In 

addi$on, there is increasing interest in extrac$ng quan$ta$ve informa$on about the vocal 

tract and ar$culators from such images [7,14,75,76,84,88,195–198,20,68–74]. More 

specifically, there is interest in measuring the size and shape of the vocal tract 

[14,68,197,198,70,74–76,84,88,195,196], the size, shape and mo$on of the so. palate 

[72,73,75,84,198], lip mo$on [69,75,84], tongue mo$on [20,84] and the distance between 

the so. palate and the posterior pharyngeal wall [7,72,198]. Manual measurement to obtain 

this informa$on is $me-consuming, requires input by specialists and is prone to intra- and 

inter-observer variability. The increasing interest in extrac$ng quan$ta$ve informa$on, in 

combina$on with the need to avoid manual measurement, have mo$vated the 

development of a range of methods to (semi-)automa$cally extract this informa$on 

[15,16,206,207,20,199–205]. Almost all these methods are segmenta$on based 

[15,16,207,199–206]. 

 

3.3.4 Real-Time Speech MR Image Segmenta&on 

Numerous methods based on a variety of approaches have been developed to segment real-

$me MR (rtMR) images of speech [15,16,207,199–206]. More specifically, these methods 

segmented 2D images of a midsagiXal slice of the head, the type of image most commonly 

acquired using real-$me speech MRI techniques. The majority of these methods [15,199–

204,208] were designed to enable (semi-)automa$c analysis of the size and shape of the 

vocal tract in the images, an analysis of par$cular interest to the speech science community. 

To enable this analysis, the methods created contours of air-$ssue boundaries between the 

vocal tract and adjacent ar$culators. Some of these methods created contours without 

ar$culator labels [199–202] while others created contours with such labels [15,203,204]. 

Examples of each type of contour are shown in Figure 19. 

 



Technical Introduction 

 

72 

 
Figure 19: Examples of contours of air->ssue boundaries between the vocal tract and adjacent ar>culators in real->me 

speech magne>c resonance images. (A) Contours of the upper (green) and lower (red) air->ssue boundaries without 

ar>culator labels (image from [199]). (B) Contours of air->ssue boundaries with ar>culator labels indicated by colour coding 

(image from [203]). 

 

 
Figure 20: Overview of method developed by [199] to create contours of air->ssue boundaries between the vocal tract and 

adjacent ar>culators in real->me speech magne>c resonance images (modified from [199]). 

 

Instead of crea$ng contours with ar$culator labels, several methods [199–202] have 

been developed to create two contours per image: one of the upper air-$ssue boundaries, 

the other of the lower boundaries (see Figure 19A). One method created such contours by 

first pre-processing the images to increase the image contrast between air and $ssue, then 

superposing gridlines on the pre-processed images and analysing pixel values along these 

gridlines, and finally using the Viterbi algorithm to iden$fy contours [199]. An overview of 

this method is shown in Figure 20. Three DL-based methods to create such contours have 

also been developed [200–202]. These methods all created contours using the same three-

stage approach, an overview of which is shown in Figure 21. First, separate FCNs were used 

(A) (B)

Original image Pre-processed 
image

Gridlines on pre-
processed image

Contours on pre-
processed image
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to segment three groups of anatomical features in the image as a preliminary step. Second, 

the contours of the segmenta$ons were iden$fied. Third, the contours were pruned to only 

include sec$ons corresponding to air-$ssue boundaries between the vocal tract and 

adjacent ar$culators. One method used FCNs based on SegNet [209] to create contours 

[201], while the methods developed by [200] and [202] used FCNs based on those 

developed by [162] and [210] respec$vely. 

 

 
Figure 21: Overview of approach taken by deep-learning-based methods [200–202] to create contours of air->ssue 

boundaries between the vocal tract and adjacent ar>culators in magne>c resonance image of speech (image from [201]). 

 

Several methods have been developed to create contours with ar$culator labels 

[15,203,204]. One method created such contours using an op$misa$on algorithm to 

itera$vely adjust an anatomically informed synthe$c image of the vocal tract un$l the k-

space of the synthe$c image was as similar as possible to the k-space of the MR image [203]. 

Another method based on ac$ve appearance models (AAMs) [211] has also been developed 

to create such contours [204]. This method included two AAMs to create contours: one for 

images in which the so. palate was in contact with the posterior pharyngeal wall and 

another for images in which there was no contact. In other work, methods based on 

mul$ple linear regression (MLR), ac$ve shape models (ASM) [212] and shape par$cle 

filtering (SPF) [213] were developed and compared [15]. These methods created separate 

contours for 10 ar$culators including the tongue, so. palate and pharyngeal wall. The ASM- 

and SPF- based methods were ini$alised using the contours created by the MLR-based 

method. Evaluated using the mean sum of distances between the closest points on each 



Technical Introduction 

 

74 

contour, the ASM-based method was found to be the most accurate. A DL-based method 

has also been developed to create contours with ar$culator labels [16]. This method used a 

single SegNet-based FCN to es$mate contours and then refined these contours using an 

algorithm inspired by the connected component labelling one developed by [214]. 

Rather than crea$ng contours of air-$ssue boundaries between the vocal tract and 

adjacent ar$culators, a method to fully segment the vocal tract (see Figure 22A) in real-$me 

speech MR images has also been developed [208]. This method used a FCN based on the 

original U-Net [175] to segment the vocal tract. 

 

 
Figure 22: Magne>c resonance images of speech with segmenta>ons es>mated by different methods overlaid. (A) The 

method developed by [208] segmented the vocal tract only (image from [208]). (B) The method developed by [205] 

segmented the head (dark blue), soG palate (light blue), jaw (green), tongue (yellow), vocal tract (pink), tooth space (red). 

(C) The method developed by [207] segmented the soG palate (yellow), tongue (red) and vocal tract (green) (image from 

[207]). (D) The methods developed by [206] segmented the head (orange), upper lip (blue), hard palate (red), soG palate 

(yellow), jaw (green) and tongue (brown) (image from [206]). 

 

While contours of air-$ssue boundaries between the vocal tract and adjacent 

ar$culators enable analysis of the size and shape of the vocal tract, they only par$ally 

segment ar$culators and consequently do not enable analysis of the size, shape, mo$on or 

posi$on of the ar$culators during speech. Increasing interest in such analysis, by clinicians as 

well as speech science researchers, has recently mo$vated the development of methods to 

fully segment ar$culators in rtMR images of speech [205–207]. These methods all used U-

Net-based FCNs to fully segment the so. palate and tongue in addi$on to other anatomical 

features. One method, presented in chapter 5 of this thesis, used a single U-Net-based FCN 

to es$mate segmenta$ons and then refined these segmenta$ons using a post-processing 

step that removed anatomically impossible regions [205]. This method segmented the 

following six anatomical features: the head (including the upper lip and hard palate), so. 

(A) (B) (C) (D)
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palate, lower lip and jaw, tongue (including the epiglols), vocal tract and lower incisor 

space (see Figure 22B). Another method used several U-Net-based FCNs to segment the 

following three anatomical features: the so. palate, tongue (not including the epiglols) and 

vocal tract (see Figure 22C). This method used a separate FCN to segment each anatomical 

feature. In other work, several methods each using a different U-Net-based FCN were 

developed and then compared [206]. Each of these methods used a single U-Net-based FCN 

to segment the following seven anatomical features: the head (not including the upper lip 

and hard palate), so. palate, lower lip and jaw (including the lower incisor space), tongue 

(not including the epiglols), upper lip and hard palate (see Figure 22D). More specifically, 

the methods used FCNs based on the original U-Net and QuickTumourNet [215], the FCN 

developed by [216] and CEL-Unet [217]. 

In addi$on to the methods to segment rtMR images of speech described above, a 

method to segment 2D sta$c MR images of the vocal tract has recently been developed 

[218]. In contrast to the real-$me speech MR image segmenta$on methods described 

above, this method segmented sagiXal images of the vocal tract as well as midsagiXal 

images. However, similarly to several of the DL-based real-$me speech MR image 

segmenta$on methods, the method used FCNs based on the original U-Net. The method 

segmented three anatomical features (the pharynx, tongue and so. palate) in the images 

using a three-stage approach. In each stage, a different U-Net-based FCN was used to 

segment one anatomical feature in the images. The pharynx, tongue and so. palate were 

segmented in the first, second and third stages respec$vely. 

A key requirement for the development of DL-based segmenta$on methods is the 

availability of GT segmenta$ons. While GT segmenta$ons of ar$culators in rtMR images of 

speech have been created and used to develop methods to segment such images [205–207], 

these segmenta$ons have not been made publicly available. As described in sec$on 3.1.7, 

several real-$me speech MRI datasets have been made publicly available and all these 

datasets include 2D midsagiXal image series [18,19,116–121]. However, none of these 

datasets include ar$culator GT segmenta$ons. The current lack of publicly available 

ar$culator GT segmenta$ons is a barrier to the development of DL-based methods to 

segment (and ul$mately analyse) real-$me speech MR images, in addi$on to preven$ng 

rigorous comparison of segmenta$on methods. 
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3.3.5 LVP MR Image Segmenta&on and Analysis 

As described in sec$on 3.1.9, use of MRI to visualise the LVP is increasing. In addi$on, there 

is increasing interest in measuring aspects of the LVP in MR images [13,25,130–

139,122,140–143,123–129]. In all previous work [13,25,130–139,122,140–143,123–129], 

measurements such as the length and thickness of the LVP were manually obtained from MR 

images. However, obtaining measurements in this way is $me-consuming, requires input by 

specialists and is prone to intra- and inter-observer variability. To avoid the burden of 

manual measurements and to facilitate LVP measurement on a larger scale, there is 

currently an unmet need for automa$c LVP measurement methods. A common approach for 

automa$ng the measurement of anatomical features in biomedical images is to first 

segment the features and then perform measurements using the segmenta$ons. As a first 

step towards developing an automa$c LVP measurement method, in very recent work [17], 

four state-of-the-art DL-based methods were used to segment the LVP and five other 

anatomical features (adenoids, lateral pharyngeal wall, posterior pharyngeal wall, pterygoid 

raphe and so. palate) in 3D T1-weighted MR images. More specifically, two methods based 

on 3D U-Net [177] (one of which was developed using nnU-Net [187]), the Swin UNETR 

method [185] and the 3D UX-Net method [219] were used. Evaluated using the DSC, the 3D 

UX-Net method was found to most accurately segment the LVP and three of the other 

anatomical features. 

GT segmenta$ons of the LVP have been created in previous work [17,144,146], 

however, these segmenta$ons have not been made publicly available. While there are 

publicly available MRI datasets that include 3D images of the vocal tract 

[18,19,117,118,220,221], these datasets either do not include GT segmenta$ons of 

anatomical features [18,19,117,118] or only include GT segmenta$ons of the vocal tract 

[220,221]. The current lack of publicly available LVP GT segmenta$ons is a barrier to the 

development of DL-based methods to segment (and ul$mately quan$fy aspects of) the LVP 

in MR images, in addi$on to preven$ng rigorous comparison of segmenta$on methods. 
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3.4 Medical Image Registra*on 

3.4.1 Introduc&on 

Usually, corresponding regions in different images are not in spa$al alignment. In other 

words, if the images were superposed, corresponding anatomical regions within them would 

not overlap. There are several reasons for this lack of alignment, ranging from differences in 

how the images were acquired to changes in the subject or object that was imaged. For 

example, the images may have been acquired using different modali$es, from different 

views, or the subject or object being imaged may have moved or changed shape (e.g. images 

acquired during different scanning sessions or during organ mo$on such as that due to 

breathing or speech). 

Image registra$on is the process of finding transforma$ons that spa$ally align 

images. It is a key task in the field of medical image analysis and has a wide range of clinical 

applica$ons, including radiotherapy [222] and neuroimaging [223]. Medical image 

registra$on has been an ac$ve area of research for over 30 years and a wide variety of 

methods have been developed for use in different scenarios. Several review ar$cles give an 

overview of these methods [224–229]. 

Image registra$on is usually performed on a pair of images, to find a spa$al 

transforma$on, 𝜑, that describes how pixels or voxels in one of the images should move in 

space to align them with corresponding pixels or voxels in the other image. By conven$on, 

the image that will be transformed is referred to as the moving or source image, 𝐼C, while 

the other image is referred to as the fixed or target image, 𝐼D. 

The transforma$on model (also known as a deforma$on model) of an Image 

registra$on method determines the range of possible transforma$ons 𝜑 that can be applied 

to 𝐼C. Rigid models allow transla$ons and rota$ons, and affine models allow transla$ons, 

rota$ons, shearing and scaling. These models can be compactly described using a single 

matrix. However, not all transforma$ons can be described using transla$ons, rota$ons, 

shearing and scaling. Instead, non-linear (also known as deformable) models are used to 

describe these more complex transforma$ons. These models are usually defined by a dense 

field of vectors that describe either how each pixel or voxel in 𝐼C should move in space to 

align it with the corresponding pixel or voxel in 𝐼D or how each point in a grid of control 
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points should move in space. Examples of the different types of transforma$ons are shown 

in Figure 23. 

 
Figure 23: Examples of different types of transforma>ons and their effect on an image (modified from [230]). 

Finding transforma$ons that align corresponding regions in medical images can be 

useful for three main reasons. First, they can enable the fusion of informa$on contained in 

different images, which is useful for clinical applica$ons such as image-guided interven$ons 

[231] and radiotherapy treatment planning [232]. Second, they can quan$ta$vely describe 

differences or changes in the shapes of anatomical features in images, thus allowing 

quan$ta$ve analysis of shape variability within and between popula$ons [233]. Third, they 

can quan$ta$vely describe changes in the posi$ons of anatomical features in images, thus 

allowing es$ma$on of the mo$on of these features [233–235]. 

 

3.4.2 Tradi&onal Registra&on Methods 

Tradi$onal registra$on methods (also known as classical registra$on methods) find an 

op$mal spa$al transforma$on, 𝜑v , by solving an op$misa$on problem. In other words, they 

Original image

Image following transformation

Linear transformations
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itera$vely modify 𝜑 un$l it minimises the value of a cost func$on (also known as an 

objec$ve func$on), 𝐶(𝐼D , 𝐼C, 𝜑): 

 

𝜑v = argmin
E

𝐶(𝐼D , 𝐼C, 𝜑)                    (15) 

 

Usually, 𝐶(𝐼D , 𝐼C, 𝜑) consists of two terms: one to quan$fy the similarity between 𝐼D and the 

moving image transformed according to 𝜑, 𝐼C ∘ 𝜑; and another to regularise 𝜑:  

 

𝐶x𝐼D , 𝐼C, 𝜑y = 𝑀x𝐼D , 𝐼C ∘ 𝜑y + 𝑅(𝜑)                   (16) 

 

𝑀x𝐼D , 𝐼C ∘ 𝜑y is o.en referred to as the matching criterion or similarity metric. Commonly 

used matching criteria include cross-correla$on (𝐶𝐶), mean squared error (𝑀𝑆𝐸) and 

mutual informa$on (𝑀𝐼) [224–227]. The choice of matching criterion usually depends on 

whether the images are mono- or mul$-modal. 𝑀𝑆𝐸 and 𝐶𝐶 are favoured in mono-modal 

image registra$on, as these criteria assume iden$ty and linear mappings between the pixel 

or voxel intensi$es in the images. 𝑀𝐼 is favoured in mul$-modal registra$on, as it is robust 

even when there are complex nonlinear mappings between the intensi$es. 

The purpose of 𝑅(𝜑) is to encourage 𝜑 to have certain desirable proper$es, usually 

being spa$ally smooth and con$nuous as these proper$es are o.en required for 

anatomically plausible deforma$on fields. A commonly used 𝑅(𝜑) constrains the second 

deriva$ves of 𝜑 to encourage spa$ally smooth and con$nuous 𝜑 [236,237]: 
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where 𝐾 is the number of pixels in the image. 

Mathema$cally, image registra$on is challenging problem as there are many 

different spa$al transforma$ons that can align corresponding pixels or voxels in a pair of 

images. Regularising 𝜑  aims to make the problem easier to solve by penalising solu$ons 

that do not meet certain criteria, such as being smooth and con$nuous, as specified by the 

regularisa$on term. 
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Many different types of tradi$onal registra$on methods have been developed and 

used to register a wide variety of medical images. Several review ar$cles give an overview of 

these methods [224–227]. A popular rigid registra$on method is the block-matching method 

[238], while popular nonlinear registra$on methods include free-form deforma$ons (FFDs) 

[236], demons [239] and their extensions such as diffeomorphic demons [240] and 

symmetric image normalisa$on (SyN) [223]. 

Implementa$ons of several of these popular methods are publicly available. For 

example, Ni.yReg [237,241] implements the block-matching method and FFDs, MATLAB 

(MathWorks, Na$ck, MA) implements demons and ITK [242] implements FFDs, SyN and 

demons. These implementa$ons facilitate the adapta$on and op$misa$on of the methods 

to new applica$ons. 

While a large number of mono- and mul$-modal tradi$onal registra$on methods 

have been developed and some of these translated into clinical prac$ce [222], these 

methods register images in an itera$ve and therefore $me-consuming way, preven$ng their 

use in clinical applica$ons requiring near-real-$me registra$on. This limita$on has mo$vated 

the image registra$on community to explore alterna$ve non-itera$ve ways to perform 

image registra$on. 

 

3.4.3 Deep-Learning-Based Registra&on Methods 

Recently, inspired by the successes of DL-based methods in other medical image analysis 

tasks, researchers have developed DL-based methods for medical image registra$on 

[228,229,251–254,243–250]. Two recent review ar$cles give an overview of these methods 

[228,229]. The latest methods [243,244,253,254,245–252] are nonlinear registra$on 

methods that consist of CNNs (introduced in sec$on 3.2.6) for es$ma$ng deforma$on fields 

between images and spa$al transformers [255] for transforming images and/or 

segmenta$ons according to the es$mated deforma$on fields. These methods have achieved 

state-of-the-art accuracy in the registra$on of MR images of organs including the heart 

[243,244,247,251,253] and brain [245,246,248–250,252]. 

The latest DL-based nonlinear registra$on methods are unsupervised [243–246] or 

weakly-supervised [245–249,251–254] as, during their training, the deforma$on fields they 

es$mate are not compared with GT deforma$on fields. The main mo$va$on for avoiding the 
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use of GT deforma$on fields in training is that these are rarely available and, if not 

impossible, the process to obtain these fields is $me-consuming and prone to inaccuracies. 

While images with GT deforma$on fields can be synthesised, the key challenges of this 

approach are synthesising images with a realis$c appearance and synthesising realis$c 

deforma$on fields. 

Unsupervised methods are trained using images only. The loss func$ons of the latest 

unsupervised methods are inspired by the cost func$ons of tradi$onal registra$on methods 

and typically consist of two terms: the matching criterion, 𝑀x𝐼D , 𝐼C ∘ 𝜑y that quan$fies the 

similarity between 𝐼D and 𝐼C ∘ 𝜑, and the regularisa$on term, 𝑅(𝜑), which regularises the 

deforma$on field to ensure it has desirable proper$es such as being spa$ally smooth and 

con$nuous. The equa$on for a typical loss func$on is therefore: 

 

𝐿FG?FH = 𝑀x𝐼D , 𝐼C ∘ 𝜑y + 𝜖𝑅(𝜃)                   (18) 

 

where 𝜖 is a scalar constant. Similarly to tradi$onal registra$on methods, commonly used 

matching criteria include 𝐶𝐶 [243–245,250,251] and 𝑀𝑆𝐸 [245,247–249,252]. An overview 

of how an unsupervised registra$on method is trained is shown in Figure 24. 

Weakly-supervised methods are trained using images and addi$onal informa$on 

such as surfaces [246] or segmenta$ons [245,247–250,252–254]. The loss func$ons of these 

methods therefore typically consist of the two terms in equa$on (18) and an addi$onal 

term. Usually, this addi$onal term quan$fies the overlap between corresponding regions in 

the segmenta$ons or surfaces. Commonly used terms to quan$fy this overlap include the 

DSC [245,249,250,252–254] and cross entropy [247,248] (both introduced in sec$on 3.3.2). 

An overview of how an unsupervised registra$on method is trained is shown in Figure 24. 

Implementa$ons of several state-of-the-art DL-based nonlinear registra$on methods 

are publicly available [245–249,251]. 
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Figure 24: An overview of VoxelMorph [245], a deep-learning-based nonlinear registra>on method that can be trained in 

either an unsupervised or weakly-supervised manner. The method consists of a convolu>onal neural network (𝑔!) to 

es>mate deforma>on fields that align images and a spa>al transformer to warp images (and segmenta>ons during weakly-

supervised training) according to the deforma>on fields. Only images are used as inputs to the network. During 

unsupervised training of the network, the loss func>on consists of two terms: 𝐿"#$ to quan>fy the similarity between the 

appearance of the moved and fixed images, and 𝐿"$%%&' to constrain the. During weakly-supervised training, the loss 

func>on includes an addi>onal term, 𝐿"(), that quan>fies the overlap between the moved segmenta>ons and the fixed 

image segmenta>ons. 

3.4.4 Segmenta&on-Informed Registra&on Methods 

Registra$on and segmenta$on can be related tasks, and there is increasing evidence that 

the performance of registra$on methods is improved if segmenta$on informa$on is used in 

the registra$on process [245,247–254,256]. Such informa$on is typically included in the 

training of DL-based nonlinear registra$on methods by adding region-overlap-based terms 

such as the DSC to their loss func$ons. Some methods, such as VoxelMorph [245] and joint 

registra$on and segmenta$on methods [247–250,252,257,258], only use segmenta$ons 

during training, as shown in Figure 24, while others also use segmenta$ons during 

deployment [251,253,254,256], as shown in Figure 26. VoxelMorph [245] has been used to 
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register 3D MR images of the brain and performed this with an accuracy comparable to 

state-of-the-art tradi$onal registra$on methods while reducing the computa$on $me from 

hours to minutes on a central processing unit (CPU) and to under one second on a graphics 

processing unit (GPU) [245]. 

Compared with methods such as VoxelMorph, the methods that use segmenta$on 

during both training and deployment all include segmenta$on informa$on in the 

registra$on process in one of two addi$onal ways. The first approach is to use 

segmenta$ons to modify the appearance of images in order to op$mise them for the 

registra$on task [251,253,256]. In this approach, images are modified before being used as 

inputs to the registra$on CNN either by mul$plying them by binary masks [251,253], as 

shown in Figure 25, or by using a fully convolu$onal image transformer network whose loss 

func$on includes a region-overlap-based term [256]. The second approach uses 

segmenta$ons as well as images as inputs to the registra$on CNN [254], as shown in Figure 

26. The ra$onale for using segmenta$ons as inputs, even if these are es$mates rather than 

ground truths, is that they provide informa$on about the posi$ons of anatomical features in 

the images and therefore help the registra$on CNN to es$mate more accurate deforma$on 

fields. To enable their deployment when fixed and moving image segmenta$ons are not 

available, the frameworks proposed in [251,254] all include automated segmenta$on 

methods. 

Implementa$ons of several segmenta$on-informed DL-based nonlinear registra$on 

methods are publicly available [245,247–249,251]. 
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Figure 25: An overview of the deep-learning-based nonlinear registra>on method developed by [253]. The method is both 

segmenta>on informed and discon>nuity preserving. The method consists of the following steps. First, the input images are 

mul>plied by binary masks to create mul>ple single-region versions of the images. These versions of the images are then 

used as inputs to U-Net-based FCNs to es>mate region-specific velocity fields. Next, the velocity fields are converted into 

deforma>on fields, mul>plied by binary masks to introduce discon>nui>es and then linearly combined to create an overall 

deforma>on field. Finally, a spa>al transformer is used to warp the moving image according to the overall deforma>on 

field. 

 
Figure 26: An overview of the deep-learning-based nonlinear registra>on method developed by [254]. The segmenta>on-

informed method uses a convolu>onal neural network (CNN) to es>mate deforma>on fields that align ultrasound (US) 

images to magne>c resonance (MR) images. Images and segmenta>ons are used as inputs to the CNN during both training 

and deployment. Addi>onal CNNs are required to es>mate segmenta>ons for the images. DSC: Dice coefficient, DDF: dense 

displacement field. 
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3.4.5 Discon&nuity-Preserving Registra&on Methods 

Most nonlinear registra$on methods, both tradi$onal and DL-based, feature regularisa$on 

terms that aim to ensure that the es$mated deforma$on fields are smooth and con$nuous. 

However, such fields cannot accurately capture certain types of mo$on such as organs 

sliding past each other or organs coming into contact and then separa$ng from each other. 

Instead, deforma$on fields with discon$nui$es are required to capture these types of 

mo$on. While several tradi$onal methods [235,259–265] have been developed to capture 

the former type of mo$on (i.e. sliding mo$on), only one of these [261] can capture the laXer 

type (i.e. changes in organ contact). Since during speech the ar$culators rou$nely come into 

contact and then separate from each other, this type of method would be par$cularly 

suitable for capturing their mo$on. The method, inspired by the extended finite element 

method [266], extended the FFD method by introducing an addi$onal term to the FFD B-

spline basis func$ons to enable them to es$mate more realis$c deforma$ons at 

discon$nui$es. The method was segmenta$on-informed: it required informa$on about the 

loca$on of discon$nui$es in 𝑓 to be provided in the form of binary masks. The method was 

used to register 4D computed tomography (CT) images of the lungs and liver achieved this 

more accurately than other state-of-the-art methods including those developed by 

[235,259,260,263,264]. However, unfortunately there is no publicly available 

implementa$on of the method developed by [261]. 

Two DL-based methods have been developed to es$mate deforma$on fields with 

discon$nui$es [253,267]. The first method [267], consis$ng of a U-Net-based FCN to 

es$mate deforma$on fields to align pairs of images, was trained in an unsupervised manner 

using a loss func$on that included a regularisa$on term to preserve discon$nui$es. 

However, this regularisa$on term was designed to capture sliding mo$on only. The other 

method [253], an overview of which is shown in Figure 25, used separate U-Net-based FCNs 

to es$mate deforma$on fields for different regions of the input images, and then used 

segmenta$ons to create discon$nui$es in these fields before combining them into an overall 

displacement field. It was designed to capture cardiac mo$on and its suitability for capturing 

mo$on where organs come into contact and then separate from each other has not yet 

been inves$gated. However, there is currently no publicly available implementa$on of the 

method. 
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Figure 27: (A) Registra>on of consecu>ve frames in a series of two-dimensional real->me magne>c resonance images of 

speech. (B) Registra>on of the midsagi3al slice of a three-dimensional image of the vocal tract to a two-dimensional real-

>me magne>c resonance image of speech. 𝜑 indicates the deforma>on field required to align the leG-hand image to the 

right-hand image. 

 
3.4.6 Registra&on of Magne&c Resonance Images of the Vocal Tract 

So far, only tradi$onal registra$on methods have been applied to MR images of the vocal 

tract [20,21,69,72,75,196,268–270]. Rigid methods were used to correct for changes in head 

posi$on in series of 2D rtMR images of speech [69,72,75,196], while nonlinear methods 

were used to synthesise rtMR image series of speech [21,268–270], create dynamic 3D 

atlases of the vocal tract during speech [21] and es$mate the speed at which the tongue $p 

moves during speech [20]. More specifically, in [20,21,268–270] nonlinear methods were 

used to determine transforma$ons to align: 

1. Consecu$ve images in series of 2D rtMR images of speech [20,268,269], as shown in 

Figure 27A; 

Frame 1 Frame 2 Frame 3

!!→# !#→$

(A)

(B)

!
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2. Adjacent sagiXal slices in 3D images of the vocal tract acquired during sustained 

phona$on [268]; 

3. Two-dimensional rtMR images of speech from different series [21,270]; 

4. MidsagiXal slices in 3D images of the vocal tract acquired during sustained phona$on 

to 2D rtMR images of speech [268], as shown in Figure 27B. 

Using these transforma$ons, 3D rtMR image series of speech were synthesised [268,270], 

2D rtMR image series of speech were synthesised from single 2D rtMR images of speech 

[269], dynamic 3D atlases of the vocal tract during speech were created [21] and tongue $p 

speeds were es$mated [20]. 

More specifically, the registra$on-based method for es$ma$ng tongue $p speeds, an 

overview of which is shown in Figure 28, consisted of the following steps. First, the nonlinear 

registra$on method described in [271] was used to es$mate deforma$on fields between 

consecu$ve frames in series of 2D rtMR images of speech. Then, a point on the $p of the 

tongue was manually selected in the first image of the series. Next, the posi$on of the point 

in all the other images was es$mated using the deforma$on fields, thus enabling tracking of 

the trajectory of the tongue $p and the calcula$on of tongue $p speeds. Tongue $p speeds 

es$mated using the method were found to be similar to those reported in the literature, 

sugges$ng that registra$on-based methods can accurately es$mate the speed at which 

ar$culators move during speech. 

In terms of the three previous works, the diffeomorphic demons method [240] was 

used to register adjacent sagiXal slices in 3D images of the vocal tract [268], consecu$ve 

frames in 2D rtMR image series of speech [268–270] (see Figure 27A), and midsagiXal slices 

in 3D images to 2D rtMR images of speech [268] (see Figure 27B). In another previous work, 

the FFD method [236] was used to register consecu$ve frames in series of 2D rtMR images 

of speech [21]. 
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Figure 28: An overview of the registra>on-based method proposed by [20] to es>mate tongue >p speeds in series of two-

dimensional magne>c resonance images of speech. 

In three previous works [20,268,269], images where ar$culators were in contact 

were nonlinearly registered to images where they were not and vice versa. However, the 

authors did not evaluate if their chosen registra$on methods captured these changes in 

contact. As explained in sec$on 2.2.3, changes in contact such as those that occur because 

of velopharyngeal closure are clinically In [268], the authors reported that the diffeomorphic 

demons method did not capture ar$culators coming into contact (for example, the lips 

coming into contact). Nevertheless, the authors used the same method in similar 

subsequent work [269]. In [20,269], the authors did not discuss if their chosen registra$on 

methods captured changes in ar$culator contact. As described in sec$on 2.2.3, in clinical 

speech assessment visualisa$on of so. palate mo$on provides informa$on that aids VPI 

treatment decision making. Consequently, a key requirement of mo$on es$ma$on methods 

intended for use in clinical speech assessment is that they accurately capture so. palate 

mo$on, including any velopharyngeal closures that occur. 

 

3.5 Conclusions 

Use of MRI to visualise the vocal tract and ar$culators during speech is increasing. Real-$me 

MRI is the most suitable type of dynamic MRI technique for use in clinical speech 

assessment, as it allows imaging of speech as it occurs and does not require any repe$$ons 

of a speech task. However, a key requirement to facilitate the widespread adop$on of rtMRI 
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techniques in clinical speech assessment is that the techniques should only require standard 

MRI equipment and so.ware. This requirement mo$vated the choice of the dataset 

(described in sec$on 4.1) that was used in the work presented in chapter 5 and chapter 6. 

Use of MRI to visualise the LVP is also increasing. In previous work, T2-weighted 3D 

images of the LVP at 3.0 T using TSE pulse sequences were predominantly acquired. 

However, there is s$ll no consensus on the op$mal contrast for LVP visualisa$on in MR 

images. This lack of consensus mo$vated the op$mal contrast inves$ga$on presented in 

sec$on 4.2.2. 

 There is increasing interest in extrac$ng quan$ta$ve informa$on about ar$culators 

and the LVP from MR images. A common approach to automate the quan$fica$on of 

anatomical features in medical images is to first segment the features and then perform 

quan$fica$on using the segmenta$ons. While many methods to segment air-$ssue 

boundaries between the vocal tract and ar$culators in 2D rtMR images of speech have been 

developed, few methods have been developed to fully segment ar$culators, an important 

first step to enable their quan$fica$on. In addi$on, there is only a single report in the 

literature of methods to segment the LVP in 3D MR images. This lack of methods mo$vated 

the work presented in chapter 5 and chapter 7. 

 In addi$on, there is increasing interest in extrac$ng quan$ta$ve informa$on about 

the mo$on of the so. palate in series of 2D rtMR images of speech. An established way to 

quan$fy mo$on in image series is by using nonlinear registra$on methods to es$mate 

displacement fields between the images. While a nonlinear-registra$on-based method has 

been developed to es$mate tongue $p speed in series of 2D MR images of speech, there are 

no reports in the literature of nonlinear-registra$on-based methods for es$ma$ng the 

mo$on of other ar$culators such as the so. palate. This lack of methods mo$vated the 

work presented in chapter 6. 
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Chapter 4: Materials 
4 Materials 
 
This chapter describes the datasets that were used in the work presented in this thesis. The 

first sec$on describes the real-$me speech MRI datasets and corresponding GT 

segmenta$ons that were used in the work described in chapter 5 and chapter 6, while the 

second sec$on describes the 3D sta$c MR images of the vocal tract and corresponding GT 

segmenta$ons that were used in the work described in chapter 7. 

 

4.1 Real-Time Speech MRI Datasets 

4.1.1 Introduc&on 

As explained in sec$on 3.1.7, use of MRI to visualise the vocal tract and ar$culators during 

speech is increasing due to the growing availability of MRI scanners, the development of 

rtMRI techniques for such visualisa$on, and the unique ability of MRI to non-invasively 

acquire images of any orienta$on without using ionising radia$on [12,27,61]. Real-$me MRI 

is the most suitable type of MRI technique for use in clinical speech assessment, as it allows 

imaging of speech as it occurs and does not require any repe$$ons of a speech task. 

Typically during rtMRI of speech, series of 2D images of a midsagiXal slice of the 

vocal tract are acquired. To accurately capture ar$culator mo$on, imaging at rela$vely high 

spa$o-temporal resolu$ons is required [12]. State-of-the-art real-$me speech MRI 

techniques enable 2D imaging of a single slice at a spa$al resolu$on of <2.4´2.4 mm2 and a 

temporal resolu$on of <20 ms [9,10]. However, these techniques require highly specialised 

MRI equipment and so.ware, namely custom receive coils [10] and/or specialised pulse 

sequences and reconstruc$on methods [9,10], that are not widely available especially in 

clinical prac$ce. These requirements therefore prevent the widespread adop$on of the 

techniques, a limita$on that has mo$vated the development of techniques that only require 

widely available standard MRI equipment and so.ware [11,27,114,115]. Techniques that 

only require standard MRI equipment and so.ware enable 2D imaging at spa$al resolu$ons 

of <2.4´2.4 mm2 and temporal resolu$ons <100ms. While these spa$o-temporal resolu$ons 

are lower than those of state-of-the-art techniques, they are nevertheless sufficient to 
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capture the general mo$on of ar$culators such as the so. palate [12]. A key requirement to 

facilitate the widespread adop$on of rtMRI techniques in clinical speech assessment is that 

the techniques should only require standard MRI equipment and so.ware. This requirement 

mo$vated the choice of the dataset described in this sec$on. 

As explained in sec$on 3.3.3, there is increasing interest in extrac$ng quan$ta$ve 

informa$on about ar$culators and the vocal tract from 2D rtMR images of speech 

[7,14,75,76,84,88,195–198,20,68–74]. More specifically, there is interest in measuring the 

size and shape of the vocal tract [14,68,197,198,70,74–76,84,88,195,196], the size, shape 

and mo$on of the so. palate [72,73,75,84,198], lip mo$on [69,75,84], tongue mo$on 

[20,84] and the distance between the so. palate and the posterior pharyngeal wall 

[7,72,198]. Manual measurement to obtain this informa$on is $me-consuming, requires 

input by specialists and is prone to intra- and inter-observer variability. The increasing 

interest in extrac$ng quan$ta$ve informa$on, in combina$on with the need to avoid 

manual measurement, have mo$vated the development of a range of methods to (semi-

)automa$cally extract this informa$on [15,16,206,207,20,199–205]. Almost all these 

methods are segmenta$on based [15,16,207,199–206]. 

Segmenta$on of medical images is a common first step to enable automa$c 

measurement of anatomical structures. As explained in sec$on 3.3.4, numerous methods 

based on a variety of approaches have been developed to segment rtMR images of speech 

[15,16,207,199–206]. The majority of these methods [15,199–204,208] were designed to 

enable (semi-)automa$c analysis of the size and shape of the vocal tract in the images, an 

analysis of par$cular interest to the speech science community. To enable this analysis, the 

methods created contours of air-$ssue boundaries between the vocal tract and adjacent 

ar$culators. While such contours enable analysis of the size and shape of the vocal tract, 

they only par$ally segment ar$culators and consequently do not enable analysis of the size, 

shape, mo$on or posi$on of the ar$culators during speech. Increasing interest in such 

analysis, by clinicians as well as speech science researchers, has recently mo$vated the 

development of methods to fully segment ar$culators in rtMR images of speech [205–207], 

including the method presented in chapter 5. 

Development and evalua$on of segmenta$on methods requires datasets with 

corresponding GT segmenta$ons. As explained in sec$on 3.3.4, while there are publicly 

available speech MRI datasets [18,19,116–121], none of these include GT segmenta$ons of 
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ar$culators. This requirement, in combina$on with the lack of suitable publicly available MRI 

datasets, mo$vated the crea$on of the GT segmenta$ons described in this sec$on. 

As described in sec$on 2.2.3, visualisa$on of so. palate mo$on provides informa$on 

that aids VPI treatment decision making in clinical speech assessment. Consequently, a key 

requirement of automa$c image quan$fica$on methods intended for use in clinical speech 

assessment is that they accurately capture so. palate mo$on. In par$cular, the methods 

must capture any velopharyngeal closures that occur. To enable evalua$on of the accuracy 

with which methods captured velopharyngeal closures, GT velopharyngeal closure labels 

were created for the datasets described in this sec$on. 

 

Table 1: Imaging parameters used to acquire the two-dimensional real->me magne>c resonance image series. The table 

lists repe>>on >mes (TRs), echo >mes (TEs), sensi>vity encoding (SENSE) factors, number of signal averages (NSAs), water 

fat shiGs (WFSs) and bandwidths (BWs). 

Parameter Value 

TR (ms) 2.0 

TE (ms) 0.9 

Flip angle (°) 15 

Field of view (mm2) 300´230 

SENSE factor 2 

NSA 1 

Actual WFS (pixel) / BW (Hz) 0.134 / 3240.4 

 

4.1.2 Real-&me MR Images of Speech 

Five series of rtMR images of speech acquired in a previous study [272] were used in the 

work described in chapter 5 and 6 of this thesis. The series were of five healthy adult 

volunteers (two females, three males; age range 24-28 years). All volunteers were fluent 

English speakers with no history of speech and language disorders. 

Each volunteer was imaged in a supine posi$on using a 3.0 T TX Achieva MRI scanner 

and a 16-channel neurovascular coil (both Philips Healthcare, Best, Netherlands) while they 

performed the following speech task a single $me: coun$ng from 1 to 10 in English. Images 

of a 10 mm thick mid-sagiXal slice of the head were acquired using a steady-state free 
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precession (SSFP) pulse sequence based on the sequence iden$fied by [11] as being op$mal 

for vocal tract image quality. Example images are shown in Figure 29A. Imaging parameters 

are listed in Table 1. The acquired matrix size and in-plane pixel size were 120´93 and 

2.5´2.45 mm2 respec$vely. However, k-space data were zero padded to a matrix size of 

256´256 by the scanner before being reconstructed, resul$ng in a reconstructed in-plane 

pixel size of 1.17´1.17 mm2. To maximise the signal-to-noise ra$o in the images, par$al 

Fourier was not used. Images were acquired at a temporal resolu$on of 0.1 s and only one 

image series was acquired per volunteer. The volunteers were instructed to perform the 

speech task at a rate which they considered to be normal. Some performed the task faster 

than others and consequently not all series had the same number of images. The series had 

105, 71, 71, 78 and 67 images each (392 images in total). 

 

4.1.3 Velopharyngeal Closure Iden&fica&on 

The number of velopharyngeal closures shown in the rtMR image series had not been 

iden$fied in any previous work. To iden$fy this number, the following steps were taken: 

1. Each image was visually inspected and labelled as either showing contact between 

the so. palate and posterior pharyngeal wall or not showing contact. 

2. Line charts of the labels of each image series were created (an example chart is 

shown in Figure 29E) and visually inspected to determine the number of 

velopharyngeal closures shown in the series. 

It can be challenging to determine if an image shows contact between the so. palate and 

posterior pharyngeal wall, especially if the so. palate is close to the posterior pharyngeal 

wall. To reduce the subjec$vity of the labels, each image was independently labelled by four 

MRI Physicists. Raters one to four respec$vely had four, ten, two and one years of 

experience of rtMRI of speech. All the images were labelled again one month later by rater 

one (the author of this thesis). Intra- and inter-rater agreement was assessed by comparing 

the labels and velopharyngeal closures. In cases where one rater disagreed with the others, 

the majority label was considered to be the GT label. In cases where only two raters agreed, 

raters one and two (those with the most experience of speech MRI) jointly inspected the 

images and then reached a consensus on the labels for these images, similarly to how SLTs 

jointly inspect videofluoroscopy speech image series in clinical prac$ce in the UK. Line charts 
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of the GT labels of each image series were created (an example chart is shown in Figure 29E) 

and visually inspected to determine the number of velopharyngeal closures shown in the 

series. 

 

 
Figure 29: Five consecu>ve images from one of the real->me magne>c resonance image series (A) with ground-truth 

segmenta>ons of anatomical features overlaid (B). The ground-truth segmenta>ons are of the head (dark blue), soG palate 

(light blue), jaw (green), tongue (yellow), vocal tract (pink) and tooth space (red) classes. (C) shows ground-truth 

segmenta>ons only. (D) shows cropped versions of the ground-truth segmenta>ons in (C) with labels indica>ng if the soG 

palate is in contact with the posterior pharyngeal wall. (E) is a line chart of the contact labels. 

 

4.1.4 Ground-Truth Segmenta&on Crea&on 

GT segmenta$ons of anatomical features in the rtMR image series had not been created in 

any previous work. GT segmenta$ons were created by manually labelling pixels in each of 

the images. The segmenta$ons consisted of six classes, each made up of one or more 

anatomical features. There was no overlap between classes: a pixel could not belong to 
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more than one class. For conciseness, the classes were named as follows: head, so. palate, 

jaw, tongue, vocal tract and tooth space. However, the names of the head, jaw and tongue 

classes are simplifica$ons. The head class consisted of all anatomical features superior to or 

posterior to the vocal tract. It therefore included the upper lip, hard palate, brain, skull, 

posterior pharyngeal wall and neck. The jaw class consisted of the lower lips, the so. $ssue 

anterior to and inferior to the tooth space and the so. $ssue inferior to the tongue. The 

tongue class included the epiglols and the hyoid bone. Pixels not labelled as belonging to 

one of the classes were considered to belong to the background. Example GT segmenta$ons 

are shown in Figure 29B. The reasons for including each class in the GT segmenta$ons are 

given in Table 2. 

 

Table 2: Reasons for including each class in the ground-truth segmenta>ons of the real->me magne>c resonance images of 

the vocal tract during speech. 

Class Reason(s) for inclusion 

Head 

Primary: segmentation of the posterior pharyngeal wall would enable 

automatic measurement of the distance between the soft palate and the 

posterior pharyngeal wall 

Secondary: segmentation of the upper lip would enable automatic lip 

motion tracking 

Soft palate 

Segmentation would enable soft palate size, shape, motion and position 

analysis, and also automatic measurement of the distance between the 

soft palate and the posterior pharyngeal wall 

Jaw Segmentation of the lower lip would enable automatic lip motion tracking 

Tongue 
Segmentation would enable tongue size, shape, motion and position 

analysis 

Vocal tract Segmentation would enable vocal tract size and shape analysis 

Tooth space 
Included so that there were no holes in the ground-truth segmentations, 

thus facilitating the post-processing of estimated segmentations 

 

Wherever possible, the boundaries of the classes were chosen to be clear anatomical 

boundaries in order to minimise the subjec$vity of the GT segmenta$ons. Apart from the 
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tooth space class, the majority of the class boundaries were easily dis$nguishable air-$ssue 

boundaries. However, there were no clear anatomical boundaries for some sec$ons of the 

class boundaries. Instead, the following ar$ficial boundaries were devised for these sec$ons. 

The two main goals when devising these boundaries were firstly to include only relevant 

anatomical features and secondly to minimise the subjec$vity of the boundaries. 

The inferior boundary of the head class in the neck was defined as the horizontal line 

parallel to the inferior surface of the intervertebral disc between vertebrae C3 and C4 (see 

blue arrows in Figure 30). This choice was made to exclude the inferior sec$on of the neck in 

the head class as this sec$on was not required for the desired analyses and would have 

otherwise increased the imbalance between the number of pixels in the head class and the 

other classes. 

The posterior boundary of the jaw class was defined as the anterior edge of the 

hyoid bone (see doXed green arrows in Figure 30), while the inferior boundary of the jaw 

class in the neck was defined as the horizontal line intersec$ng the point where the jaw 

meets the neck (see solid green arrows in Figure 30). 

The inferior boundary of the vocal tract class was defined in the same way as that of 

the head class (see pink arrows in Figure 30), and the inferior boundary of the tongue class 

in the neck was defined in the same way as that of the jaw class in the neck (see yellow 

arrows in Figure 30). 

GT segmenta$ons were created by the MRI Physicist with four years of speech MRI 

experience (the author of this thesis), using bespoke so.ware developed in house and 

implemented in MATLAB R2019b (MathWorks, Na$ck, MA). GT segmenta$ons were 

consistent with the GT velopharyngeal closure label for the images: segmenta$ons of the 

so. palate and posterior pharyngeal wall (part of the head class) were in contact for images 

labelled as showing contact and not in contact otherwise. To enable inves$ga$on of intra-

rater agreement and therefore uncertainty in the segmenta$ons, the Physicist created GT 

segmenta$ons again for seven (approximately 10%) randomly chosen images in each series. 

The agreement was quan$fied using two metrics: the DSC and the HD. 
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Figure 30: A real->me magne>c resonance image of speech cropped to only show the vocal tract (A) with ground-truth 

segmenta>ons of anatomical features overlaid (B). The blue arrows point to the inferior surface of the intervertebral disc 

between vertebrae C3 and C4. The do3ed green arrows point to the anterior edge of the hyoid bone, while the solid green 

arrows point to where the neck meets the jaw. The yellow arrows point to the inferior boundary of the tongue class in the 

neck, while the pink arrows point to the inferior boundary of the vocal tract class. 

The process for crea$ng the GT segmenta$ons of an image series was as follows: 

1. Ini8al binary mask crea8on: a series of binary masks of the en$re head were created 

by applying a manually chosen threshold to the image series (see Figure 31). The 

chosen threshold was the minimum integer that resulted in as many of the binary 

masks as possible mee$ng the following criteria: 

a. Minimal noise in the vocal tract (see Figure 32A). 

b. Clear air-$ssue boundaries. 

c. Jaw not divided into two or more regions (see Figure 32B). 

d. Tip of epiglols not ar$ficially in contact with tongue (see Figure 32C). 

No single threshold resulted in all the binary masks mee$ng all the criteria. The 

following itera$ve process was used to iden$fy a suitable threshold: 

a. A threshold was applied to the image series to create a series of binary masks 

of the en$re head. 

b. The series was visually inspected. 

c. If necessary, the threshold was modified and steps (a) and (b) above were 

repeated. 

(A) (B)
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Once a suitable threshold has been iden$fied, holes in the binary mask were 

manually removed (see Figure 31). 

2. Head class GT segmenta8on crea8on: a series binary masks of the head class were 

created by: 

a. Manually defining an approximate outline of the head class in each image 

(see Figure 33A). 

b. Extrac$ng the sec$ons of the ini$al binary mask within the approximate 

outline (see Figure 33B). 

c. Manually refining the extracted binary masks (see Figure 33C). 

3. SoP palate class GT segmenta8on crea8on: a series of binary masks of the so. 

palate class were created by following the same process as in step 2 above. 

4. Jaw class GT segmenta8on crea8on: a series of binary masks of the jaw class were 

created by following the same process as in step 2 above. 

5. Tongue class GT segmenta8on crea8on: a series of binary masks of the tongue class 

were created by following the same process as in step 2 above. 

6. Tooth space class GT segmenta8on crea8on: a series of binary masks of the tooth 

space class were created using the binary masks of the jaw and tongue classes, as 

shown in Figure 34. 

7. Vocal tract class GT segmenta8on crea8on: a series of binary masks of the vocal 

tract class were created using the binary masks of the head, so. palate, jaw, tongue 

and tooth space classes, as shown in Figure 35. 
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Figure 31: A series of real->me magne>c resonance images of speech (A), corresponding binary masks of the en>re head 

created by applying a manually chosen threshold (B), and the binary masks aGer holes in them have been filled (C). 

 

(A)

(C)

…

…
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Figure 32: Pairs of binary masks of the en>re head created from the same images but using different thresholds, one 

suitable and the other unsuitable. In row (A), the threshold used to create the leG-hand mask is too low, resul>ng in noise in 

the vocal tract (indicated by blue arrow). In row (B), the threshold used to create the right-hand mask is too high, resul>ng 

in the jaw being divided into two regions. In row (C), the threshold used to create the leG-hand mask is too low, resul>ng in 

the >p of the epigloes being ar>ficially in contact with the tongue. 

(A)

(B)

(C)
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Figure 33: A series of real->me magne>c resonance images of speech with an approximate manually drawn outline of the 

head class overlaid in blue (A), with the sec>on of the en>re head binary mask (see Figure 31B) contained in the 

approximate outline overlaid (B), with the manually refined version of the binary mask in (B) overlaid (C). (D) shows the 

binary mask in (C) only. 

(A)

(B)

(C)

(D)

…

…

…

…
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Figure 34: The process to create a binary mask of the tooth space class. (A) A real->me magne>c resonance image with a 

jaw and tongue class binary masks overlaid in blue. (B)The same binary mask except with the tooth space region manually 

filled. (C) The same image with the tooth space class binary mask overlaid. The binary mask in (C) was created by 

subtrac>ng the binary mask in (A) from the binary mask in (B). 

 

 
Figure 35: The process to create a binary mask of the vocal tract class. (A) A binary mask of the head, soG palate, jaw, 

tongue and tooth space classes combined. (B) The same binary mask except with the vocal tract region manually added to 

it. (C) A real->me magne>c resonance image with the vocal tract binary mask overlaid in blue. The binary mask in (C) was 

created by subtrac>ng the binary mask in (A) from the binary mask in (B). 

 

4.1.5 Results 

4.1.5.1 Velopharyngeal Closure Iden6fica6on 

The GT labels of each image series are shown in Figure 36. Of the 392 images, 230 (58.7%) 

images were labelled as showing contact between the so. palate and posterior pharyngeal 

wall, while 162 (41.3%) were labelled as not showing contact. As shown in Figure 37, in 

three image series two thirds of the images were labelled as showing contact, while in the 

other two image series approximately half of the images were labelled as showing contact. 

(A) (B) (C)

(A) (B) (C)
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The GT numbers of velopharyngeal closures shown in the image series are listed in Table 3. 

In total, 30 velopharyngeal closures were shown in the image series. 

 

 
Figure 36: The ground-truth labels of the five real->me magne>c resonance image series. Each line chart represents a 

different series and has different x-axes. Each peak in a line chart indicates a velopharyngeal closure. 
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Figure 37: The number of real->me magne>c resonance images showing contact between the soG palate and posterior 

pharyngeal wall, complementary informa>on to that provided in Figure 36. 

 

Table 3: The number of velopharyngeal closures shown in the image series and Figure 36. 

Subject Velopharyngeal closures 

1 8 

2 4 

3 4 

4 6 

5 8 

 

As shown in Figure 38, there was intra-rater agreement in the labels of 385 of 392 

(98.2%) images and in all 30 velopharyngeal closures. In three image series, intra-rater 

agreement in the labels was 100% (220 of 220) images, while in the other two image series 

intra-rater agreement in the labels was 97.0% (65 of 67) and 95.2% (100 of 105) of images 

respec$vely. All label differences were for images at the start or end of a velopharyngeal 

closure, where the so. palate is close to or in contact with the posterior pharyngeal wall. 
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Such discrepancies affected the dura$ons of velopharyngeal closures but not the number of 

velopharyngeal closures. 

There was complete inter-rater agreement in the labels of 357 of 392 (91.1%) images and in 

25 of 30 (83.3%) velopharyngeal closures. All label differences were for images where the 

so. palate was close to or in contact with the posterior pharyngeal wall. In two image series, 

there was complete inter-rater agreement in all 12 velopharyngeal closures. In the other 

three image series, there was complete inter-rater agreement in 5 of 6 (83.3%), 3 of 4 

(75.0%) and 5 of 8 (62.5%) velopharyngeal closures respec$vely. As shown in Figure 38, 

raters one and two (the two raters with the most experience of rtMRI of speech) had the 

highest inter-rater agreement, with agreement in the labels of 384 of 392 (98.0%) images 

and in all 30 velopharyngeal closures. There was inter-rater agreement between at least 

three raters in the labels of 385 of 392 (98.2%) images and in all 30 velopharyngeal closures. 

Figure 39 shows images where inter-rater agreement in labels was lower. In all five cases 

where there was inter-rater disagreement in a velopharyngeal closure, one rater considered 

there to be two closures instead of one. 

 
Figure 38: The intra- and inter-rater agreement in the labels of the 392 images (A) and in the velopharyngeal closures (B). 

 

(A) (B)
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Figure 39: Real->me magne>c resonance images cropped to only show the vocal tract (A) and soG palate (B) where only 

two out of four raters agreed on the label. 

4.1.5.2 Ground-Truth Segmenta6on Crea6on 

GT segmenta$ons for one of the image series are shown in Figure 29. In terms of number of 

pixels, as shown in Figure 40, the largest class was the head class with a median of 23633 

pixels per segmenta$on, while the smallest class was the tooth space class with a median of 

164 pixels per segmenta$on, closely followed by the so. palate class with a median of 277 

pixels per segmenta$on. 

 

 
Figure 40: The number of pixels of each class per ground-truth segmenta>on. (B) is iden>cal to (A) except the y-axis 

maximum value has been reduced to 2750. 

 

(A)

(B)

(A) (B)
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Quan$fied using the DSC and HD, the median intra-rater agreement was 0.97 and 1.4 

pixels respec$vely. As shown in Figure 41, inter-rater agreement was highest for 

segmenta$ons of the head class with a median DSC of 1.0 and a median HD of 1.2 pixels, 

while inter-rater agreement was lowest for segmenta$ons of the tooth space and so. palate 

classes, with median DSCs of 0.95 and 0.97 respec$vely, and a median HD of 1.4 pixels. 

Segmenta$ons of the so. palate class had the largest range in DSC, closely followed by 

segmenta$ons of the tooth space. A small number of segmenta$ons of the tongue and vocal 

tract classes had larger HDs. Two of these larger distances were caused by the epiglols 

being included in one of the segmenta$ons of the tongue class but not the other (see Figure 

42). The other larger distance was caused by contact between the head and tongue classes 

in one of the segmenta$ons but not in the other (see Figure 42). 

As shown in Figure 43, intra-rater agreement was consistently lower in the 

segmenta$ons of images showing contact between the so. palate and posterior pharyngeal 

wall, across all classes and metrics. Figure 44 shows images where intra-rater agreement in 

segmenta$ons was low. 

 

 
Figure 41: The intra-rater agreement in the ground-truth segmenta>ons, evaluated using the Dice coefficient (A) and 

general Hausdorff distance (B). 

(A) (B)
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Figure 42: Pairs of ground-truth segmenta>ons with large intra-rater differences. In rows (A) and (B), the vocal tract 

between the epigloes and the anterior surface of the tongue has been included in the tongue class in the leG-hand 

segmenta>on (first a3empt) but not in the right-hand one (second a3empt). In row (C), the head and tongue classes are in 

contact in the right-hand segmenta>on but not in the leG-hand one. The ground-truth segmenta>ons are of the head (dark 

blue), soG palate (light blue), jaw (green), tongue (yellow), vocal tract (pink) and tooth space (red) classes. 

(A)

(B)

(C)
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Figure 43: The intra-rater agreement in the ground-truth segmenta>ons, evaluated using the Dice coefficient (A) and 
general Hausdorff distance (B), and grouped according to whether there is contact between the soG palate and posterior 
pharyngeal wall or not. 

 

 
Figure 44: Real->me magne>c resonance images cropped to only show the vocal tract (A) and soG palate (B) whose ground-

truth segmenta>ons had lower intra-rater agreement. The images show examples (indicated by white arrows) of the three 

main image quality related challenges faced by the MRI Physicist while crea>ng the segmenta>ons. In the leG-hand image 

pair, there is fluid between the soG palate and posterior pharyngeal wall. In the central image pair, there is fluid in the vocal 

tract and also blurring of the soG palate-vocal tract boundary as a result of mo>on.  In the right-hand image pair, the 

boundary between the soG palate and posterior pharyngeal wall is unclear. 

 

(A)

(B)
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4.1.6 Discussion 

4.1.6.1 Velopharyngeal Closure Iden6fica6on 

Labelling each image as either showing contact between the so. palate and posterior 

pharyngeal wall or not enabled iden$fica$on of the number of velopharyngeal closures 

shown in the image series. Labelling of the images by mul$ple raters gave an indica$on of 

the subjec$vity of the labels, and enabled this subjec$vity to be reduced. Complete inter-

rater agreement in the labels of 357 of 392 (91.1%) images demonstrates that the majority 

of the images clearly showed if there was contact or not. In all 35 images whose labels had 

lower intra-rater agreement, the so. palate was very close to the posterior pharyngeal wall, 

making it challenging to dis$nguish if there was contact or not. In 28 (80%) of these images, 

there was intra-rater agreement between the majority of the raters and therefore a clear 

consensus on what the labels for these images should be. The other seven images whose 

labels had the lowest intra-rater agreement were all at the start or end of a velopharyngeal 

closure. As a result, they only affected the dura$on of velopharyngeal closures and not the 

number of velopharyngeal closures. This suggests that there is minimal subjec$vity in the 

iden$fied number of velopharyngeal closures. Comparison of inter-rater agreement in image 

labels with other studies is not possible as there is currently no published work repor$ng 

such agreement. 

 The number of velopharyngeal closures shown in the image series ranged from four 

to eight. This range is consistent with the expected number of velopharyngeal closures for 

the speech task that the volunteers performed: between four and nine, depending on the 

rate of speech. Assuming normal speech, the start and end points of the velopharyngeal 

closures were also consistent with the expected points for the speech task: new 

velopharyngeal closures should always start when the volunteer begins saying “one”, “two”, 

“eight” and “ten”, and always end while the volunteer is saying “one”, “seven”, “nine” and 

“ten” as these four words contain the speech sound [n] whose produc$on requires no 

contact between the so. palate and posterior pharyngeal wall. Depending on the rate of 

speech, there can be a velopharyngeal closure during produc$on of each of the following 

numbers in the speech task: “two”, “three”, “four”, “five”, “six” and “seven”. 
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4.1.6.2 Ground-Truth Segmenta6on Crea6on 

GT segmenta$ons of six regions in rtMR images of the vocal tract during speech were 

successfully created. The six regions were chosen because of their relevance to speech 

scien$sts as well as clinicians assessing speech. Par$cularly important for this study, 

segmenta$ons of the so. palate and posterior pharyngeal wall (part of the head class) were 

created. Automa$c segmenta$on of these anatomical features would enable automa$c 

measurement of the distance between the so. palate and posterior pharyngeal wall as well 

as automa$c so. palate shape and size analyses. These are measurements and analyses that 

clinicians are increasingly interested in performing to inves$gate if these can inform 

treatment decisions. 

 In every segmenta$on, the head class has a much larger number of pixels than all the 

other classes combined. This difference in the number of pixels should be a key 

considera$on when developing DL-based methods to segment images, as the performance 

of these methods can be detrimentally affected by such differences. Strategies to 

compensate for this difference will therefore need to be found. A strategy to compensate for 

this difference was used in the work presented in chapter 5 of this thesis. 

Intra-rater agreement in segmenta$ons, quan$fied using the DSC, was highest for 

segmenta$ons of the head class, and lowest for segmenta$ons of the so. palate and tooth 

space classes. This result is unsurprising as the head class has a much larger number of 

pixels than the so. palate and tooth space classes, therefore the effect of a pixel label 

discrepancy on the DSC is much larger for the laXer two classes. Intra-rater agreement, 

quan$fied using the HD, was similar for all three classes with a median value of 1.4 pixels. 

Since the HD measures discrepancies between boundaries, this result suggests that the class 

boundaries including the ar$ficial ones such as the inferior boundary of the head class in the 

neck (see Figure 30) were usually reproducible to within a pixel or two. 

The Physicist faced three main image quality related challenges while crea$ng the 

segmenta$ons, examples of which are shown in Figure 44. First, in images in which the so. 

palate and posterior pharyngeal wall were in contact, there was o.en no clear boundary 

between these two anatomical features. Second, dis$nguishing between fluid and so. $ssue 

in the vocal tract was challenging as both have similar intensi$es in the images. The third 

challenge was the blurring of air-$ssue boundaries in the images as a result of ar$culator 

mo$on during image acquisi$on. In images with these issues, the Physicist used knowledge 
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about the shape and posi$on of the so. palate and posterior pharyngeal wall in earlier 

images to help to infer the boundaries. These three challenges are likely to be the reason 

why intra-rater agreement was consistently lower in segmenta$ons of images showing 

contact between the so. palate and posterior pharyngeal wall, across all classes and 

metrics. 

A few segmenta$ons of the tongue and vocal tract classes had much larger HDs than 

average. These larger distances highlight two limita$ons of the segmenta$ons. First, that the 

epiglols was not always accurately segmented. Second, that contact between the tongue 

and head classes was not always consistent in the segmenta$ons. These limita$ons need not 

be addressed for the work presented in chapters 5 and 6, as for these experiments the main 

requirement is that the segmenta$ons of the so. palate and posterior pharyngeal wall are 

as accurate as possible. However, these limita$ons should be addressed for work whose 

main requirement is that segmenta$ons of the tongue are as accurate as possible. 

Comparison of intra-rater agreement in segmenta$ons with other studies is not 

possible as there is currently no published work repor$ng such agreement. 

Crea$on of the dataset is an important step towards addressing the unmet need for 

automa$c methods to quan$fy the vocal tract and ar$culators in 2D rtMR images of the 

vocal tract, as it allows inves$ga$on of the feasibility of developing vocal tract and 

ar$culator segmenta$on methods. While the dataset is appropriate for demonstra$ng the 

feasibility of automa$c vocal tract and ar$culator segmenta$on, further work is required to 

address two limita$ons of the dataset. 

First, a larger and more diverse dataset, both in terms of subjects and image 

acquisi$on, and one that is more representa$ve of the target pa$ent popula$on is required 

to develop methods suitable for clinical prac$ce, especially given that DL-based methods 

usually perform poorly on data with different characteris$cs to the datasets used to train 

them. More specifically, since the target pa$ent popula$on primarily consists of children, 

the dataset must contain images of children. In addi$on, since velopharyngeal closure does 

not occur as expected in some of the speech of pa$ents with VPI, the dataset must contain 

image series where velopharyngeal closure does not occur as well as image series where it 

does. The dataset must also be balanced in terms of gender and ethnicity, to avoid 

developing biased quan$fica$on methods. Regarding image acquisi$on parameters, the 

dataset used in this work consisted only of images acquired using a single MRI scanner and 
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pulse sequence. Consequently, all the images had a very similar image contrast. Again, while 

using such a dataset is appropriate for demonstra$ng the feasibility of segmen$ng 2D rtMR 

images of the vocal tract during speech, a range of different pulse sequences have been 

proposed for dynamic 2D imaging of the vocal tract during speech [12,27,61]. A dataset with 

images acquired using many different MRI scanners and pulse sequences is therefore 

required to ensure that methods developed using the dataset are generalisable and perform 

well on images from different sources. While there are publicly available 2D rtMR image sets 

of the vocal tract during speech [18,19], these do not have corresponding GT segmenta$ons 

thus limi$ng their use for training supervised DL-based segmenta$on methods. 

 

4.1.7 Conclusions 

GT labels and segmenta$ons were successfully created for five series of 2D rtMR images of 

speech. Such segmenta$ons are a prerequisite for the development of DL-based methods to 

analyse this type of image. 

The GT labels enabled iden$fica$on of the number of velopharyngeal closures shown 

in the series. Inter-rater agreement between labels was high in almost all the images. The 

seven images where inter-rater agreement was lower were all at the start or end of a 

velopharyngeal closure. As a result, they only affected the dura$on of velopharyngeal 

closures and not the number of velopharyngeal closures. 

Intra-rater agreement between the GT segmenta$ons was also high, sugges$ng that 

the process described in sec$on 4.1.4 results in reproducible crea$on of segmenta$ons. One 

class in the segmenta$ons has a much larger number of pixels than all the others. This 

imbalance in the number of pixels should be taken into considera$on when developing DL-

based methods to analyse the images, as otherwise the performance of the methods may 

be compromised. 

 In the next chapter, work in which the rtMR images and their corresponding labels 

and GT segmenta$ons were used for the development of an automated DL-based 

segmenta$on tool is presented. 
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4.2 3D Vocal Tract MRI Dataset 

4.2.1 Introduc-on 

As explained in sec$on 3.1.9, use of MRI to visualise the LVP is increasing due to the growing 

availability of MRI scanners and the unique ability of MRI to non-invasively acquire 3D 

images with excellent so. $ssue contrast and a high spa$al resolu$on. As the LVP and the 

so. $ssue that surrounds it have very similar $ssue proper$es, a challenge when imaging 

the LVP is ensuring that the image contrast between the LVP and the surrounding so. $ssue 

is sufficient to discriminate between the two. Previous work has predominantly acquired T2-

weighted 3D images of the LVP at 3.0 T using TSE pulse sequences [25,126,139,140,127–

129,131,134,136–138]. In addi$on, a recommenda$on to acquire T2-weighted images for 

assessing the LVP in clinical prac$ce was recently made [8]. However, the results of recent 

work which inves$gated the op$mal image contrast for iden$fica$on of LVP landmarks in 3D 

images acquired at 1.5 T suggest that T1- or PD-weighted images may enable more accurate 

iden$fica$on [13]. However, the literature contains no reports of equivalent inves$ga$ons 

into the op$mal image contrast for 3D LVP visualisa$on at 3.0 T. This lack of consensus on 

the op$mal MR image contrast for 3D LVP visualisa$on at 3.0 T mo$vated the image 

op$misa$on experiment presented in this sec$on. 

 To verify the op$mal image contrast for LVP visualisa$on, a dataset with the 

following proper$es is required. First, to increase the generalisability of the results, the 

dataset should consist of images of mul$ple subjects. Second, to enable comparison of 

different image contrasts, the dataset should consist of mul$ple images per subject. For 

each subject, these images should be acquired using the same set of pulse sequences. Third, 

for fair comparison between images acquired using different pulse sequences, all images 

should have the same spa$al resolu$on. While a dataset with these proper$es has been 

acquired [13], unfortunately this dataset is not publicly available. There are publicly available 

MRI datasets that include 3D images of the vocal tract [18,19,117,118,220,221], however, 

these datasets were not intended to be used for verifying the op$mal image contrast for LVP 

visualisa$on and therefore do not have the second and third proper$es that are required for 

this purpose. Consequently, a new dataset is required to enable verifica$on of the op$mal 

contrast for LVP visualisa$on. 
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As explained in sec$on 3.3.5, there is increasing interest in measuring aspects of the 

LVP in MR images [13,25,130–139,122,140–143,123–129]. In all previous work [13,25,130–

139,122,140–143,123–129], measurements such as the length and thickness of the LVP 

were manually obtained from MR images. However, obtaining measurements in this way is 

$me-consuming, requires input by specialists and is prone to intra- and inter-observer 

variability. To avoid the burden of manual measurements and to facilitate LVP measurement 

on a larger scale, there is currently an unmet need for automa$c LVP measurement 

methods. A common approach for automa$ng the measurement of anatomical features in 

biomedical images is to first segment the features and then perform measurements using 

the segmenta$ons. As a first step towards developing an automa$c LVP measurement 

method, in very recent work [17], four state-of-the-art DL-based methods were used to 

segment the LVP in 3D T1-weighted MR images. However, there are no reports in the 

literature of any methods for segmen$ng the LVP in 3D T2-weighted MR images. In order to 

develop such a method GT segmenta$ons are required. 

GT segmenta$ons of the LVP have been created in previous work [17,144,146], 

however, these segmenta$ons have not been made publicly available. While there are 

publicly available MRI datasets that include 3D images of the vocal tract 

[18,19,117,118,220,221], these datasets either do not include GT segmenta$ons of 

anatomical features [18,19,117,118] or only include GT segmenta$ons of the vocal tract 

[220,221]. The current lack of publicly available LVP GT segmenta$ons is a barrier to the 

development of DL-based methods to segment (and ul$mately quan$fy aspects of) the LVP 

in MR images, in addi$on to preven$ng rigorous comparison of segmenta$on methods. 

 The work presented in this sec$on makes two main contribu$ons. First, via an image 

op$misa$on experiment, it provides new evidence on the op$mal image contrast for LVP 

visualisa$on in 3D MR images acquired at 3.0 T. Second, it creates the first dataset consis$ng 

of 3D T2-weighted MR images and GT segmenta$ons of the LVP, a key step towards 

addressing the unmet need for methods to automa$cally segment the LVP in such images. 
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4.2.2 Image Op&misa&on Experiment 

4.2.2.1 Methods 

4.2.2.1.1 Image Acquisi-on 

Five healthy adult volunteers (two females, three males; age range 21 to 31 years) 

par$cipated in the experiment, a.er providing informed consent in accordance with ethics 

commiXee requirements. The volunteers were imaged in a supine posi$on using a 3.0 T 

SIGNA Architect MRI scanner, a 45-channel head and neck receive coil (both GE HealthCare, 

Milwaulkee, WI) and 3D TSE pulse sequences. Three 3D images were acquired per volunteer, 

using three TSE pulse sequences (more specifically, CUBE pulse sequences) with parameters 

that resulted in the acquisi$on of one T1-weighted image, one PD-weighted image and one 

T2-weighted image. CUBE pulse sequences were chosen as these are already highly 

op$mised to enable acquisi$on of images with specific contrasts and a high spa$al 

resolu$on. In total, 15 images were acquired in the experiment. Pulse sequence parameters 

and scan dura$ons are listed in Table 4. In total, 15 images of the en$re head (example 

images are shown in Figure 45) were acquired in the experiment. The reason why images of 

the en$re head were acquired, rather than images of a smaller volume centred on the LVP 

and pharynx, was to avoid “phase wrap-around” artefacts in the images, as these artefacts 

can obscure anatomical features of interest [273]. 
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Table 4: Parameters of the three pulse sequences used in the experiments. PD: proton-density; FOV: field of view; TR: 

repe>>on >me; TE: echo >me. 

Parameter 
Pulse sequence 

T1-weighted PD-weighted T2-weighted 

FOV (mm3) 256´243´168 

Acquired voxel size 

(mm3) 
0.8´0.8´1.2 

Reconstructed voxel 

size (mm3) 
0.5´0.5´0.6 

Signal averages 1 

TR (ms) 550 3000 3000 

TE (ms) 16 60 100 

Echo train length 22 130 130 

Bandwidth per pixel 

(Hz) 
 390.6  

GRAPPA factor  

2 (in both phase and 

slice encoding 

directions) 

 

Scan time (s) 231 208 208 
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Figure 45: Example midsagi3al and axial slices from the three-dimensional images acquired in the image op>misa>on 

experiment. T1, PD (proton density) and T2 indicate the contrast weigh>ng of the images. 

4.2.2.1.2 Image Analysis 

The image contrast at the loca$on where the LVP is connected to the so. palate was 

assessed as this loca$on is the most relevant for clinical teams trea$ng pa$ents with VPI. 

More specifically, the loca$on of the connec$on and the structure of the muscle are factors 

T2

PD

T1

Midsagittal Axial
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that affect VPI treatment decisions. To assess its contrast, each 3D image was analysed in the 

following way: 

1. The image was visually inspected and an axial slice in which the LVP was clearly 

visible was iden$fied. 

2. Two regions of interest (ROIs) were manually drawn on the image. One was drawn on 

the LVP while the other was drawn in the adjacent so. $ssue. Example ROIs are 

shown in Figure 46. 

3. The mean voxel value in each ROI was calculated. 

4. The contrast between the LVP and the adjacent so. $ssue in an image was 

quan$fied using the following equa$on [274]: 

 

𝐶 = ~I*+,#I-
I*+,AI-

~                      (19) 

 

where 𝜎/JK and 𝜎L are the mean voxel intensi$es in the LVP and adjacent so. $ssue ROIs 

respec$vely. 𝐶 was used as an indicator of the ease with which the LVP could be 

dis$nguished from the so. $ssue surrounding it: a higher value indicated that the LVP was 

more easily dis$nguishable. 

To iden$fy the op$mal contrast for visualising the LVP, the values of 𝐶 of the three 

images of a subject were compared. 

The visual inspec$on in step 1 and manual ROI drawing in step 2 was performed by 

an MRI Physicist with five years of experience of speech MRI. The image analysis was 

performed using the medical image viewer Horos v3.3.6 [275]. 
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Figure 46: Example regions of interest (ROIs). Image (B) is a cropped version of image (A). The yellow ROI is on the levator 

veli pala>ni (LVP) while the light blue ROI is on the soG >ssue adjacent to the LVP. 

 

4.2.2.2 Results 

Example images are shown in Figure 45, while Figure 47 shows the values of 𝐶 in the images. 

In four of five subjects, 𝐶 was greatest in their T2-weighted image, while in the other subject, 

𝐶 was greatest in their T1-weighted image. In four of five subjects, 𝐶 was lowest in their PD-

weighted image, while in the other subject, 𝐶 was lowest in their T1-weighted image. 

 
Figure 47: The contrast between the levator veli pala>ni and the adjacent soG >ssue in the T1-, proton-density- and T2-

weighted magne>c resonance images. 

(A) (B)

LVP
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4.2.2.3 Discussion 

Only T2-weighted images of the LVP were acquired in almost all previous work involving 3D 

imaging of the LVP at 3.0 T [13,25,137–142,126–129,131–133,136]. However, the results of 

recent work which inves$gated the op$mal image contrast for iden$fica$on of LVP 

landmarks suggest that T1- or PD-weighted images may enable more accurate iden$fica$on 

[13]. The aim of the image op$misa$on experiment was to quan$ta$vely compare the 

contrast between the LVP and the adjacent so. $ssue in T1-, PD- and T2-weighted images, to 

iden$fy the type of image with op$mal contrast for visualising the LVP. 

As shown in Figure 47, in four of five subjects, the contrast between the LVP and 

adjacent so. $ssue was greatest in their T2-weighted image. This result shows that the 

difference in voxel intensi$es was largest in T2-weighted images, sugges$ng that the LVP is 

more easily dis$nguishable in these images than in T1- and PD-weighted images acquired at 

3.0 T. This finding provides evidence to support the recently-made recommenda$on to 

acquire T2-weighted images for assessing the LVP in clinical prac$ce [8] and the choice made 

in all previous work involving 3D imaging of the LVP at 3.0 T to acquire T2-weighted images 

[13,25,137–142,126–129,131–133,136]. 

Conversely, in four of five subjects, the contrast between the LVP and adjacent so. 

$ssue was lowest in their PD-weighted image. This result shows that the difference in voxel 

intensi$es was smallest in PD-weighted images, sugges$ng that the LVP would be more 

challenging to dis$nguish in these images than in T1- and T2-weighted images acquired at 3.0 

T. 

The main limita$ons of the image op$misa$on experiment are its small sample size 

(15 images of five subjects), the assessment of contrast at a single loca$on only and the 

limited number of different contrasts that were inves$gated. Regarding the sample size, 

further work is required to increase the sample size and verify the findings of this image 

op$misa$on experiment. Regarding contrast assessment loca$on, the image contrast was 

assessed at the loca$on where the LVP is connected to the so. palate as this loca$on is the 

most relevant for clinical teams trea$ng pa$ents with VPI. More specifically, the loca$on of 

the connec$on and the structure of the muscle at this loca$on are factors that affect VPI 

treatment decisions. However, further work is required to iden$fy the op$mal contrast for 

visualising other sec$ons of the LVP using 3D MRI. Regarding the limited number of 

contrasts, while the inves$ga$on provides an indica$on of the op$mal image contrast for 
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LVP visualisa$on in 3D MR images of the vocal tract, further work is required to pinpoint the 

key pulse sequence parameters (i.e. TR and TE) that result in op$mal image contrast. This 

pinpoin$ng could be achieved by, for example, acquiring a wider range of T2-weighted 

images and analysing these images in the way described in sec$on 4.2.2.1.2. 

 

4.2.2.4 Conclusions 

The visibility of the LVP rela$ve to adjacent so. $ssue was found to be greatest in T2-

weighted images. Based on this finding, a larger dataset of T2-weighted images was created 

and then used in the development of a DL-based method to segment the LVP, work 

described in chapter 7 of this thesis. 

 

4.2.3 Image and GT Segmenta&on Dataset Crea&on 

The results of the image op$misa$on experiment described in sec$on 4.2.2 suggest that T2-

weighted images are op$mal for visualising the LVP. Based on this result, T2-weighted images 

were acquired and then manually segmented to create a dataset to enable the development 

of automa$c LVP segmenta$on methods. 

 

4.2.3.1 Methods 

4.2.3.1.1 Image Acquisi-on 

Fi.een healthy volunteers (eight females, seven males; age range 21 to 31 years) 

par$cipated in the experiment, a.er providing informed consent in accordance with ethics 

commiXee requirements: the five volunteers from the image op$misa$on experiment and 

10 addi$onal volunteers. The addi$onal volunteers were imaged in the same way as 

described in sec$on 4.2.2.1.1, but only using the TSE pulse sequence with parameters that 

resulted in the acquisi$on of T2-weighted 3D images. One T2-weighted image per volunteer 

was included in the dataset. The dataset therefore included 15 images in total. Pulse 

sequence parameters and scan dura$ons are listed in Table 4. Example images are shown in 

Figure 45. 
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4.2.3.1.2 GT Segmenta-on Crea-on 

GT segmenta$ons were created by manually labelling voxels in the images. The 

segmenta$ons consisted of three classes: LVP, pharynx and background. There was no 

overlap between the classes: a pixel could not belong to more than one class. The two 

reasons for including the pharynx in the GT segmenta$ons were as follows. First, to provide 

informa$on about the orienta$on of the LVP rela$ve to the so. palate. A segmenta$on of 

the pharynx can provide such informa$on as the anterior boundary of the pharynx is the 

superior surface of the so. palate. Second, to enable measurement of its volume and shape, 

aspects of the pharynx that are clinically relevant for VPI treatment planning. 

 The boundaries of a large sec$on of the pharynx are clearly defined: they are the 

pharyngeal wall and the superior surface of the so. palate. However, the superior and 

inferior boundaries of the pharynx are not so clear. Instead, the following ar$ficial 

boundaries were devised for these sec$ons. The two main goals when devising these 

boundaries were firstly to include only relevant anatomical features and secondly to make 

the boundaries as easily reproducible as possible. The superior boundary of the pharynx was 

defined as the axial slice at the level of the hard palate (see Figure 49D), while the inferior 

boundary was defined as the axial slice level with the $p of the so. palate (see Figure 49D). 

These defini$ons were considered to provide an acceptable trade-off between 

reproducibility and inclusion of relevant sec$ons of the pharynx. 

GT segmenta$ons were created by an MRI Physicist with six years of speech MRI 

experience using 3D Slicer version 4.11.20210226 [276]. The process for crea$ng a GT 

segmenta$on of the LVP in a 3D image was as follows: 

1. Oblique axial slice iden8fica8on: an oblique axial slice of the 3D image showing a 

longitudinal sec$on of the LVP was iden$fied via visual inspec$on (see Figure 48A). 

2. Ini8al manual segmenta8on: voxels showing the LVP in the oblique axial slice 

iden$fied in step 1 and in adjacent oblique axial slices were manually labelled (see 

Figure 48B). 

3. Axial slice iden8fica8on: an axial slice of the 3D image showing the LVP was 

iden$fied via visual inspec$on (see Figure 48C). 

4. Ini8al segmenta8on refinement: in the axial slice and in adjacent axial slices showing 

the LVP, the ini$al LVP segmenta$on was manually refined to fill “holes” in it (see 

Figure 48D). 
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5. Segmenta8on post-processing: the LVP segmenta$on was morphologically closed 

using a kernel size of 3´3´1 to fill any remaining “holes” in it. 

The process for crea$ng a GT segmenta$on of the pharynx in a 3D image was as follows: 

1. Ini8al binary mask crea8on: a binary mask of the en$re head was created by 

applying a threshold to the image (see Figure 49B). 

2. Binary mask cropping: the binary mask created in step 1 was manually cropped to a 

smaller cuboid containing the pharynx. The superior surface of the cuboid was the 

axial slice at the level of the hard palate, while the inferior surface was the axial slice 

level with the $p of the so. palate (see Figure 49C). 

3. Binary mask refinement: the binary mask was manually refined. More specifically, 

voxels corresponding to fluid on the surface of the so. palate and pharyngeal walls 

in the image were iden$fied via visual inspec$on and then manually removed from 

the binary mask. 

4. Pharynx segmenta8on crea8on: the voxel values in the binary mask created in step 2 

were switched (i.e. voxels labelled as 0 were changed to voxels labelled as 1 and vice 

versa). This created several connected components, the largest of which was the 

pharynx GT segmenta$on (see Figure 49D). 

The number of voxels in the LVP and pharynx GT segmenta$ons was calculated, to enable 

comparison of the size of the two classes. 
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Figure 48: Two-dimensional slices of one of the three-dimensional magne>c resonance images. Column (1) shows an 

oblique axial slice (A and B) and an axial slice (C and D), while column (2) shows a midsagi3al slice. In the slices, light blue 

shading indicates the levator veli pala>ni (LVP) ground-truth (GT) segmenta>on, while the orange dashed lines in column (2) 

indicate the plane of the slice shown in column 1. In column (1), rows (A) and (B) show the same oblique axial slice without 

and with the LVP GT segmenta>on overlaid, while rows (C) and (D) show the same axial slice without and with the LVP GT 

segmenta>on overlaid. 

(A)

(B)

(C)

(D)

(1) (2)
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Figure 49: Two-dimensional slices of one of the three-dimensional magne>c resonance images. Column (1) shows an axial 

slice, while column (2) shows a midsagi3al one. Row D shows slices with the pharynx ground-truth segmenta>on overlaid, 

while rows B and C show preliminary segmenta>ons. Green shading indicates a segmenta>on, while the orange dashed 

lines in column (2) indicate the plane of the slice shown in column (1). 

(A)

(B)

(C)

(D)

(1) (2)
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4.2.3.2 Results and Discussion 

A dataset consis$ng of 15 3D MR images of the en$re head, each of a different healthy adult 

volunteer, and GT segmenta$ons of the LVP and pharynx in the images was successfully 

created. Similarly to previous work [13,25,137–141,126–129,131–133,136], in this work 

imaging was at 3.0 T and a TSE pulse sequence was used to acquire T2-weighted images of 

the en$re head at a spa$al resolu$on of 0.8´0.8´0.8 mm3. The reason why images of the 

en$re head were acquired, rather than images of a smaller volume centred on the LVP and 

pharynx, was to avoid “phase wrap-around” artefacts in the images, as these artefacts can 

obscure anatomical features of interest [273]. 

The dataset includes GT segmenta$ons of the LVP and pharynx, thus enabling the 

development of methods to automa$cally segment these anatomical features, key steps 

towards addressing the current unmet need for automa$c methods to measure the LVP in 

3D MR images. GT segmenta$ons of the LVP have been created in previous work, however, 

only for single images [144,146] or for T1-weighted images [17]. 

Figure 50 shows all 15 GT segmenta$ons, while Figure 51 shows the number of 

voxels per class in the GT segmenta$ons. As shown in Figure 51, there were more voxels of 

the pharynx than the LVP in all GT segmenta$ons: the median number of voxels of the LVP 

and pharynx was approximately 10,000 and 43,000 respec$vely. Given that the images each 

consisted of 512´512´272 voxels, only a small propor$on of their voxels corresponded to a 

segmenta$on class: approximately 0.01% and 0.06% corresponded to the LVP and pharynx 

respec$vely. Cropped versions of the images were used in the development of a DL-based 

method to segment the LVP in 3D MR images (work described in chapter 7), for two main 

reasons. First, to reduce the computa$onal burden of the method development. Second, to 

reduce the complexity of the segmenta$on task by reducing the number of anatomical 

features in the image and by increasing the propor$on of voxels corresponding to the LVP 

and pharynx. 

There is increasing interest in visualising and measuring aspects of the LVP, to beXer 

understand varia$ons in its shape and configura$on [25,122,131–140,123,141–143,124–

130], to aid planning of surgical treatment of VPI [144,145], and for medical educa$on 

purposes [146]. While the dataset presented in this work was primarily created to enable 

the development of automa$c LVP measurement methods, it also provides opportuni$es to 

develop novel LVP visualisa$on methods such as pa$ent-specific computer or physical 3D 
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models of the LVP for use in VPI treatment planning. Further work is required to explore 

these opportuni$es with clinical teams and inves$gate if segmenta$ons of the LVP and 

pharynx provide enough anatomical context for use in VPI treatment planning. For example, 

addi$onal segmenta$ons of anatomical features such as the so. palate may be required to 

provide enough anatomical context. Crea$ng segmenta$ons of the so. palate is not 

essen$al for enabling automa$c LVP measurement and was therefore not priori$sed in this 

work. However, a key challenge that would need to be addressed to reproducibly create GT 

segmenta$ons of the so. palate is the lack of clear anatomical boundaries between the 

lateral sec$ons of the so. palate and the adjacent so. $ssue. Instead, ar$ficial boundaries 

that are easily reproducible would need to be devised for these sec$ons of the so. palate. 

Crea$on of the dataset is an important step towards addressing the unmet need for 

automa$c methods to measure the LVP in 3D MR images, as it allows inves$ga$on of the 

feasibility of developing automa$c methods to segment the LVP in these images. While the 

dataset is appropriate for demonstra$ng the feasibility of automa$c LVP segmenta$on, 

further work is required to address two limita$ons of the dataset. 

First, a larger and more diverse dataset, both in terms of subjects and image 

acquisi$on, and one that is more representa$ve of the target pa$ent popula$on is required 

to develop automa$c LVP measurement methods suitable for use in clinical prac$ce. More 

specifically, since the target pa$ent popula$on primarily consists of children, the dataset 

must contain images of children. In addi$on, since LVP anomalies are prevalent in the target 

popula$on, the dataset must contain images of LVPs with anomalies as well as LVPs without. 

The dataset must also be balanced in terms of gender and ethnicity, to avoid poten$ally 

developing biased LVP measurement methods. Regarding image acquisi$on, the images in 

the dataset were all acquired using the same MRI scanner and pulse sequence. A dataset of 

images acquired using many different MRI scanners and pulse sequences is required to 

ensure that methods developed using the dataset perform well on images from different 

sources. This generalisability is a key requirement for methods suitable for use in clinical 

prac$ce. 

Second, the dataset presented in this work includes GT segmenta$ons created by a 

single expert only. Future work should inves$gate the intra- and inter-rater reliability of the 

GT segmenta$ons for two main reasons. First, to verify that the GT segmenta$on crea$on 

process described in sec$on 4.2.3.1.2 is reproducible. Second, to provide insights into the 
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accuracy and reliability of manual LVP segmenta$on (for example, through iden$fica$on of 

sec$ons of the LVP where agreement between raters is lower) and thus provide informa$on 

about the maximum accuracy that can be achieved by automa$c LVP segmenta$on 

methods. Such an inves$ga$on would require manual crea$on of GT segmenta$ons by 

several experts and would therefore be very $me-consuming. 
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Figure 50: Ground-truth segmenta>ons of the levator veli pala>ni (dark grey) and pharynx (light grey) in each of the 15 

images. 
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Figure 51: Number of voxels per segmenta>on class in the ground-truth segmenta>ons of the 15 magne>c resonance 

images. 

 

4.2.3.3 Conclusions 

For the first $me, a dataset consis$ng of 3D T2-weighted MR images of the vocal tract and 

GT segmenta$ons of the LVP and pharynx was created. This dataset enabled the 

development of automa$c methods to segment the LVP in 3D MR images (work described in 

chapter 7), a key step towards addressing the current unmet need for automa$c methods to 

measure the LVP in such images. 

 



 132 

Chapter 5: Articulator Segmentation in MR Images of 
Speech 

5 Ar*culator Segmenta*on in MR Images of Speech 
5.1 Introduc*on 

5.1.1 Mo&va&on 

As explained in sec$on 3.1.7, use of rtMRI to visualise ar$culators and the vocal tract during 

speech is increasing in both research and clinical selngs [12,27,61]. This increase is a result 

of the development of rtMRI techniques with rela$vely high spa$o-temporal resolu$ons and 

the unique ability of rtMRI to noninvasively acquire images of any view without using 

ionising radia$on [12,27,61]. Visualisa$on of ar$culators and the vocal tract during speech 

provides informa$on about their shape, size, posi$on and mo$on. This informa$on is 

helping researchers to answer open ques$ons about speech produc$on 

[14,18,196,197,277–279,19,27,61,68,69,72,75,76], while in the clinical speech assessment 

of pa$ents with VPI this informa$on aids clinicians to diagnose the cause(s) of VPI and then 

make treatment decisions [3,4,8,280]. 

 Typically during rtMRI of speech, series of 2D images of a midsagiXal slice of the 

vocal tract are acquired. As explained in sec$on 3.3.3, there is increasing interest in 

extrac$ng quan$ta$ve informa$on about the vocal tract and ar$culators from such images 

[7,14,75,76,84,88,195–198,20,68–74]. More specifically, there is interest in measuring the 

size and shape of the vocal tract [14,68,197,198,70,74–76,84,88,195,196], the size, shape 

and mo$on of the so. palate [72,73,75,84,198], lip mo$on [69,75,84], tongue mo$on 

[20,84] and the distance between the so. palate and the posterior pharyngeal wall 

[7,72,198]. Manual measurement to obtain this informa$on is $me-consuming, requires 

input by specialists and is prone to intra- and inter-observer variability. The increasing 

interest in extrac$ng quan$ta$ve informa$on, in combina$on with the need to avoid 

manual measurement, have mo$vated the development of a range of methods to (semi-

)automa$cally extract this informa$on [15,16,206,207,20,199–205]. Almost all these 

methods are segmenta$on based [15,16,207,199–206]. 
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5.1.2 Related Work 

Several methods to semi-automatically measure the shape of the vocal tract in 2D rtMR 

images of speech have been developed [15,16,199–204,208]. One of these methods 

segmented the entire vocal tract [208], while the others labelled pixels at air-tissue 

boundaries between the vocal tract and adjacent tissues and therefore only created partial 

contours of articulators [15,16,199–204]. The methods have been based on a variety of 

approaches. In [203], the air-tissue boundaries between the vocal tract and adjacent tissues 

were automatically labelled using an optimisation algorithm to adjust an anatomically 

informed synthetic image of the vocal tract until the k-space of the synthetic image was as 

similar as possible to the k-space of the MR image. Other methods performed the labelling 

by analysing pixel values along gridlines superposed on the MR image [199] or by using 

active shape models [15,204]. 

More recently, DL-based methods have been developed to automa$cally label air-

$ssue boundaries between the vocal tract and adjacent $ssues [16,200–202,208]. In [16] 

and [201], FCNs with an architecture similar to SegNet [209] were developed to label the air-

$ssue boundaries and, in [16], iden$fy which ar$culators the boundary pixels belonged to. 

In [200] and [202], FCNs with architectures similar to the original FCN [162] and the FCN in 

[210] respec$vely were developed to label the air-$ssue boundaries. An FCN with an 

architecture similar to the original U-Net [175] was developed in [208] to segment the en$re 

vocal tract, not just its boundaries with adjacent $ssues. 

However, none of the methods described in the two paragraphs above segment 

en$re ar$culators. Such segmenta$on is desirable as it would enable measurement of 

ar$culator shape, size, posi$on and mo$on. 

This chapter presents a DL-based framework to address this limita$on, and is based 

on a peer reviewed and published journal ar$cle [205]. Since the publica$on of [205], three 

further related works have been published by other researchers. Two of these works are 

methods to analyse 2D rtMR images of speech [72,206], while the other is a method to 

segment the pharynx and en$re ar$culators (tongue and so. palate) in 2D sta$c MR images 

of the vocal tract [218]. In [72], a method that used generalised addi$ve mixed models [196] 

to measure the distance between the so. palate and posterior pharyngeal wall was 

developed, while in [206] a DL-based method to segment en$re ar$culators (so. palate, 

hard palate, tongue, jaw and upper lip) was developed. 



Articulator Segmentation in MR Images of Speech 

 

134 

5.1.3 Clinical Considera&ons 

As explained in section 2.1, velopharyngeal closure is a key requirement in the production of 

the majority of speech sounds [1,22]. During velopharyngeal closure, the soft palate 

elevates and comes into contact with the pharyngeal wall. However, in patients with VPI, 

velopharyngeal closure does not always occur, thus causing speech problems [1]. There are 

large variations in the speech sounds where velopharyngeal closure does not occur in 

patients with VPI: in some patients velopharyngeal closure does not occur in a few speech 

sounds only, while in others velopharyngeal closure never occurs. An important 

consideration when making treatment decisions is the speech sounds where velopharyngeal 

closure does not occur. Therefore, to be suitable for use in clinical practice, a key 

requirement for articulator analysis methods is the accurate detection of any 

velopharyngeal closures that occur. In addition, it is important that articulator analysis 

methods do not falsely detect velopharyngeal closures when none have occurred. However, 

standard metrics for evaluating segmentation accuracy do not provide information about 

the accurate detection of velopharyngeal closure. By comparing the velopharyngeal closures 

in GT segmentations with those in segmentations estimated by an automated method, the 

ability of the method to accurately capture velopharyngeal closures can be assessed. 

 

5.1.4 Contribu&ons 

The work presented in this chapter makes two contributions. First, it develops a fully 

automatic DL-based method for segmenting entire articulators and the vocal tract in 2D 

rtMR images of speech. The method also includes an extension to automatically measure 

the minimum distance between the soft palate and the posterior pharyngeal wall. This 

contribution is a step towards addressing the unmet need of automatic measurement of 

articulator shape, size, position and motion in 2D rtMR images of speech. Second, this work 

proposes a new metric for evaluating the accuracy of estimated segmentations. This metric 

is based on velopharyngeal closure, a quantifiable and clinically relevant aspect of 

articulator motion. 

 As stated earlier, part of the work presented in this chapter was published as a 

journal article [205]. Two extensions to the published work are presented in this chapter. 

First, an extension to the segmentation method in order to enable automatic measurement 
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of the minimum distance between the soft palate and the posterior pharyngeal wall is 

presented. Second, an additional loss function weighting investigation is presented. 

 

5.2 Method 

5.2.1 Overview 

Figure 52 shows an overview of the proposed DL-based method. Given a 2D rtMR image of 

the vocal tract, the method will es$mate segmenta$ons for six different anatomical features 

in the image and then measure the minimum distance between the so. palate and the 

posterior pharyngeal wall. Segmenta$ons are es$mated using a CNN with a similar 

architecture to the original U-Net [175]. The es$mated segmenta$ons are then post-

processed to remove anatomically impossible regions in the images. Finally, the minimum 

distance between the so. palate and the posterior pharyngeal wall is measured from the 

post-processed segmenta$ons. 

 

 
Figure 52: An overview of the proposed deep-learning-based segmenta>on method. The method consists of three steps: (1) 

a convolu>onal neural network (CNN) for es>ma>ng segmenta>ons of seven different classes; (2) a post-processing step to 

remove anatomically impossible regions in the es>mated segmenta>ons; (3) further post-processing steps to measure the 

minimum distance between the soG palate and the posterior pharyngeal wall. The input to the method is a two-dimensional 

real->me magne>c resonance image of the vocal tract. 

 
5.2.2 CNN Architecture, Implementa-on and Training 

Segmentations were estimated using a CNN with a similar architecture to the original U-Net 

[175]. The CNN had a five-layer encoding path followed by a four-layer decoding path. More 

information on its architecture is provided in Figure 53. Dropout (introduced in section 

3.2.4) with a probability of 0.5 was included in the fourth and fifth encoding layers. The 

outputs of the network were seven probability maps, one for each class. The network was 

implemented using PyTorch 1.4.0 [281] and training was performed on a NVIDIA TITAN RTX 

graphics card. Cross entropy was used as the loss function during network training. The 

CNN Post-
processing

Distance 
measurement
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Adam optimiser [151] with hyperparameters b1=0.9, b2=0.999 and e=1e-8 was used to 

adjust network weights. In each experiment, the network was trained for 200 epochs. Data 

augmentation (introduced in section 3.2.4) was performed to increase the number of 

images in the training dataset by a factor of four. Augmented images were created by 

randomly translating, rotating, cropping and rescaling the original images. Translation was 

by between -30 and 30 pixels in the x-direction and between 0 and -30 in the y-direction. 

Rotation was by between -10° and 30° clockwise. The reason for the asymmetric ranges of 

augmentation parameters was to avoid causing anatomically implausible artefacts in the 

image such as a gap between the base of the neck and the edge of the image. Image 

cropping was to a matrix size of either 220×220 if followed by rescaling or between 210×210 

and 255×255 if followed by zero padding. All augmented images had the same matrix size as 

the original images. This was achieved by cropping and then zero padding the translated 

images and the rotated images, and rescaling or zero padding the cropped images. 

 

 
Figure 53: The architecture of the convolu>onal neural network of the proposed method [205]. BN: batch normalisa>on, 

ReLU: rec>fied linear unit, conv: convolu>on. 

 
5.2.3 Loss Func&on Weigh-ng 

Use of training datasets with large imbalances in the number of pixels of each class is known 

to detrimentally affect the accuracy of CNNs [282,283]. A wide variety of approaches have 

been proposed to compensate for such imbalances [153,175,283–285], the majority of 

which involve weigh$ng loss func$ons according to class frequency. To compensate for the 

class frequency imbalance in the training dataset, the loss func$on used to train the CNN 

(cross entropy) was weighted according to class frequency. More specifically, inspired by 
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[175,284,285], the losses of pixels of class 𝑘 ∈ {1, 2, … , 7} were mul$plied by the following 

weight: 

 

𝑤2 =
∑ M$$
M$

                      (20) 

 

where 𝑁2 is the number of pixels of class 𝑘 in the training dataset. The motivation for 

compensating for the class frequency imbalance was to improve the accuracy with which 

the method segmented the soft palate. 

Inspired by [175] and motivated by a desire to improve the accuracy with which 

velopharyngeal closures were captured in segmentations estimated by the method, an 

additional experiment was performed where the loss function was weighted according to 

both class pixel frequency and the minimum pixel distance from the nearest class boundary. 

In this experiment, the loss of a pixel was multiplied by both the weight in Equation (20) and 

the following weight: 

 

𝑤N =
"
O.

                      (21) 

 

where 𝑑 is the minimum Euclidean distance of the pixel from the nearest boundary. The 

rationale for including a boundary distance weight was to encourage accurate segmentation 

of pixels at the boundaries between classes. This weight is similar to the one used in the 

training of the original U-Net [175]. 

 

5.2.4 Segmenta&on Post-Processing 

At test time, connected-component-analysis-based post-processing was performed on each 

segmentation estimated by the CNN in order to remove anatomically impossible regions. 

More specifically, each region (i.e. connected component) in the estimated segmentation 

was automatically analysed in the following way: 

1. The classes of the regions in contact with it were identified. 

2. If the region was surrounded by another region, its class was changed to that of the 

surrounding region. 
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3. If the region was either in contact with an anatomically impossible region (for 

example, if a jaw region was in contact with a soft palate region) or not in contact 

with anatomically expected regions (for example, if a tooth space region was not in 

contact with a jaw region and a tongue region), the classes of the pixels surrounding 

the region were identified and the class of the region was changed to the mode class 

of these pixels. The rules for determining if a region was anatomically plausible are 

listed in Table 5. 

This analysis was performed using MATLAB R2019b. 

 

Table 5: The rules for determining the anatomical plausibility of a region in a segmenta>on. “Class” indicates the 

segmenta>on class, “Forbidden Contact” indicates segmenta>on classes that the region must not be in contact with to be 

anatomically plausible, while “Required Contact” indicates the segmenta>on classes that the region must be in contact with 

to be anatomically plausible. 

Class Forbidden Contact Required Contact 

Head Tooth space Soft palate, vocal tract 

Soft palate Jaw Head, vocal tract 

Jaw Soft palate Tongue, tooth space 

Vocal tract N/A Head, soft palate, tongue 

Tooth space Soft palate Jaw, tongue 

 

5.2.5 Distance Measurements 

Addi$onal post-processing steps to automa$cally measure the minimum distance between 

the so. palate and the posterior pharyngeal wall in each es$mated segmenta$on were 

performed. Figure 54 shows an overview of the steps. The steps were as follows and were 

implemented in MATLAB R2019b: 

1. The coordinates of the centroid of the so. palate were iden$fied. 

2. So. palate and head pixels with x-coordinates less than that of the centroid were 

removed. 

3. For each head pixel, the Euclidean distance to the nearest so. palate pixel was 

calculated. 

4. The minimum distance was iden$fied and converted from pixel dimensions to mm by 

mul$plying it by a scaling factor. 
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Figure 54: An overview of the post-processing steps to measure the minimum Euclidean distance between the soG palate 

and the posterior pharyngeal wall. 

5.3 Experiments 

5.3.1 Data 

The five MR image series described in section 4.1.2 were used in the experiments, along 

with their corresponding GT segmentations described in section 4.1.4. 

 

5.3.2 Segmenta&on Accuracy Assessment 

The segmentation accuracy of the proposed method was assessed using two metrics. First, 

the DSC [194] was used to quantify the overlap between the GT segmentations and the 

segmentations estimated by the method. Second, the HD was used to quantify the 

maximum discrepancy between the boundaries of the GT and estimated segmentations. 

The segmentation accuracy of the proposed method was also indirectly assessed by 

comparing the minimum distance between the soft palate and the posterior pharyngeal wall 

in corresponding estimated and GT segmentations. For each corresponding pair of 

segmentations, the absolute difference between the minimum distances was calculated: 

 

𝑑OPDD = |𝑑Q& − 𝑑R?$PCS$RO|                    (22) 

 

where 𝑑Q&  is the minimum distance in the GT segmentation, while 𝑑R?$PCS$RO  is the 

minimum distance in the estimated segmentation. Minimum distances were calculated in 

the way described in section 5.2.5. 

 

5.3.3 Velopharyngeal Closure Assessment 

The accuracy with which the estimated segmentations showed velopharyngeal closures was 

assessed by manually comparing the closures in the GT and estimated segmentations. To 

enable the comparison, each segmentation in a series was visually inspected and labelled as 
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either showing contact between the soft palate and posterior pharyngeal wall or not 

showing contact. Contact was defined as three or more soft palate pixels in contact with 

head pixels in the head class region corresponding to the posterior pharyngeal wall. 

Sequences of labels were then plotted (see Figure 55 for an example) and manually 

compared to identify the number of: 

• “Correct” closures: closures that were shown in both the GT and estimated 

segmentations. 

• “Additional” closures: closures that were shown in the estimated segmentations but 

not the GT segmentations. 

• “Merged” closures: one or more consecutive closures that were shown as separate 

closures in the GT segmentations and a single closure in the estimated 

segmentations. 

• “Missed” closures: closures that were shown in the GT segmentations but not in the 

estimate segmentations. 

An example of each type of closure is shown in Figure 55. 

 
Figure 55: Examples of each type of velopharyngeal closure. On the y-axis, “Yes” indicates contact between the soG palate 

and posterior pharyngeal wall, while “No” indicates no contact. 

 
5.3.4 Cross-Valida&on 

To evaluate the generalisability of the proposed method, a five-fold cross-validation was 

performed with the dataset of each subject being left out once. Hyperparameter 

optimisation was achieved by carrying out a nested cross-validation for each fold of the 

main cross-validation, in the way described in [286]. This nested cross-validation was a four-

fold cross-validation with the dataset of each of the remaining four subjects being left out 

once. Six different learning rate {0.003, 0.0003, 0.00003} and mini-batch size {4, 8} 

combinations were evaluated in this way, and the hyperparameter combination that 

Correct Additional Merged Missed
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resulted in the highest mean DSC on the left-out dataset (of the nested cross-validation) 

after post-processing was chosen as the optimal hyperparameter combination. Once the 

optimal hyperparameter combination had been identified for a fold of the main cross-

validation, the CNN of the proposed method was trained using all the datasets except the 

left-out dataset for that fold, and then the entire method (including the post-processing 

steps) was tested using the left-out dataset. 

 

5.3.5 Unseen Vocal Tract Shape Inves-ga-on 

Different vocal tract shapes and articulator positions are required to produce different 

speech sounds. The data used to train the CNN of the proposed method does not contain 

images of all the different possible vocal tract shapes in English. To investigate the ability of 

the method to segment vocal tract shapes not present in the training dataset, 15 additional 

rtMR images were segmented using the method. The images (three per subject) were of the 

same five subjects described in 4.1.2 of this thesis producing three sounds which require 

vocal tract shapes not present in the training dataset: /ɒ/ and /b/ in “Bob” and /a/. The 

accuracy of the segmentations was assessed as described in section 5.3.2. The images were 

acquired and GT segmentations created in the ways described in sections 4.1.2 and 4.1.4 

respectively. 

 

5.4 Results 

The hyperparameter combinations that resulted in the highest segmentation accuracy in the 

nested cross-validations are listed in Table 6. 

Examples of segmentations estimated by the class frequency weighted version of the 

proposed method are shown in Figure 56. Figure 56A(2), Figure 56B(2) and Figure 56C(2) 

show estimated segmentations with relatively low, average and high DSCs respectively, 

while Figure 56D(2), Figure 56E(2) and Figure 56F(2) show estimated segmentations with 

relatively large, average and small HDs respectively. Column 3 in Figure 56 shows the 

estimated segmentations after post-processing. 
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Table 6: Op>mal hyperparameter combina>ons. The 'Fold' column indicates the fold of the cross-valida>on, while the ‘Loss 

Func>on Weigh>ng’ column indicates the way the loss func>on of the convolu>onal neural network of the proposed method 

was weighted during training. ‘CF’ indicates class frequency weigh>ng, while ‘CF and BD’ indicates class frequency and 

boundary distance weigh>ng. 

Fold Loss Function Weighting Learning Rate Mini-Batch Size 

1 CF 0.0003 4 

CF and BD 0.0003 8 

2 CF 0.0003 4 

CF and BD 0.00003 8 

3 CF 0.0003 4 

CF and BD 0.00003 4 

4 CF 0.0003 4 

CF and BD 0.0003 8 

5 CF 0.003 8 

CF and BD 0.0003 4 

 

Figure 57 shows the accuracy of the segmentations estimated by both versions of 

the proposed method. Figure 57A shows the DSCs of each class in the estimated 

segmentations, while Figure 57B shows the HDs of each class. The median DSC of the 

segmentations estimated by the version of the method where the loss function was 

weighted using class frequency only was 0.96, while the median HD was 5 mm. In 93% of 

segmentations (365 of 392 images in the test dataset), the DSCs of all the classes were 

above 0.85. The median DSC of the segmentations estimated by the version of the method 

where the loss function was weighted using both class frequency and boundary weighting 

was 0.95, while the median HD was 5 mm. In 86% of segmentations (339 of 392 images in 

the test dataset), the DSCs of all the classes were above 0.85. 

Figure 58 shows the minimum distances between the soft palate and the posterior 

pharyngeal wall measured in the GT segmentations and corresponding segmentations 

estimated by both versions of the proposed method, while Figure 59 shows the absolute 

differences between the measurements in GT and corresponding estimated segmentation 

pairs. 
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The velopharyngeal closures in the GT and estimated segmentations of all the 

subjects are shown in Figure 60, while the number of each type of velopharyngeal closure 

(“correct”, “merged”, “additional” and “missed”) in the segmentations is summarised in 

Table 7. Figure 61 shows rtMR images whose estimated segmentations incorrectly showed 

velopharyngeal closure. 

Five examples of segmentations estimated by the proposed method when it was 

inputted with additional rtMR images of vocal tract shapes that were not present in the 

training dataset are shown in Figure 62. The median DSC of the estimated segmentations of 

the 15 additional rtMR images was 0.96, while the median HD was 6 mm. 
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Figure 56: Examples of ground-truth segmenta>ons (column 1) and corresponding segmenta>ons es>mated by the class 

frequency weighted version of the proposed method before and aGer the post-processing step (columns 2 and 3 

respec>vely). Rows A to C show es>mated segmenta>ons with low, average and high Dice coefficients respec>vely. Rows D 

(A)

(B)

(C)

(D)

(E)

(F)

(1) (2) (3)

/t/

/w/

/r/

/f/

/n/

/n/
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to F show es>mated segmenta>ons with large, average and small general Hausdorff distances respec>vely. The sounds 

being produced by the subjects are /t/ in “two” (row A), /r/ in “three” (row B), /n/ at the end of “nine” (row C), /w/ in “one” 

(row D), /f/ in “four” (row E) and /n/ in “ten” (row F). The segmenta>ons have been cropped to only show the vocal tract 

region. Image source: [205]. 

 
Figure 57: (A) Dice coefficients and (B) general Hausdorff distances of the segmenta>ons es>mated by both versions of the 

proposed method. In the Figure legend, ‘Class Frequency (CF)’ and ‘CF and Boundary Distance’ indicate the loss func>on 

weigh>ng used during the training of the proposed method. 

(A) (B)
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Figure 58: Minimum distances between the soG palate and posterior pharyngeal wall measured in the ground-truth 

segmenta>ons and segmenta>ons es>mated by both versions of the proposed method. Each row corresponds to a different 

subject. In the Figure legend, ‘Class Frequency (CF)’ and ‘CF and Boundary Distance’ indicates the loss func>on weigh>ng 

used during the training of the proposed method. 
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Figure 59: Absolute differences in the minimum distance (between the soG palate and posterior pharyngeal wall) measured 

in the ground-truth segmenta>ons (dGT) and corresponding segmenta>ons es>mated by both versions of the proposed 

method (des'mated). The x-axis label ‘Loss Func>on Weigh>ng’ indicates the loss func>on weigh>ng used during the training 

of the proposed method. 
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Figure 60: Velopharyngeal closures in the ground-truth segmenta>ons and segmenta>ons es>mated by both versions of the 

proposed method. Each row corresponds to a different subject. In the Figure legend, ‘Class Frequency (CF)’ and ‘CF and 

Boundary Distance’ indicates the loss func>on weigh>ng used during the training of the proposed method. 
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Figure 61: Magne>c resonance images (column 1) whose es>mated segmenta>ons aGer post-processing (column 3) 
incorrectly showed velopharyngeal closure. Column 2 is the ground-truth segmenta>on of the images. In both images, the 
soG palate is close to the posterior pharyngeal wall but not in contact with it. Row A shows the subject pausing between 
saying “four” and “five”, while row B shows the subject producing the sound /n/ at the end of “nine”. The images and 
segmenta>ons have been cropped to only show the vocal tract region. 

 
Table 7: Number of velopharyngeal closures in the ground-truth segmenta>ons and segmenta>ons es>mated by the 

proposed method. Total: total number of closures in the segmenta>ons. Correct: closures that were shown in both the 

ground-truth and es>mated segmenta>ons. Addi>onal: closures that were shown in the es>mated segmenta>ons but not 

the ground-truth segmenta>ons. Merged: one or more consecu>ve closures that were shown as separate closures in the 

ground-truth segmenta>ons and a single closure in the es>mated segmenta>ons. Missed: closures that were shown in the 

ground-truth segmenta>ons but not in the es>mated segmenta>ons. The columns ‘Class Frequency’ and ‘Class Frequency 

and Boundary Distance’ indicate the loss func>on weigh>ng used during the training of the proposed method. 

 Ground truth Class Frequency Class Frequency and 

Boundary Distance 

Total 30 33 32 

Correct 30 27 27 

Additional 0 5 4 

Merged 0 3 3 

Missed 0 0 0 

(2) (3)(1)

(A)

(B)

/n/

(.)
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Figure 62: Ground-truth segmenta>ons (column 1) and corresponding segmenta>ons es>mated by the proposed method 

(column 2) when inpu3ed with images of vocal tract shapes that were not present in the training dataset. The 

segmenta>ons have been cropped to only show the vocal tract region. 

(1) (2)

/ɒ/

/ɒ/

/ɒ/

/ɒ/
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5.5 Discussion 

At the time the work presented in this chapter was published [205], the main contribution 

and novelty of the work was the development of an automatic method to fully segment 

multiple groups of articulators as well as the vocal tract in 2D rtMR images of the vocal tract 

during speech. This novelty overcame the limitations of existing methods that either only 

segmented the air-tissue boundaries between the vocal tract and neighbouring tissues 

[15,16,199–204] or fully segmented the vocal tract only [208]. However, since the work was 

published three further related works have been completed. Two of these works are 

methods to analyse 2D rtMR images of the vocal tract during speech [72,206], while the 

other is a method to segment the pharynx and entire articulators (tongue and soft palate) in 

2D static images of the vocal tract [218]. In [206] a DL-based method to segment entire 

articulators (soft palate, hard palate, tongue, jaw and upper lip) inspired by the method 

presented in this chapter was developed, while in [72] a method to measure the minimum 

distance between the soft palate and posterior pharyngeal wall was developed. 

Another contribution and novelty of the work presented in this chapter is the 

development of a clinically relevant metric for assessing the accuracy of segmentations 

created by vocal tract and articulator segmentation methods. This novel metric was used to 

assess the accuracy of the segmentations estimated by the proposed method. 

The final contribution and novelty of the work presented in this chapter is the 

extension of the method to enable automatic calculation of the minimum distance between 

the soft palate and the posterior pharyngeal wall, a measurement of particular interest in 

clinical speech assessment [7]. 

The proposed segmentation method is deep learning based and consists of three 

steps: first, segmentations are created by inputting rtMR images into a trained CNN with a 

similar architecture to the original U-Net [175]; second, a connected component analysis 

based post-processing is performed on the segmentations to remove anatomically 

impossible regions; third, the minimum distance between the soft palate and posterior 

pharyngeal wall is measured, a measurement that is of growing interest to clinicians 

managing patients with VPI [7,72,135,198,287,288]. This method is a step towards the 

ultimate goal of automatic articulator segmentation and measurement in clinical practice. 
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Two different CNN loss function weightings were investigated. The first was intended 

to compensate for the class pixel frequency imbalance in the dataset used to train the 

proposed method, while the second also included a weighting intended to prioritise 

accurate segmentation of boundary pixels. The two main motivations for this prioritisation 

were to increase the accuracy with which the proposed method captured velopharyngeal 

closures and the accuracy of the minimum distance (between the soft palate and posterior 

pharyngeal wall) measurements. However, as shown in Figure 57, Figure 58, Figure 59, 

Figure 60 and Table 7, the additional weighting did not improve the segmentation accuracy 

of the proposed method. A possible explanation for this result is that the additional 

weighting reduced the number of pixels that had a large effect on the loss function and the 

CNN struggled to learn to identify this smaller number of pixels.  

The proposed method (the version trained without the additional loss function 

weighting) segmented each class with a high accuracy, as shown by its segmentations 

achieving a median DSC of 0.96 and a median HD of 5 mm. On average, the head was 

segmented most accurately (median DSC of 0.99). This result is unsurprising as this class has 

the largest number of pixels and the least variation in shape and position in the rtMR 

images. It is therefore the least challenging class for the proposed method to learn to 

segment. On average, the soft palate and tooth space were segmented least accurately 

(median DSCs of 0.92 and 0.93 respectively). This result is also unsurprising as these classes 

have the smallest number of pixels and so small errors at the boundaries will have a bigger 

impact on the DSC. In addition, the soft palate is the class with the largest variation in shape 

and position in the rtMR images. It is therefore the most challenging class for the proposed 

method to learn to segment. 

The proposed method (the version trained without the additional loss function 

weighting) segmented the vocal tract with a higher accuracy (mean DSC of 0.95) than the 

only other published method for fully segmenting the vocal tract (mean DSC of 0.90) [208]. 

Both methods are deep learning based and have a similar architecture, therefore one 

possible reason for the higher accuracy of the proposed method is because it was trained 

using a larger number of images (up to 1625 images, while [208] was trained using 300 

images). A possible reason for the lower accuracy of the other published method could be 

greater variability in the dataset used to train it. The training dataset of the other published 

method consisted of images of 10 healthy adult volunteers while the dataset of the 
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proposed method consisted of images of five health adult volunteers. Another possible 

reason for the higher accuracy of the proposed method could be that the method captured 

more contextual information as a result of segmenting a larger number of classes, thus 

improving the accuracy with which it segmented the vocal tract. 

The proposed method (the version trained without the additional loss function 

weighting) segmented the soft palate, jaw and tongue with greater median DSCs (0.92, 0.95 

and 0.97 respectively) to the method published in [206], which segmented these 

articulators with median DSCs of 0.89, 0.91 and 0.97 respectively. In addition, the proposed 

method segmented the soft palate and tongue with a greater accuracy than the method 

proposed in [218], which segmented these articulators with a median DSCs of 0.79 and 0.89 

respectively. However, the method proposed in [218] was developed for segmenting 2D 

static MR images of the vocal tract, rather than 2D rtMR images of the vocal tract during 

speech. All these methods are deep learning based and have a similar architecture, 

therefore possible reasons for the higher accuracy of the proposed method are similar to 

those discussed in the preceding paragraph. The proposed method was trained on up to 

1625 images, while [206] was trained using 820 images and [218] was trained using 151 

images. 

In 93% of cases (365 of 392 images), the DSC of each of the six estimated 

segmentations (one per class) was 0.85 or above. This result suggests that the 

generalisability of the proposed method is good. 

The proposed method includes steps to measure the minimum distance between the 

soft palate and posterior pharyngeal wall. As shown in Figure 59, the median error in the 

distances measured in the segmentations estimated was close to zero. Comparison of this 

error with the only other published method to measure the minimum distance between the 

soft palate and posterior pharyngeal wall [72] is not possible as no errors were reported. A 

limitation of the distance measurement steps is that they make large assumptions about the 

way the head is orientated in the images. For example, the steps assume that the head is 

facing towards the left of the images. To be suitable for use in clinical practice, the method 

should be able to identify images where the head is not orientated in this way, to avoid 

spurious results. 

When clinically assessing the speech of patients with speech problems, an important 

consideration is whether velopharyngeal closure occurs during speech. It is therefore 
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important that segmentation methods intended for use in clinical speech assessment 

accurately show any velopharyngeal closures that occur, while not artificially creating 

velopharyngeal closures when these do not occur (i.e. preserve gaps between the soft 

palate and posterior pharyngeal wall). The segmentations estimated by the proposed 

method (the version trained without the additional loss function weighting) correctly 

captured 90% (27 out of 30) of the velopharyngeal closures in the GT segmentations. As 

shown in Figure 60, three consecutive closures in the GT segmentations were shown as a 

single closure in the estimated segmentations. It is important to note that the soft palate 

motion between these three closures was different from the motion between all the other 

closures: instead of moving to a position far from the pharyngeal wall, the soft palate 

remained close to the wall (an example is shown in Figure 61A). Consequently, the gap 

between the soft palate and posterior pharyngeal wall remained small. The estimated 

segmentations also showed five closures that did not occur in the GT segmentations (two 

are shown in Figure 60). All five of these additional closures occurred when the soft palate 

was close to the posterior pharyngeal wall (an example is shown in Figure 61B). The merging 

of closures and the occurrence of additional closures shows that the proposed method was 

not always able to preserve small gaps between the soft palate and the pharyngeal wall. 

Further work is required to improve the ability of the method to preserve such gaps. A 

factor that can make preservation of such gaps particularly challenging is the presence of 

fluid within them. In rtMR images, fluid has a similar intensity to the soft palate and 

posterior pharyngeal wall and can therefore make it appear as though the soft palate and 

posterior pharyngeal wall are in contact (an example is shown in Figure 61B). This factor 

should be considered in any future work. 

Different vocal tract shapes and articulator positions are required to produce different 

speech sounds. Our method was trained using 2D rtMR images of vocal tract shapes that 

occur in counting from one to ten (a speech task commonly performed in clinical speech 

assessment) rather than using images of all the different possible shapes in English. 

Nevertheless, the proposed method was able to segment rtMR images of three different 

vocal tract shapes that were not present in the training dataset with a similar accuracy to 

images of vocal tract shapes that were present in the training dataset. The median DSC and 

median HD of segmentations of the former images were 0.96 and 6 mm respectively, while 

those of the latter images were 0.96 and 5 mm. The similarity of these results suggests that 
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the proposed method is able to segment images of vocal tract shapes that were not present 

in the training dataset with an accuracy similar to images of vocal tract shapes that were 

present in the training dataset. However, further work involving images of a larger range of 

vocal tract shapes is required to investigate the extent to which this finding is true. 

The proposed method does not exploit the temporal nature of the image series. In 

other words, it segments images individually without considering prior or subsequent 

images in the series. Future work could investigate if exploiting the temporal nature of the 

image series, for example using RNNs, results in improved segmentation accuracy. 

This work is a step towards the ul$mate goal of automa$c ar$culator segmenta$on 

and measurement in clinical prac$ce. However, a large amount of future work is required to 

achieve this goal. More specifically, three major challenges must be overcome. One 

challenge concerns the dataset used to develop the method, while the other two are 

technical. 

First, as explained in sec$on 4.1.6, a larger and more diverse dataset, both in terms of 

subjects and image contrast, must be created and used to develop and extend the method. 

More specifically, a dataset more representa$ve of the target pa$ent popula$on is required: 

since the target pa$ent popula$on primarily consists of children, the dataset must contain 

images of children. In addi$on, since velopharyngeal closure does not occur as expected in 

some of the speech of pa$ents with VPI, the dataset must contain image series where 

velopharyngeal closure does not occur as well as image series where it does. In addi$on, a 

dataset with images acquired using many different MRI scanners and pulse sequences is 

required to ensure that methods developed using the dataset are generalisable and perform 

well on images from different sources. While there are publicly available 2D speech MRI 

dataset [18,19], these do not have corresponding GT segmenta$ons thus limi$ng their use 

for training supervised DL-based segmenta$on methods. 

Second, to be suitable for use in clinical prac$ce, the method should be extended so 

that the shape and size of the so. palate and vocal tract are automa$cally measured in the 

images. While the segmenta$ons es$mated by the method are a useful step towards 

achieving this goal, further methods should be developed to automa$cally measure the size 

and shape of these segmenta$ons. 

Third, to be suitable for use in clinical prac$ce, the method should be extended so that 

the mo$on of ar$culators can be automa$cally tracked. There is increasing interest in 
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automa$c quan$fica$on of ar$culator mo$on in 2D rtMR image series, for example to 

facilitate analysis of ar$culator mo$on before and a.er treatment in pa$ents with VPI. As 

explained in sec$on 3.4.1, an established way to automa$cally quan$fy complex mo$on in 

an image series is by using a nonlinear image registra$on method to es$mate displacement 

fields between the images. Accurate displacement fields would enable clinical teams to 

obtain nearly automa$cally clinically relevant informa$on such as the direc$on in which the 

so. palate elevates during speech, the speed at which it elevates and the distance by which 

it elevates. Future work should extend the method in partnership with clinical teams to 

ensure that the measured aspects of mo$on are clinically relevant. 

 

5.6 Conclusions 

A novel automatic method to fully segment multiple groups of articulators as well as the 

vocal tract in 2D rtMR images of the vocal tract during speech was developed. The method 

is a step towards the ultimate goal of automatic articulator and vocal tract segmentation 

and measurement in clinical practice. 

At the time it was published [205], the method overcame the limitations of existing 

methods that either only segmented the air-tissue boundaries between the vocal tract and 

adjacent tissues or only fully segmented the vocal tract. Since then, three similar works have 

been developed [72,206,218], however, the proposed method remains the method that 

achieved the highest accuracy. 

In addition to the novel method, a novel clinically relevant metric for assessing the 

accuracy of vocal tract and articulator segmentation methods was developed and used to 

assess the accuracy of the novel method. 

 The next chapter will present work that extends the proposed method to enable 

tracking of the motion of articulators in 2D rtMR images of the vocal tract during speech. 
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Chapter 6: Articulator Motion Quantification in MR Images 
of Speech 

6 Ar*culator Mo*on Quan*fica*on in MR Images of Speech 
6.1 Introduc*on 

6.1.1 Mo&va&on 

As explained in section 3.1.6, visualisation of the vocal tract and articulators during speech 

provides information about the size, shape, motion and position of these anatomical 

features during speech production. In a research context, primarily in speech science 

research, this information is desirable as it provides insights into speech production, while, 

as explained in section 2.2.3, in clinical speech assessment this information is desirable as it 

enables identification of the defect(s) preventing velopharyngeal closure and consequently 

informs treatment decisions [1,3,4]. 

As explained in section 3.1.7, use of rtMRI to visualise the vocal tract and articulators 

during speech is increasing due to the growing availability of MRI scanners, the 

development of rtMRI techniques for such visualisation, and the unique ability of MRI to 

non-invasively acquire images of any orientation without using ionising radiation [12,27,61]. 

While currently the main application of rtMRI of speech is in speech science research [68–

76], the use of rtMRI in clinical speech assessment of patients with VPI is increasing [7,77–

82]. 

Real-time MRI of speech typically involves acquiring series of 2D images of a midsagittal 

slice of the vocal tract [12,27]. There is increasing interest in automatic quantification of 

articulator motion in these series, for example to facilitate analysis of articulator motion 

before and after VPI treatment. An established way to automatically quantify complex 

motion in an image series is by using a nonlinear image registration method to estimate 

displacement fields between the images. 

During speech, the articulators move in a complex manner. As well as changing shape 

and position, they come into contact and separate from each other and anatomical 

structures such as the pharyngeal wall. As described in section 2.2.3, the motion of the soft 

palate informs VPI treatment decision making in clinical speech assessment. Consequently, a 

key requirement of articulator motion quantification methods intended for use in clinical 
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speech assessment is that the methods accurately capture soft palate motion. In particular, 

the methods must capture any velopharyngeal closures that occur. 

 

6.1.2 Related Work 

As described in section 3.4, traditional nonlinear registration methods establish nonlinear 

spatial correspondences (usually displacement vector fields) between two images by 

iteratively optimising a cost function [225]. Many different types of methods have been 

developed and used to register a wide variety of medical images [225]. Well-established 

methods include FFDs [236], demons [239], discrete methods [289] and their extensions 

such as [240] and [223]. Most traditional nonlinear registration methods are designed to 

estimate smooth and continuous displacement fields. However, such fields cannot 

accurately capture certain types of motion such as organs sliding past each other or organs 

coming into contact and then separating from each other. Instead, displacement fields with 

discontinuities are required to capture these types of motion. While several methods 

[235,259–262] have been developed to capture the former type of motion, only one of 

these [261] can capture the latter type. This method would be particularly suitable for 

capturing the motion of the articulators during speech, however, unfortunately there is no 

publicly available implementation of it. 

Recently, inspired by the successes of DL-based methods in other medical image 

analysis tasks, researchers have developed DL-based nonlinear registration methods 

[228,229,243–246,290]. The latest methods [243–246,290] are unsupervised or weakly-

supervised and consist of CNNs (introduced in section 3.2.6) for estimating displacement 

fields between images and spatial transformers [255] for transforming images and/or 

segmentations according to the estimated displacement fields. These methods have 

achieved state-of-the-art accuracy in the registration of MR images of organs including the 

heart [243,244] and brain [245,246,290]. 

Registration and segmentation can be related tasks, and there is increasing evidence 

that including segmentation information during the training of a registration CNN results in 

more accurate motion estimates [245,247,257,258,248–254,256]. The motivation for 

including segmentation information in the registration process is usually to provide 

information about the locations of boundaries between anatomical features in the images 
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and also information about which anatomical features different regions of the displacement 

fields belong to. Inclusion of segmentation information is typically achieved by including 

region-overlap-based terms such as the DSC (introduced in section 3.3.2) in the CNN loss 

function. Joint registration and segmentation frameworks [247–250,252,257,258] have been 

developed as well as “segmentation-informed” registration frameworks such as 

VoxelMorph [245]. In fact, VoxelMorph can be trained in two ways: (i) using only the 

estimated displacement fields and the fixed and transformed moving images in the loss 

function, and (ii) in a segmentation-informed manner, where fixed and transformed moving 

segmentations are also used in the loss function. 

Segmentation information has also been included in the registration process in two 

other ways. The first approach is to use segmentations to modify the appearance of the 

images, in order to optimise the images for the registration task [251,253,256]. In this 

approach, the images are modified before being used as inputs to the registration CNNs 

either by multiplying them by binary masks [251,253] or by using a fully convolutional image 

transformer network whose loss function includes a region-overlap-based term [256]. The 

second approach is to use segmentations as well as images as inputs to the registration CNN 

[254]. The rationale for inputting segmentations, even if these are estimates rather than 

ground-truths, is that they provide information about the positions of anatomical features 

in the images and would therefore help the CNN to estimate more accurate displacement 

fields. 

Similarly to traditional nonlinear registration methods, currently the majority of DL-

based methods are designed to estimate smooth and continuous displacement fields. Three 

methods have been developed to estimate displacement fields with discontinuities 

[253,257,267]. [267] is designed to capture sliding motion only, while [253] and [257] are 

designed to capture cardiac cycle motion and their suitability for capturing motion where 

organs come into contact and then separate from each other has not yet been investigated. 

In previous work, only traditional registration methods have been applied to MR 

images of the vocal tract [20,21,69,72,75,76,196,268–270]. Rigid methods were used to 

correct for changes in head position in series of 2D rtMR images acquired during speech 

[69,72,75,76,196], while nonlinear methods were used to synthesise dynamic image series 

of speech [21,268–270], create dynamic 3D atlases of the vocal tract during speech [21] and 

estimate the speed at which the tongue tip moves during speech [20]. More specifically, the 
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diffeomorphic demons method [240] was used in [268–270], the FFD method [236] was 

used in [21] and the method described in [271] was used in [20]. In [20,268,269], images 

where articulators were in contact were registered to images where they were not and vice 

versa. However, the authors did not evaluate if their chosen registration methods captured 

these changes in contact. In [268], the authors reported that the diffeomorphic demons 

method did not capture articulators coming into contact (for example, the lips coming into 

contact). Nevertheless, the authors used the same method in similar subsequent work 

[269]. In [20,269], the authors did not discuss if their chosen registration methods captured 

changes in articulator contact. Tongue tip speeds estimated using the nonlinear-

registration-based method in [20] were found to be similar to those reported in the 

literature, suggesting that these methods can accurately estimate the speed at which 

articulators move during speech. 

To accurately represent soft palate motion, displacement fields estimated by 

nonlinear registration methods must capture any velopharyngeal closures that occur. 

However, standard metrics such as region-overlap-based terms do not evaluate this. 

Accurate velopharyngeal closure capture is especially important for methods to analyse the 

soft palate motion of patients with VPI, as the presence or absence of velopharyngeal 

closures can affect treatment decisions [1]. 

In the previous chapter and [205], a metric based on velopharyngeal closure was 

proposed and used to evaluate the accuracy of a method to segment 2D rtMR images of the 

vocal tract during speech. This metric quantifies how many of the velopharyngeal closures in 

the GT segmentations occur in the estimated segmentations and is calculated by comparing 

corresponding consecutive segmentations in the two series. It could also be used to 

evaluate the accuracy of a registration method. In this case, the metric would be calculated 

by comparing the GT segmentations of the fixed images with the transformed GT 

segmentations of the moving images. 

 

6.1.3 Contribu&ons 

The work presented in this chapter makes two contributions and has been peer reviewed 

and published as a journal article [291]. First, it begins to address the unmet need for 

automatic articular motion analysis in 2D rtMR images of the vocal tract during speech, by 
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developing a segmentation-informed nonlinear registration framework to estimate 

articulator-specific displacement fields between these images. This is the first time that 

segmentation-informed registration has been used for this application. Second, the work 

uses for the first time a metric based on a quantifiable and clinically relevant aspect of 

articulator motion (velopharyngeal closure) to evaluate the accuracy of these displacement 

fields. 

The work builds on the work presented in the previous chapter in the following 

ways. First, it uses the DL-based segmentation method presented in the previous chapter to 

provide the segmentations used as inputs to the registration CNN. Second, it uses the 

velopharyngeal closure evaluation metric proposed in the previous chapter to evaluate if 

the displacement fields estimated by the proposed segmentation-informed nonlinear 

registration method accurately capture velopharyngeal closures. 

 

6.2 Methods 

6.2.1 Proposed Registra&on Framework 

Figure 63 shows an overview of the proposed framework. Given a pair of images from a 

series of 2D rtMR images of the vocal tract, the framework will es$mate a displacement field 

to align the moving image to the fixed image. The framework is based on the segmenta$on-

informed VoxelMorph framework [245] but features two adapta$ons. First, it includes a 

method to segment the images. Second, segmenta$ons as well as images are used as inputs 

to the registra$on CNN, in the same manner as the framework of Chen et al. [254]. (In the 

segmenta$on-informed VoxelMorph, segmenta$ons are only used to compute part of the 

loss func$on during training.) Figure 64 shows the architecture of the registra$on CNN. The 

segmenta$on method included in the framework is the DL-based method presented in the 

previous chapter and [205] to segment 2D rtMR images of the vocal tract. This method 

segments six anatomical features in each image. All six segmenta$ons are used as inputs to 

the registra$on CNN. The registra$on CNN therefore has 14 input channels (two for the 2D 

fixed and moving images, 12 for the 2D fixed and moving segmenta$ons), while the 

registra$on CNN of VoxelMorph only has two (for the fixed and moving images). 

Like the VoxelMorph frameworks, the proposed framework includes a spa$al 

transformer to transform an image or segmenta$on according to an es$mated displacement 
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field. The spa$al transformer is required for framework training and evalua$on, but not for 

framework deployment. 

 

 
Figure 63: An overview of the proposed framework for segmenta>on-informed nonlinear registra>on. A pair of two-

dimensional (2D) real->me magne>c resonance images of the vocal tract pass through the framework as follows. First, the 

image pair are used as inputs to a convolu>onal neural network (CNN) which es>mates segmenta>ons of six different 

anatomical features in the images. Second, the segmenta>ons are post-processed to remove anatomically impossible 

regions. Third, the image pair and post-processed segmenta>ons are used as inputs to a registra>on CNN which es>mates a 

displacement field to align the moving image to the fixed image. Fourth, the moving image and displacement field are used 

as inputs to a spa>al transformer to transform the moving image. During training and evalua>on, the spa>al transformer is 

also used to transform the ground-truth (GT) segmenta>ons of the moving image. The red boundary contains the parts of 

the framework used during training and evalua>on, while the green boundary contains the parts used during deployment. 

The grey boundary contains the terms in the loss func>on used to train the framework. Image source: [291]. 

 
Figure 64: The architecture of the registra>on convolu>onal neural network in the proposed framework (i.e. the Reg CNN 

box in Figure 63). When input with a pair of two-dimensional (2D) real->me magne>c resonance images of the vocal tract 

and segmenta>ons of six different anatomical features in the pair, the network es>mates a displacement field to align one 

of the images to the other. The network has 14 input channels: two for the image pair, six for the segmenta>ons of the fixed 

Moving 2D 
image

Fixed 2D 
image

Seg 
CNN

Post-
processing

Reg 
CNN ! Spatial 

transformer

Transformed 
image

GT seg 
moving 2D 

image

Spatial 
transformer

Transformed 
GT seg

Predicted 
seg

Displacement 
field

Predicted 
seg

Training and evaluation

Deployment

GT seg 
fixed 2D 
image

DSC

MSE

∇! !

Loss terms

256´256

128´128

64´64

32´32

16´16

14

16

32

32

32 32

64 32

3264

48 32

46 32 16 16 2

Input

Deformation field

2D conv (3´3 kernel, stride 2), BN, ReLU

2D conv (3´3 kernel, stride 1), BN, ReLU Feature maps

Feature maps from previous layer

Skip connection M´M In-plane dimensions

´2 nearest-neighbour upsampling N Number of channels



Articulator Motion Quantification in MR Images of Speech 

 

163 

image and six more for the segmenta>ons of the moving image. The network output has 2 channels: one for displacements 

in the x-direc>on and another for displacements in the y-direc>on. The outputs of each 2D convolu>on (conv) are batch 

normalised. Following batch normalisa>on (BN), the outputs are passed through a rec>fied linear unit (ReLU). Image 

source: [291]. 

6.2.2 Framework Implementa&on, Training and Evalua&on 

The segmenta$on method included in the framework had been trained separately in the 

way described in the previous chapter and [205]. The registra$on framework was trained 

using the same training/valida$on/test dataset split as the segmenta$on method. The 

framework was implemented in PyTorch 1.7.1 [281] and trained for 200 epochs. In each 

epoch, every image in the training dataset was used once as the fixed image. Each fixed 

image was randomly paired with another image of the same subject. Each mini-batch 

consisted of four image pairs. Segmenta$ons of anatomical features in these images were 

es$mated using the segmenta$on method. The images and es$mated segmenta$ons were 

then used as inputs to the registra$on CNN. During training and evalua$on, GT 

segmenta$ons of the images were transformed according to the displacement fields 

es$mated by the registra$on CNN. The Adam op$miser [151] with 𝛽"=0.9, 𝛽)=0.999 and 

𝜀=1e-8 was used during training. Data augmenta$on consis$ng of random transla$ons, 

rota$ons, cropping and rescaling was performed to increase the size of the training dataset 

by a factor of four. More informa$on about the augmenta$ons is provided in 5.2.2 of this 

thesis and sec$on 2.3 of [205]. During framework evalua$on, every image in the test dataset 

was used as the fixed image. Each image was paired with the reference image of the dataset. 

 

6.2.3 Loss Func&on 

The proposed framework was trained using the same loss func$on as the segmenta$on-

informed VoxelMorph framework. This loss func$on consisted of three terms: an 𝑀𝑆𝐸 term; 

an L2 regularisa$on of the spa$al gradients of the displacement field (𝐷) term and a 𝐷𝑆𝐶 

term. 𝑀𝑆𝐸 was used to quan$fy differences in image appearance: 

 

𝑀𝑆𝐸 = "
TU
∑ ∑ (𝐹(𝑥, 𝑦) − 𝑀&(𝑥, 𝑦)))U

(<"
T
'<"                   (23) 

 

where 𝐹(𝑥, 𝑦) is the intensity of pixel (𝑥, 𝑦) in the fixed image, 𝑀&(𝑥, 𝑦) is the intensity of 

pixel (𝑥, 𝑦) in the transformed moving image, and 𝑋 × 𝑌 is the image matrix size. 
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Spa$al gradients of the displacement field were approximated using differences 

between neighbouring pixels: 

 

∇𝐷(𝑥, 𝑦) ≈ (𝐷(𝑥 + 1, 𝑦) − 𝐷(𝑥, 𝑦), 𝐷(𝑥, 𝑦 + 1) − 𝐷(𝑥, 𝑦))               (24) 

 

The L2 regularisa$on term was therefore calculated using the following equa$on: 

 

‖∇𝐷‖) =
1
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            (25) 

The full loss func$on was: 

 

𝐿 = 𝑀𝑆𝐸 + 𝜆‖∇𝐷‖) − 𝛾𝐷𝑆𝐶                   (26) 

 

where 𝜆 and 𝛾 are loss weigh$ng terms. Sec$on 6.3.4 provides details on how these 

hyperparameters were op$mised. 

 

6.3 Experiments 

6.3.1 Data 

The five rtMR image series described in section 4.1.2 were used in the experiments, along 

with their corresponding GT segmentations described in section 4.1.4. In each series, the 

first image that met the following criteria was manually chosen as the reference image: 

1. Upper and lower lips not in contact. 

2. Tongue not in contact with roof of mouth or soft palate. 

3. Soft palate not in contact with pharyngeal wall. 

Figure 65 shows the reference images. During framework evalua$on, these images were 

used as the moving image for registra$on purposes. 
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Figure 65: The reference image in each of the five series of two-dimensional real->me magne>c resonance images (image 

from [291]). During framework evalua>on, these images were used as the moving image for registra>on purposes. 

 

6.3.2 Displacement Field Evalua&on 

Displacement fields es$mated by the framework were evaluated by first transforming 

moving GT segmenta$ons according to the fields and then comparing these with fixed GT 

segmenta$ons using the three metrics described below. 

 

6.3.2.1 Dice Coefficient and Average Symmetric Surface Distance 

The DSC (introduced in sec$on 3.3.2) was used to quan$fy the overlap of corresponding 

classes in the fixed and transformed moving GT segmenta$ons, while the ASD (also 

introduced in sec$on 3.3.2) was used to quan$fy the average discrepancy between pixels at 

the surfaces of corresponding classes. Six values of each metric were calculated per moving 

segmenta$on: one value per class. The metrics were calculated using the DiceMetric and 

SurfaceDistanceMetric func$ons from MONAI 0.9.0 [292]. 

 

6.3.2.2 True Velopharyngeal Closures 

The third metric (introduced in sec$on 5.3.3) evaluates if velopharyngeal closures are 

captured by the displacement fields. The number of true velopharyngeal closures captured 

by the displacement fields was calculated in the following way. First, transformed moving GT 

segmenta$ons were automa$cally labelled as showing velopharyngeal closure or not. This 

enabled the velopharyngeal closures in a series of segmenta$ons to be represented as a 

series of binary values (one for each frame) with zero indica$ng no velopharyngeal closure 

and one indica$ng velopharyngeal closure. Second, the binary series of the fixed and 

transformed moving GT segmenta$ons was automa$cally compared. A velopharyngeal 

closure was considered to be captured correctly if a series of ones in both binary series 

overlapped. The so.ware to label segmenta$ons and create and compare binary series was 
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developed in-house and implemented using MATLAB 2019b (MathWorks, Na$ck, MA). The 

so.ware determined if a segmenta$on frame showed velopharyngeal closure by iden$fying 

if three or more posterior “so. palate” pixels in the frame were in contact with “head” 

pixels. 

 

6.3.3 Comparison with State-of-the-Art Methods and Frameworks 

The proposed framework was benchmarked against five current state-of-the-art deformable 

registra$on methods and frameworks: two tradi$onal methods and three frameworks. The 

tradi$onal methods were FFD [236] and a segmenta$on-informed version of FFD (SIFFD) 

where deforma$ons in certain regions of the moving image are constrained to be rigid [293]. 

The frameworks were the VoxelMorph (VXM) and segmenta$on-informed VXM (SIVXM) 

frameworks [245] and a joint registra$on and segmenta$on (JRS) framework [247]. 

Benchmarking was performed by comparing es$mated displacement fields using the two 

metrics described in sec$on 6.3.2. 

 

6.3.3.1 Free-Form Deforma6on Methods 

Both FFD methods were implemented using Ni.yReg version 1.5.39 [237]. The cost func$on 

consisted of three terms: a normalised mutual informa$on term (𝑁𝑀𝐼); a bending energy 

(𝐵𝐸) term and a term based on the symmetric and an$-symmetric parts of the Jacobian (𝐿𝐸) 

[237]. The full cost func$on was: 

 

𝐶 = (1 − 𝜆 − 𝛾)𝑁𝑀𝐼 − 𝜆𝐵𝐸 − 𝛾𝐿𝐸                   (27) 

 

where 𝜆 and 𝛾 are cost weigh$ng terms. 

Three itera$on levels were used in the op$misa$on of the cost func$on, with a 

maximum of 150 itera$ons in the final level. In SIFFD, deforma$ons in the region of the 

image corresponding to the head segmenta$on es$mated by the segmenta$on method 

were constrained to be rigid. While it may seem counterintui$ve to use rigid constraints, the 

reason for using these was to prevent the pharyngeal wall (part of the head segmenta$on 

class) from being misregistered to the so. palate. 
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 For both methods, several registra$ons were performed using different combina$ons 

of cost weigh$ng term values and spline grid spacings (listed in Table 8), and then evaluated 

using the metrics described in sec$on 6.3.2, enabling iden$fica$on of the op$mal values 

and spacings. 

 

6.3.3.2 VoxelMorph Frameworks 

The two VoxelMorph frameworks are almost iden$cal; the only difference between them is 

the loss func$on used to train them. The SIVXM framework is trained using 𝐿 (see Equa$on 

26), while the VXM framework is trained using a loss func$on consis$ng of two of the three 

terms in 𝐿: 

 

𝐿JTV = 𝑀𝑆𝐸 + 𝜆‖∇𝐷‖)                    (28) 

 

The key difference between 𝐿 and 𝐿JTV is that the former contains a segmenta$on-

dependent term (𝐷𝑆𝐶). Use of 𝐿 during training therefore results in a segmenta$on-

informed registra$on framework, while use of 𝐿JTV does not. The frameworks were 

implemented in PyTorch 1.7.1 using the code publicly available at 

hXps://github.com/voxelmorph/voxelmorph. Framework training and evalua$on was 

performed as described in sec$on 6.2.2. 

 

6.3.3.3 Joint Image Registra6on and Segmenta6on Framework 

This framework was implemented in PyTorch 1.7.1 using the code publicly available at 

hXps://github.com/cq615/Joint-Mo$on-Es$ma$on-and-Segmenta$on. The framework was 

trained in three stages using three different loss func$ons, as described in sec$on 2.2 of 

[247], and for 200 epochs in total. First, the registra$on CNN was trained for 67 epochs using 

𝐿JTV (see Equa$on 28) as the loss func$on. Second, the segmenta$on CNN was trained for 

67 epochs using cross entropy (𝐶𝐸R?$_?R>) (introduced in sec$on 3.3.2) as the loss func$on. 

𝐶𝐸R?$_?R> was calculated by comparing the segmenta$ons es$mated by the segmenta$on 

CNN to the GT segmenta$ons. Third, both CNNs were jointly trained for 66 epochs using a 

combina$on of 𝐿JTV, 𝐶𝐸R?$_?R> and an addi$onal cross entropy term (𝐶𝐸$XS_>$) as the loss 
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func$on.	𝐶𝐸$XS_>$ was calculated by comparing the fixed and transformed moving GT 

segmenta$ons. The full loss func$on was: 

 

𝐿YZ9 = 𝑀𝑆𝐸 + 𝜆‖∇𝐷‖) + 𝛾"𝐶𝐸R?$_?R> + 𝛾)𝐶𝐸$XS_>$                (29) 

 

where 𝛾" and 𝛾) are loss weigh$ng terms. All other aspects of framework training and 

evalua$on were performed as described in sec$on 6.2.2. 

 

6.3.4 Five-Fold Cross-Valida&on 

Four separate five-fold cross-valida$ons were carried out to evaluate the generalisability of 

the VXM, SIVX, JRS and proposed frameworks respec$vely. Each cross-valida$on was carried 

out as follows. A different image series was le. out in each fold. Hyperparameter 

op$misa$on was performed as part of the cross-valida$on, by carrying out a nested cross-

valida$on for each main cross-valida$on fold. The nested cross-valida$ons were four-fold 

cross-valida$ons where each of the remaining four image series were le. out once. In each 

nested cross-valida$on fold, combina$ons of learning rates and loss term weigh$ngs (listed 

in Table 8) were evaluated. The op$mal hyperparameter combina$on was iden$fied by 

comparing the number of true velopharyngeal closures captured by the displacement fields 

es$mated for the le.-out image series of the nested cross-valida$on. The combina$on that 

resulted in the capture of the largest number of true velopharyngeal closures was chosen as 

the op$mal hyperparameter combina$on. Once the op$mal combina$on had been 

iden$fied for a main cross-valida$on fold, these hyperparameters were used to train the 

framework. In each main cross-valida$on fold, the framework was trained using all the 

image series except the le.-out image series for that fold, and then evaluated using the le.-

out image series. 

 

6.3.5 Abla&on Study 

Although the segmenta$ons consist of six classes, only the head, so. palate and vocal tract 

classes are required to determine if there is velopharyngeal closure. An abla$on study was 

performed to inves$gate the effect of these three classes on the accuracy of the proposed 

framework. Three experiments were performed where different classes were used as inputs 
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to the registra$on CNN during the training and evalua$on of the framework. In the first, only 

the so. palate and vocal tract classes were used as inputs. In the second, the head, so. 

palate and vocal tract classes were used. In the third, all classes except the so. palate and 

vocal tract were used. In all other respects, the framework was trained and evaluated in the 

way described in sec$ons 6.2.2, 6.3.2 and 6.3.4. 

 

Table 8: Cost weigh>ng terms, spline grid spacings (GSs in pixels) and hyperparameter combina>ons that were evaluated. 

Cost weigh>ng terms (𝜆, 𝛾) and spline GSs were evaluated when op>mising the free-form deforma>ons (FFD) method and 

segmenta>on-informed FFD (SIFFD) method. Hyperparameter combina>ons were evaluated during hyperparameter 

op>misa>on of the VoxelMorph (VXM), segmenta>on-informed VXM (SIVXM), joint registra>on and segmenta>on (JRS) and 

proposed (Proposed) frameworks. Nc indicates the number of combina>ons. Eight or more combina>ons of learning rate 

(LR) and loss weigh>ng terms (𝜆, 𝛾, 𝛾1 and 𝛾2) were evaluated per framework. 

Framework Nc LR 𝝀 𝜸 𝜸𝟏 𝜸𝟐 GS 

FFD & SIFFD 12  {0, 0.001} {0, 0.01}   {4, 5, 6} 

VXM 9 

{0.00009, 

0.0003, 

0.0009} 

{0.001, 

0.01, 0.1} 
    

SIVXM 8 
{0.0003, 

0.0009} 

{0.001, 

0.01} 
{0.1, 1}    

JRS 16 
{0.0003, 

0.0009} 

{0.001, 

0.01} 
 {0.1, 1} {0.1, 1}  

Proposed 8 
{0.0003, 

0.0009} 

{0.001, 

0.01} 
{0.1, 1}    

 

6.3.6 Sta&s&cal Tests 

Normality of DSC and ASD groups was assessed using a Chi-squared goodness-of-fit test. No 

groups were found to be normally distributed using a 5% significance level. Groups of DSCs 

were compared using either a two-tailed Wilcoxon signed-rank test or a two-tailed sign test, 

depending on whether the distribu$on of differences between paired data points was 

symmetric. Groups of ASDs were compared in the same way as groups of DSCs. Numbers of 

true velopharyngeal closures were compared using McNemar’s test. A 5% significance level 

was used for all tests, corrected using the Holm-Bonferroni method to compensate for 
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mul$ple comparisons. All sta$s$cal tests were performed using MATLAB 2019b (MathWorks, 

Na$ck, MA). 

 

6.4 Results 

6.4.1 Op&mal Parameters 

Table 9 lists the op$mal parameters for the FFD methods, while Table 10 lists the op$mal 

hyperparameters for training each framework. 

 

Table 9: Op>mal parameters for the free-form deforma>ons (FFD) method and segmenta>on-informed FFD (SIFFD) method. 

GS indicates spline grid spacing in pixels, while 𝜆 and 𝛾 are cost weigh>ng terms. 

Method Subject 𝝀 𝜸 GS 

FFD 

1 0.001 0 5 

2 0 0.01 6 

3 0 0 4 

4 0.001 0 6 

5 0 0 6 

SIFFD 

1 0 0 4 

2 0 0.01 4 

3 0 0.01 4 

4 0.001 0 4 

5 0 0 5 
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Table 10: Hyperparameters iden>fied as being op>mal during hyperparameter op>misa>on of the VoxelMorph (VXM), 

segmenta>on-informed VXM (SIVXM), joint registra>on and segmenta>on (JRS) and proposed (Proposed) frameworks. LR 

indicates learning rate and CV fold indicates the fold of the cross-valida>on, while 𝜆, 𝛾, 𝛾, and 𝛾- are loss weigh>ng terms. 

Framework CV fold LR 𝝀 𝜸 𝜸𝟏 𝜸𝟐 

VXM 

1 0.0009 0.001    

2 0.0009 0.001    

3 0.0009 0.001    

4 0.0003 0.001    

5 0.0009 0.001    

SIVXM 

1 0.0009 0.001 1   

2 0.0009 0.001 1   

3 0.0009 0.001 1   

4 0.0009 0.001 1   

5 0.0003 0.001 1   

JRS 

1 0.0003 0.001  1 1 

2 0.0003 0.01  1 1 

3 0.0003 0.001  1 0.1 

4 0.0003 0.001  1 1 

5 0.0003 0.001  1 1 

Proposed 

1 0.0009 0.001 0.1   

2 0.0009 0.01 1   

3 0.0003 0.01 1   

4 0.0009 0.001 1   

5 0.0009 0.01 1   

 

6.4.2 Example Images and Segmenta&ons 

Figure 66 shows example transformed images and GT segmenta$ons output by each of the 

methods and frameworks. In Figure 66, the fixed images are consecu$ve images from one of 

the image series and show a velopharyngeal closure. This closure is captured by the 

proposed framework: contact between the so. palate and pharyngeal wall is shown in three 

of the transformed images and segmenta$ons. However, the closure is not captured by the 
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FFD methods or the VXM framework: none of the transformed images or segmenta$ons 

show contact between the so. palate and the pharyngeal wall. The closure is par$ally 

captured by the SIVXM and JRS frameworks: two of the transformed images and 

segmenta$ons output by the former framework show contact between the so. palate and 

the pharyngeal wall, while one of the transformed images and segmenta$ons output by the 

laXer framework shows such contact. 
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Figure 66: Transformed images and transformed ground-truth segmenta>ons output by each method and framework, 

cropped to only show the vocal tract region. In (A), the first two rows show the moving image (𝑀) and fixed image (𝐹) pairs. 

The five fixed images are consecu>ve images from one of the image series and show a velopharyngeal closure. The white 

arrows show where the soG palate is in contact with the pharyngeal wall. The moving images are the reference image of 

the subject. The remaining rows in (A) show the transformed moving images output by the free-form deforma>ons (FFD) 

and segmenta>on-informed FFD (SIFFD) methods and the VoxelMorph (VXM), segmenta>on-informed VXM (SIVXM), joint 

registra>on and segmenta>on (JRS) and proposed (Proposed) frameworks. In (B), the first two rows show the ground-truth 

segmenta>ons of the moving image (𝑚) and fixed images (𝑓). The remaining rows in (B) show the transformed ground-

truth segmenta>ons output by each method or framework. (C) shows enlarged versions of the segmenta>ons outlined in 

orange in (B). Image source: [291]. 
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6.4.3 Displacement Field Accuracy Evalua&on 

6.4.3.1 Dice Coefficients and Average Symmetric Surface Distances 

Figure 67 and Figure 68 show the DSCs of the transformed GT segmenta$ons output by each 

of the methods and frameworks, while Figure 69 and Figure 70 show the ASDs of the 

transformed GT segmenta$ons. In Figure 67 and Figure 69, the evalua$on metric is averaged 

over all segmenta$on classes, while in Figure 68 and Figure 70 the evalua$on metric is 

averaged over a single segmenta$on class. 

The median DSCs of the segmenta$on-informed frameworks were consistently 

higher than those of the FFD methods and VXM framework, both when DSCs were averaged 

over all six segmenta$on classes (as shown in Figure 67) and when DSCs were averaged over 

a single class (as shown in Figure 68). However, as shown in Figure 68 where the DSCs are 

averaged over a single class, no segmenta$on-informed framework consistently achieved 

sta$s$cally significantly higher DSCs than the others. Although the SIVXM framework 

achieved the highest median DSC in three classes (head, so. palate and tooth space), in the 

so. palate class there was no sta$s$cally significant difference between its DSCs and those 

of the proposed framework, and in the head class there was no sta$s$cally significant 

difference between its DSCs and those of the JRS framework. Similarly, although the 

proposed framework achieved the highest median DSC in two classes (jaw and vocal tract), 

in the jaw class there was no sta$s$cally significant difference between its DSCs and those of 

the JRS framework. However, the ranges of the DSCs of the proposed framework were 

consistently narrower than those of the other frameworks, sugges$ng improved robustness 

in registra$on performance. 

As shown in Figure 69 and Figure 70, almost iden$cal trends in framework 

performance were observed when the frameworks were evaluated using the ASD as when 

the frameworks were evaluated using the DSC. 
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Figure 67: Dice coefficients (DSCs) of the transformed ground-truth segmenta>ons output by the free-form deforma>ons 

(FFD) and segmenta>on-informed FFD (SIFFD) methods and the VoxelMorph (VXM), segmenta>on-informed VXM (SIVXM), 

joint registra>on and segmenta>on (JRS) and proposed (Proposed) frameworks. The DSCs are averaged over the six 

segmenta>on classes. (B) shows the sec>on of (A) where the DSCs are between 0.8 and 1.0. There were sta>s>cally 

significant differences between all the DSC groups. Image source: [291]. 

 

 
Figure 68: Dice coefficients (DSCs) of the transformed ground-truth segmenta>ons output by the free-form deforma>ons 

(FFD) and segmenta>on-informed FFD (SIFFD) methods and the VoxelMorph (VXM), segmenta>on-informed VXM (SIVXM), 

joint registra>on and segmenta>on (JRS) and proposed (Proposed) frameworks. The DSCs are averaged over a single 

segmenta>on class. (B) shows the sec>on of (A) where the DSCs are between 0.8 and 1.0. There were sta>s>cally significant 

differences between all the DSC groups, except between pairs of groups indicated with black bars above the box plots. 

Image source: [291]. 
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Figure 69: Average symmetric surface distances (ASDs) of the transformed ground-truth segmenta>ons output by the free-

form deforma>ons (FFD) and segmenta>on-informed FFD (SIFFD) methods and the VoxelMorph (VXM), segmenta>on-

informed VXM (SIVXM), joint registra>on and segmenta>on (JRS) and proposed (Proposed) frameworks. The ASDs are 

averaged over all six segmenta>on classes. (B) shows the sec>on of (A) where the ASDs are between 0.0 and 1.2. There 

were sta>s>cally significant differences between all the ASD groups, except between pairs of groups indicated with black 

bars above the box plots. Image source: [291]. 

 
Figure 70: Average symmetric surface distances (ASDs) of the transformed ground-truth segmenta>ons output by the free-

form deforma>ons (FFD) and segmenta>on-informed FFD (SIFFD) methods and the VoxelMorph (VXM), segmenta>on-

informed VXM (SIVXM), joint registra>on and segmenta>on (JRS) and proposed (Proposed) frameworks. The ASDs are 

averaged across a single segmenta>on class. (B) shows the sec>on of (A) where the ASDs are between 0 and 2. There were 

sta>s>cally significant differences between all the ASD groups, except between pairs of groups indicated with black bars 

above the box plots. Image source: [291]. 
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6.4.3.2 True Velopharyngeal Closures 

Figure 71 shows the number of true velopharyngeal closures in the transformed GT 

segmenta$ons output by each of the methods and frameworks. 

The FFD methods failed to capture any velopharyngeal closures. Comparing the 

frameworks, the VXM framework captured the smallest number of velopharyngeal closures 

(3), while the proposed framework captured the largest (27). Furthermore, the proposed 

framework captured all the closures in four of the five image series, while the SIVXM and JRS 

frameworks only captured all the closures in one of the series and the VXM framework did 

not capture all the closures in any of the series. There were sta$s$cally significant 

differences between the true velopharyngeal closures captured by each framework, except 

between the SIVXM and JRS frameworks. 

 

 
Figure 71: True velopharyngeal closures in the transformed ground-truth (GT) segmenta>ons (of the moving image) output 

by the free-form deforma>ons (FFD) and segmenta>on-informed FFD (SIFFD) methods and the VoxelMorph (VXM), 

segmenta>on-informed VXM (SIVXM), joint registra>on and segmenta>on (JRS) and proposed (Proposed) frameworks. The 

bars labelled GT indicate the number of velopharyngeal closures in the GT segmenta>ons of the fixed images. In (A) the true 

velopharyngeal closures are summed across all five subjects, while in (B) the true velopharyngeal closures are summed 

across a single subject. There were sta>s>cally significant differences between the true velopharyngeal closures captured by 

each framework, except between the frameworks indicated with the black bar in (A). Image source: [291]. 

 
6.4.4 Abla&on Study 

Figure 72 shows the DSCs of all classes in the transformed GT segmenta$ons output by each 

version of the proposed framework, while Figure 73 shows the ASDs of all classes. The 

median DSCs of the classes that were used as inputs to the registra$on CNN of the 
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framework were consistently higher than those of the other classes, while the median ASDs 

of the classes were consistently lower. 

Figure 74 shows the number of true velopharyngeal closures in the transformed GT 

segmenta$ons output by each version of the proposed framework. The version where the 

head, so. palate and vocal tract classes were used as inputs to the registra$on CNN 

captured the same number of closures as the version where all classes were used as inputs, 

while the version where the so. palate and vocal tract classes were used as inputs captured 

one less closure. The version where the so. palate and vocal tract classes were not used as 

inputs failed to capture any closures. 

 

 
Figure 72: Dice coefficients (DSCs) of the transformed ground-truth segmenta>ons output by the proposed framework, 

averaged across a single segmenta>on class. The colour code indicates the segmenta>on classes used as inputs to the 

registra>on convolu>onal neural network of the proposed framework during training and evalua>on. In the Figure legend, 

‘All’ indicates that all six segmenta>on classes described in sec>on 4.1.4 were used as inputs, while ‘H, SP and VT’ indicates 

the head (H), soG palate (SP) and vocal tract (VT) classes. (B) shows the sec>on of (A) where the DSCs are between 0.8 and 

1. There were sta>s>cally significant differences between all the ASD groups, except between pairs of groups indicated with 

black bars above the box plots. Image source: [291]. 
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Figure 73: Average symmetric surface distances (ASDs) of the transformed ground-truth segmenta>ons output by the 

proposed framework, averaged across a single segmenta>on class. The colour code indicates the segmenta>on classes used 

as inputs to the registra>on convolu>onal neural network of the proposed framework during training and evalua>on. In the 

Figure legend, ‘None (VXM)’ indicates the results of the VoxelMorph framework, ‘All’ indicates that all six segmenta>on 

classes described in sec>on 4.1.4 were used as inputs, while ‘H, SP and VT’ indicates the head (H), soG palate (SP) and vocal 

tract (VT) classes. (B) shows the sec>on of (A) where the ASDs are between 0 and 2. There were sta>s>cally significant 

differences between all the ASD groups, except between pairs of groups indicated with black bars above the box plots. 

Image source: [291]. 

 
Figure 74: True velopharyngeal closures in the transformed ground-truth segmenta>ons (of the moving image) output by 

the proposed framework. The label ‘Ground truth’ indicates the number of velopharyngeal closures in the ground-truth 

segmenta>ons of the fixed images. In (A) the closures are summed across all five subjects. The label ‘All’ indicates that all six 

segmenta>on classes described in sec>on 4.1.4 were used as inputs to the registra>on convolu>onal neural network of the 

proposed framework, while ‘H, SP and VT’ indicates the head (H), soG palate (SP) and vocal tract (VT) classes. In (B) the true 

velopharyngeal closures are summed across a single subject. Image source: [291]. 
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6.5 Discussion 

A framework for es$ma$ng displacement fields between 2D rtMR images of the vocal tract 

during speech was successfully developed. The framework is based on the SIVXM framework 

[245] but features two adapta$ons. First, the framework includes a method to segment the 

images. Second, segmenta$ons as well as images are used as inputs to the registra$on CNN, 

in the same manner as the framework of Chen et al. [254]. Incorpora$on of a segmenta$on 

method in the framework enables its use when segmenta$ons of the images are not already 

available. This is the first $me DL-based nonlinear registra$on of MR images of speech has 

been inves$gated. 

Evaluated using the DSC and ASD, the displacement field es$ma$on accuracy of the 

proposed framework was superior to two FFD methods and a current state-of-the-art 

framework (the VXM framework), and very similar to two current state-of-the-art 

segmenta$on-informed frameworks (the SIVXM framework and a joint registra$on and 

segmenta$on framework). However, when evaluated using a metric based on 

velopharyngeal closure, its performance was superior to all five state-of-the-art registra$on 

methods and frameworks. In other words, the displacement fields es$mated by the 

proposed framework captured more of the velopharyngeal closures in the image series, and 

therefore beXer captured this aspect of ar$culator mo$on than the methods and other 

frameworks. 

These results show that metrics based on clinically relevant and quan$fiable aspects 

of organ mo$on can be used to evaluate the accuracy of registra$on frameworks and can be 

more sensi$ve to differences in accuracy than standard metrics such as the DSC and ASD. 

In addi$on, these results show that registra$on CNNs input with segmenta$ons as 

well as images can es$mate displacement fields that beXer capture aspects of ar$culator 

mo$on than registra$on CNNs input with images only, even if the segmenta$ons are 

es$mates rather than ground truths. 

The FFD methods failed to capture any velopharyngeal closures. This result is 

unsurprising as these methods are designed to es$mate smooth and con$nuous 

displacement fields, while discon$nuous displacement fields are required to capture the 

complex mo$on of the ar$culators. Removing the smooth and con$nuous displacement 

field constraints in the cost func$on did not improve the registra$on accuracy of the 
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methods, showing that there are addi$onal reasons why they are not appropriate for 

capturing ar$culator mo$on. When registering to fixed images showing velopharyngeal 

closure, the FFD method consistently misregistered the pharyngeal wall to the so. palate, 

instead of registering the so. palate to the so. palate. An example of this is shown in Figure 

66C. The SIFFD method, which ensured that the head (which includes the pharyngeal wall) 

deformed in a rigid manner, successfully prevented misregistra$on of the pharyngeal wall to 

the so. palate but did not improve the so. palate registra$on accuracy. Ideally, the 

proposed framework would have been compared with the FFD-based method developed by 

Hua et al. [261], as this method was designed to es$mate displacement fields with 

discon$nui$es. However, unfortunately this was not possible as there is no publicly available 

implementa$on of the method.  

The results of the abla$on study show that unsurprisingly the head, so. palate and 

vocal tract segmenta$on classes are crucial for es$ma$ng displacement fields that 

accurately capture so. palate mo$on. This highlights the importance of using segmenta$ons 

of the anatomical features whose mo$ons are of interest but also segmenta$ons of 

neighbouring features that provide informa$on about the posi$ons of the features of 

interest, for example whether the features of interest are in contact with other features. The 

results of the abla$on study also show that using addi$onal segmenta$on classes such as 

the jaw, tongue and tooth space did not affect the number of velopharyngeal closures 

captured by the framework. However, as shown in Figure 72 and Figure 73, using these 

addi$onal classes was beneficial as it improved the accuracy with which they were 

registered by the framework. 

To further encourage a CNN to es$mate displacement fields that capture 

velopharyngeal closures, one approach for future inves$ga$on would be to use a loss 

func$on during CNN training that measures whether the star$ng points and dura$ons of any 

velopharyngeal closures captured in a series of es$mated displacement fields are correct. 

However, to be suitable for use in CNN training, this loss term would have to be 

differen$able. Developing a loss term that meets all these criteria would be challenging. A 

simpler approach would be to include a loss term based on whether individual transformed 

segmenta$ons show contact between the so. palate and pharyngeal wall. This could be 

achieved using a topological loss term such as the one developed by [294] which can iden$fy 

contact between different segmenta$on classes in a differen$able manner. 
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This work is another step towards the ul$mate goal of automa$c ar$culator 

segmenta$on and measurement in clinical prac$ce. However, a large amount of future work 

is required to achieve this goal. More specifically, three major challenges must be overcome. 

One challenge concerns the dataset used to develop the method, while the other two are 

technical. 

First, as explained in sec$on 4.1.6, a larger and more diverse dataset, both in terms of 

subjects and image contrast, must be created and used to develop and extend the method. 

More specifically, a dataset more representa$ve of the target pa$ent popula$on is required:  

since the target pa$ent popula$on primarily consists of children, the dataset must contain 

images of children. In addi$on, since velopharyngeal closure does not occur as expected in 

some of the speech of pa$ents with VPI, the dataset must contain image series where 

velopharyngeal closure does not occur as well as image series where it does. In addi$on, a 

dataset with images acquired using many different MRI scanners and pulse sequences is 

required to ensure that methods developed using the dataset are generalisable and perform 

well on images from different sources. While there are publicly available 2D speech MRI 

dataset [18,19], these do not have corresponding GT segmenta$ons thus limi$ng their use 

for training supervised DL-based segmenta$on-informed registra$on methods. 

Second, to be suitable for use in clinical prac$ce, the method should be extended so 

that the mo$on of specific features of ar$culators such as the $p of the so. palate can be 

automa$cally tracked. One way of achieving this would be to require users to manually 

define a point of interest in one of the images in the series. The method would then use the 

es$mated displacement fields to track the mo$on of the given point during speech and 

analyse it to provide informa$on such as the speed and direc$on of mo$on. Such an 

extension to the method would enable clinical teams to obtain nearly automa$cally clinically 

relevant informa$on such as the direc$on in which the so. palate elevates during speech, 

the speed at which it elevates and the distance by which it elevates. Future work should 

extend the method in partnership with clinical teams to ensure that the measured aspects 

of mo$on are clinically relevant. 

Third, to be suitable for use in clinical prac$ce, the method should be robust to 

changes in head posi$on in the image series due to subject mo$on. This could be achieved 

by performing a rigid registra$on pre-processing step before es$ma$ng displacement fields 

between images. Future work should aim to extend the method by including such a step. 
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6.6 Conclusions 

A framework for es$ma$ng displacement fields between 2D rtMR images of the vocal tract 

during speech was successfully developed and found to more accurately capture aspects of 

ar$culator mo$on than five current state-of-the-art nonlinear registra$on methods and 

frameworks. This framework builds on the segmenta$on method presented in the previous 

chapter and is another step towards the ul$mate goal of automa$c ar$culator mo$on, 

shape and size quan$fica$on in such image series in clinical prac$ce. In addi$on, a metric 

based on a clinically relevant and quan$fiable aspect of ar$culator mo$on was proposed 

and shown to be useful for evalua$ng frameworks for registering 2D rtMR images of speech. 

However, three main challenges must be addressed before the method is suitable for 

use in clinical prac$ce. First, a larger, more diverse and representa$ve dataset of 2D rtMR 

images of the vocal tract during speech must be created with corresponding GT 

segmenta$ons and used to train and evaluate the method. Second, the method should be 

extended to automa$cally track the mo$on of specific features of the ar$culators. Third, the 

method should be extended to include a rigid registra$on pre-processing step before 

es$ma$ng displacement fields between images, to ensure it is robust to changes in head 

posi$on in images as a result of subject mo$on. 

Dynamic 2D imaging of the vocal tract provides clinical teams with 2D informa$on 

about the mo$on of the so. palate during speech. However, a key considera$on when 

making VPI treatment decisions is how well the LVP (introduced in sec$on 2.1) is 

func$oning. Important factors that affect LVP func$on are the shape of the muscle and its 

orienta$on rela$ve to the so. palate. While dynamic 2D imaging provides 2D mo$on 

informa$on that enables clinical teams to infer how well the muscle is func$oning, this type 

of imaging does not allow visualisa$on of the muscle. It therefore does not provide clinical 

teams with informa$on about LVP shape or orienta$on that could influence VPI treatment 

decisions and aid treatment planning. Three-dimensional imaging is required to fully 

visualise the LVP and thus obtain shape and orienta$on informa$on about the muscle. The 

next chapter will describe the development of deep learning tools for automa$ng the 

analysis of the LVP in 3D MR images of the vocal tract. 
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Chapter 7: Deep-Learning-Based LVP Segmentation in 3D 
MR Images 

7 Deep-Learning-Based LVP Segmenta*on in 3D MR Images 
7.1 Introduc*on 

The LVP (introduced in sec$on 2.1) plays an essen$al role in speech produc$on. As explained 

in sec$on 2.2.1, a poorly func$oning LVP can prevent velopharyngeal closure from occurring, 

leading to speech impairments. Typically in clinical speech assessments, imaging is used to 

visualise the mo$on of the so. palate during speech and LVP func$on is then inferred from 

the mo$on. However, the LVP is not visualised. As explained in sec$on 2.2.3, a key factor 

that influences VPI treatment decisions is the defect(s) preven$ng velopharyngeal closure. If 

the defect is a poorly func$oning LVP, a surgical treatment that aims to improve LVP func$on 

is performed [1]. 

 As explained in sec$on 3.1.8, there is increasing interest in LVP visualisa$on, to 

beXer understand varia$ons in the shape and configura$on of the muscle [25,122,131–

140,123,141–143,124–130], to aid planning of surgical treatment of VPI [144,145], and for 

medical educa$on purposes [146]. MRI is predominantly used for LVP visualisa$on 

[13,25,130–139,122,140,142,143,123–129], due to its unique ability to acquire images of 

any orienta$on with excellent so. $ssue contrast without using ionising radia$on. As 

explained in sec$on 3.1.9, due to the small size of the LVP and its 3D structure, 3D imaging 

at a high spa$al resolu$on is required to fully visualise the muscle. In previous work, 3.0 T 

MRI at a spa$al resolu$on of 0.8´0.8´0.8 mm3 has predominantly been used for 3D LVP 

visualisa$on [25,126,138–140,127–129,131–133,136,137]. The LVP and the so. $ssue that 

surrounds it have very similar $ssue proper$es. Consequently, a challenge when imaging the 

LVP is ensuring that the image contrast between the LVP and the surrounding so. $ssue is 

sufficient to discriminate between the two. Previous work has predominantly acquired T2-

weighted 3D images of the LVP at 3.0 T using TSE pulse sequences [25,126,139,140,127–

129,131,134,136–138]. In addi$on, a recommenda$on to acquire T2-weighted images for 

assessing the LVP in clinical prac$ce was recently made [8]. 

 As explained in sec$on 3.3.5, there is increasing interest in quan$fying the LVP in MR 

images [13,25,130–139,122,140–143,123–129]. In all previous work [13,25,130–
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139,122,140–143,123–129], measurements such as the length and thickness of the LVP 

were manually obtained from MR images. However, obtaining measurements in this way is 

$me-consuming, requires input by specialists and is prone to intra- and inter-observer 

variability. To avoid the burden of manual measurements and to facilitate LVP measurement 

on a larger scale, there is currently an unmet need for automa$c LVP measurement 

methods. A common approach for automa$ng the measurement of anatomical features in 

biomedical images is to first segment the features and then perform measurements using 

the segmenta$ons. As a first step towards developing an automa$c LVP measurement 

method, in very recent work [17], four state-of-the-art DL-based methods were used to 

segment the LVP and five other anatomical features (adenoids, lateral pharyngeal wall, 

posterior pharyngeal wall, pterygoid raphe and so. palate) in 3D T1-weighted MR images. 

More specifically, two methods based on 3D U-Net [177] (one of which was developed using 

nnU-Net [187]), the Swin UNETR method [185] and the 3D UX-Net method [219] were used. 

Evaluated using the DSC, the 3D UX-Net method was found to most accurately segment the 

LVP and three of the other anatomical features. However, there are no reports in the 

literature of methods to segment the LVP in MR images with other contrasts such as T2-

weighted images, the contrast that was recently recommended for LVP visualisa$on in 

clinical prac$ce [8]. 

As well as providing a step towards automa$c LVP measurement, LVP segmenta$on 

offers the opportunity for 3D prin$ng of physical models of the LVP for use in surgical 

treatment planning and for educa$onal purposes [146]. However, such models would 

require more anatomical context than simply the LVP. Of par$cular interest to clinicians is 

the orienta$on of the LVP rela$ve to the so. palate and pharynx [144]. Since the so. palate 

and pharynx are adjacent anatomical features, a segmenta$on of the laXer feature would 

provide informa$on about the posterior surface of the former. 

As explained in sec$on 3.3.1, recently, DL-based methods have achieved state-of-the-

art accuracy in the segmenta$on of 3D images of body organs such as the heart 

[171,188,191], brain [191] and kidneys [189]. While a wide range of different DL-based 

segmenta$on methods have been proposed [295,296], extensions of 3D U-Net [177] such as 

V-Net [178] and those created by nnU-Net [187] have consistently achieved state-of-the-art 

accuracy in the segmenta$on in 3D images of the heart [188,191], brain [191] and kidneys 
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[189]. In fact, as explained in sec$on 3.3.1, nnU-Net is a framework for configuring and 

training U-Net effec$vely.  

Typically, CNNs must be trained using large amounts of data to perform a task 

[153,154]. When large amounts of training data are not available, it is common to use data 

augmenta$on methods (introduced in sec$on 3.2.4) to ar$ficially increase the amount of 

training data [153,154]. Methods to increase the variability of the appearance and layout of 

medical images are most frequently used [154]. The former methods change the 

appearance of images by for example adding random noise to the pixel or voxel values, while 

the laXer methods change the layout of images by for example rota$ng and transla$ng 

them. However, ideally data augmenta$on methods should also increase the anatomical 

variability in the training data. A commonly used way to increase this variability is to 

augment the training data using random elas$c deforma$ons [154], however, such 

augmenta$on does not always result in anatomically plausible data [297]. To increase the 

anatomical variability of training data while maintaining anatomical plausibility, data 

augmenta$on methods based on non-linear registra$on methods have been proposed 

[297–300]. Data augmenta$on methods based purely on non-linear registra$on have been 

shown to improve the accuracy of DL-based methods to segment the brain [297,298,301] 

and knee [298] in 3D MR images, while data augmenta$on methods based on sta$s$cal 

deforma$on models (SDMs) have been shown to improve the accuracy of DL-based 

methods to segment the heart in 2D MR images [299,300]. 

The main contribu$on of the work presented in this chapter is the development of a 

method to segment the LVP in 3D MR images of the vocal tract with the contrast that was 

recently recommended for LVP visualisa$on in clinical prac$ce [8]. The development of such 

a method is a step towards the ul$mate goal of automa$c LVP segmenta$on and 

quan$fica$on in clinical prac$ce. 

 

7.2 Methods 

A DL-based method to automa$cally segment the pharynx and LVP in 3D MR images of the 

vocal tract was developed using the nnU-Net framework [187]. The method consists of three 

sequen$al steps: image pre-processing, segmenta$on es$ma$on using a CNN and then 

segmenta$on post-processing. The image pre-processing step is iden$cal to that of nnU-Net. 



Deep-Learning-Based LVP Segmentation in 3D MR Images 

 

187 

A suitable architecture for the segmenta$on CNN was iden$fied using the nnU-Net process 

for this purpose. The nnU-Net CNN training process was then almost fully followed to train 

the segmenta$on CNN. Devia$ons from the nnU-Net CNN training process are described in 

sec$on 7.2.1. The nnU-Net framework was implemented using the code publicly available at 

hXps://github.com/MIC-DKFZ/nnUNet. 

 

7.2.1 Proposed Method Implementa&on and CNN Training 

The image pre-processing step of the method is as follows: each image is normalised 

independently by first subtrac$ng its mean voxel intensity and then dividing by the standard 

devia$on of its voxel intensi$es. This pre-processing step is performed during training and at 

test $me. 

 

 
Figure 75: Segmenta>on convolu>onal neural network architecture. IN: instance normaliza>on; lReLU: leaky rec>fied linear 

unit with nega>ve slope 0.01; conv: convolu>on. 

 

The CNN architecture is based on that of the 3D U-Net [177] and is depicted in Figure 

75. CNN training was performed on a 24 GB NVIDIA TITAN RTX graphics card. During CNN 

training, the image patch size was 128´128´128 voxels and the mini-batch size was two 

image patches, and stochas$c gradient descent with Nesterov momentum (µ=0.99) and an 

ini$al learning rate, 𝐿𝑅, of 0.01 were used. Following each epoch, 𝐿𝑅 was decayed according 

to the following equa$on: 

 

𝐿𝑅 = {1 − RH[;\
RH[;\/01

|
]._

                    (30) 

Input image 3´3´3 conv, IN, lReLU

3´3´3 strided conv, IN, lReLU

3´3´3 transposed conv, IN, lReLU 1´1´1 conv, softmax

N   number of channels

X´Y´Z   feature map dimensions

Output probability maps Skip connection Feature maps from previous layer

160´160´192

32

64 128

256

80´80´96

40´40´48

20´20´24

10´10´12
320

32

64

128

256 320

320
5´5´6

320

640

320

512

256

256

128

128

64

64 32 3
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The loss func$on consisted of the sum of the cross entropy loss and the Dice loss, both 

introduced in sec$on 3.3.2. Hyperparameter op$misa$on was not performed as nnU-Net 

instead iden$fies suitable hyperparameter values using heuris$c rules. 

The three devia$ons from the nnU-Net training process were as follows. First, the 

default nnU-Net data augmenta$on methods were not used in all experiments. Second, the 

CNN was trained for 200 epochs instead of the default of 1000. Third, the number of mini-

batches per epoch was 23 instead of the default of 250 in all experiments except the one 

without data augmenta$on, where the number of mini-batches per epoch was five. The 

ra$onale for the first devia$on was to inves$gate the effect of different data augmenta$on 

methods on the segmenta$on method accuracy, while the ra$onale for the other two 

devia$ons was to avoid the CNN overfilng as a result of the small amount of training data. 

In addi$on, a further ra$onale for the number of mini-batches per epoch was to ensure the 

number of patches inpuXed to the CNN per epoch was equal to the number of images in the 

training dataset. The training process devia$ons were mo$vated by the observa$on that 

during CNN training the valida$on loss stabilised a.er approximately 50 epochs, as shown in 

Figure 80 in sec$on 7.4. 

The segmenta$on post-processing step of the method is as follows: for each 

segmenta$on class, the number of connected components in the segmenta$on is iden$fied 

and all regions except the one with the largest number of voxels are removed. This post-

processing step is performed at test $me only. 

 

7.3 Experiments 

7.3.1 Data 

Cropped versions of the 15 images and corresponding GT segmenta$ons presented in 

sec$on 4.2.3 were used in the experiments. Images and GT segmenta$ons were cropped 

centred on the LVP and pharynx to ensure they only contained relevant anatomy and to also 

reduce the computa$onal burden of the experiments. All images and GT segmenta$ons 

were cropped to a size of 160´160´192 voxels. This size was chosen based on the following 

analysis: 
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1. For each full-size image and corresponding GT segmenta$on, the centroid 

coordinates and dimensions of the smallest 3D bounding box that fully contained the 

LVP and pharynx was iden$fied. 

2. The dimensions of the bounding boxes were compared, to iden$fy the largest x-, y- 

and z-dimensions (128, 132 and 172 voxels respec$vely). 

3. The largest dimensions were slightly increased to 160, 160 and 192 voxels 

respec$vely to ensure that the cropped images and corresponding GT segmenta$ons 

included a buffer region around the LVP and pharynx. 

4. Each full-size image and corresponding GT segmenta$on was cropped to a size of 

160´160´192 voxels centred on the corresponding centroid coordinates iden$fied in 

step 1. 

In all experiments, nine of the 15 images were used either as training data for the proposed 

method or as the data used to synthe$cally create new training data. Of the remaining six 

images, three were used as valida$on data and three as test data. More details about the 

train/valida$on/test dataset splits used in the experiments are provided in sec$on 7.3.5. 

 

7.3.2 Data Augmenta&on 

The effect of different data augmenta$on methods on the accuracy of the segmenta$on 

method was inves$gated. To achieve this, separate experiments were performed where the 

segmenta$on method was developed from training data augmented using different 

methods. The accuracy of the segmenta$on methods was then compared using the 

evalua$on metrics described in sec$on 7.3.3. Three augmenta$on methods along with 

combina$ons of these methods were inves$gated. The methods are described in the 

sec$ons 7.3.2.1, 7.3.2.2 and 7.3.2.3. Data augmenta$on was used to synthesise 45 images 

from the nine original images in the training dataset, and then only the 45 synthesised 

images were used to train the segmenta$on CNN of the proposed method. When training 

the segmenta$on CNN of the proposed method without data augmenta$on, the training 

dataset consisted of nine original images 
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7.3.2.1 Default nnU-Net Augmenta6on 

By default, nnU-Net applies the augmenta$ons listed in Table 11 to the images in the 

training dataset and modifies the corresponding GT segmenta$ons accordingly. 

 

Table 11: Default augmenta>ons applied to training data by nnU-Net. 𝑥~𝑈(𝑎, 𝑏) indicates that 𝑥 is sampled from a uniform 

distribu>on with lower limit 𝑎 and upper limit 𝑏. For the brightness and contrast augmenta>ons, effec>vely the image patch 

is mul>plied pixel-wise with a mask of random values sampled from 𝑈(𝑎, 𝑏). 

Augmentation Probability Description 

Rotation 0.2 Image rotated by angle in range 𝑈(−180°, 180°) 

Scaling 0.2 Image scaled by factor in range 𝑈(0.7, 1.4) 

Gaussian noise 0.15 
Zero-centred Gaussian noise with variance in range 

𝑈(0, 0.1) added to voxel intensities 

Gaussian blur 0.1 
Gaussian blur with kernel width in voxels in range 

𝑈(0.5, 1.5) applied to image 

Brightness 0.15 Voxel intensities multiplied by 𝑥~𝑈(0.7, 1.3) 

Contrast 0.15 
Voxel intensities multiplied by 𝑥~𝑈(0.65, 1.5) and then 

clipped to the original intensity range 

Mirroring 0.5 Image is mirrored along an axis 

 

7.3.2.2 Registra6on-Based Augmenta6on 

This method was inspired by a registra$on-based interpola$on method [302] and was used 

to create a new and larger training dataset of 45 images from the nine images in the original 

training dataset. The method consisted of the following steps, as shown in Figure 76: 

1. A pair of images, 𝑀 and 𝐹, was randomly chosen from the nine images in the original 

training dataset. 

2. A vector displacement field, 𝐷, mapping how the voxels in 𝑀 should be displaced to 

align them with corresponding voxels in 𝐹 was es$mated using affine followed by 

non-linear image registra$on. Sec$on 7.3.3 provides more details about the image 

registra$on and its op$misa$on. 

3. 𝐷 was interpolated by mul$plying it by a value randomly sampled from a con$nuous 

uniform distribu$on with lower limit 0.2 and upper limit 0.8: 
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𝐷PG$RXH = 𝛼𝐷                     (31) 

 

where 𝛼 is a weigh$ng term between 0.2 and 0.8. 

4. An augmented image and corresponding GT segmenta$on was created by 

transforming 𝑀 and its corresponding GT segmenta$on according to 𝐷`abcde. 

The following condi$ons were imposed when randomly choosing the image pairs: 

• Each image in the original training dataset must be: 

o 𝑀 in five image pairs 

o 𝐹 in five image pairs 

• Every pair must be unique 

• The images in a pair must be different 

Examples of GT segmenta$ons created using the registra$on-based augmenta$on method 

are shown in Figure 77. 

 
Figure 76: An overview of the registra>on-based augmenta>on method. A moving image (M) is nonlinearly registered to a 

fixed image (F). The resul>ng displacement field, D, is interpolated to Dinterp by mul>plica>on by a weigh>ng term between 

0.2 and 0.8. An augmented version of M is created by transforming M according to Dinterp. 

Registration

Transformation

Interpolation

F

M

T(M, Dinterp)

T(M, D)

D

Dinterp
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Figure 77: Examples of ground-truth segmenta>ons created using the registra>on-based augmenta>on method. 'Fixed' and 

'Moving' indicate segmenta>ons of the fixed and moving images respec>vely, while ‘Augmented’ indicates a segmenta>on 

created using the augmenta>on method. 

 

7.3.2.3 SDM-Based Augmenta6on 

SDMs were created from the nine images in the original training dataset and then used to 

synthesise new and larger training datasets of 45 images and their corresponding GT 

segmenta$ons. SDMs were created using the method developed by Rueckert et al. [303]. 

The full process for synthesising the images and corresponding segmenta$ons was as 

follows: 

1. A reference image, 𝐼dcf, was randomly chosen from the nine images in the original 

training dataset. 

2. The other eight images were rigidly registered to 𝐼dcf. 

Fixed Moving Augmented
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3. Eight vector displacement fields, 𝑢, were created by first affinely and then non-

linearly registering 𝐼dcf to each of the eight images created in step 2. 

4. The mean displacement field, 𝑢�, and the first 𝑛 ∈ {1, 2, … , 7} principal modes of 

varia$on of the fields, 𝑝G, were determined using principal component analysis. 

5. New displacement fields were created by adding principal modes of varia$on to the 

mean displacement field: 

 

𝑢acg = 𝑢� + 𝛽𝑝G                   (32) 

 

where 𝛽 is a weigh$ng term. As recommended by Rueckert et al. [303], values of 𝛽 

were randomly chosen within the range ±3 × �𝜆G where 𝜆G is the eigenvalue of 𝑝G. 

6. Images and corresponding segmenta$ons were synthesised by deforming 𝐼dcf and its 

corresponding segmenta$ons according to the displacement fields created in step 5. 

In one experiment, only one SDM was created from the nine images in the original dataset. 

Forty-five images and their corresponding segmenta$ons were synthesised using this SDM 

and then used as the training dataset. In another experiment, nine SDMs were created, each 

using a different 𝐼dcf so that each image in the original training dataset was used as 𝐼dcf. Five 

images and their corresponding segmenta$ons were synthesised using each SDM and the 45 

resul$ng images were then used as the training dataset. Sec$on 7.3.3 provides more details 

about the image registra$on and its op$misa$on. Examples of GT segmenta$ons created 

using the SDM-based augmenta$on method are shown in Figure 78. 
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Figure 78: Examples of ground-truth segmenta>ons created using the stas>s>cal-deforma>on-model-based augmenta>on 

method. 'Reference' indicates the segmenta>on of the reference image used to create a model, while 'Augmented' indicates 

a segmenta>on created using the augmenta>on method. 

 

Reference Augmented
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7.3.3 Image Registra&on 

The registra$on-based and SDM-based augmenta$on methods described in sec$ons 7.3.2.2 

and 7.3.2.3 respec$vely both require image registra$on. This sec$on describes the 

registra$on that was used in these methods. Ni.yReg version 1.5.39 [237,241] was used to 

perform rigid, affine and non-linear registra$on. Ni.yReg performs rigid and affine 

registra$on using a block-matching method [238] and non-linear registra$on using a FFD 

method (introduced in sec$on 3.4.2) [236]. Several registra$ons were performed per 

method using different combina$ons of parameter values (listed in Table 12), and then 

evaluated using the DSC (introduced in sec$on 3.3.2), enabling iden$fica$on of op$mal 

values. Default values were used for all other parameters. 

 

Table 12: Image registra>on parameter values. ‘Rigid and affine’ and ‘Non-linear’ indicate the registra>on method. 𝑵𝒍𝒆𝒗𝒆𝒍𝒔 

and 𝑵𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒔	are parameters in the block-matching method. 𝑵𝒍𝒆𝒗𝒆𝒍𝒔 indicates the number of levels to use to generate the 

pyramids for the coarse-to-fine approach, while 𝑵𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒔 is the maximum number of itera>ons of the least trimmed 

squares method. Grid spacing, 𝜆 and 𝛾 are parameters in the free-form deforma>on method. Grid spacing is the spline grid 

spacing in voxels, 𝜆 is the weigh>ng of the bending energy term, while 𝛾 is the weigh>ng of the first order penalty term. 

Parameter Rigid and affine Non-linear 

𝑵𝐥𝐞𝐯𝐞𝐥𝐬 {2, 3, 4} N/A 

𝑵𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐬 {4, 5, 6} N/A 

Grid spacing N/A {4, 5, 6} 

𝝀 N/A {0, 0.001} 

𝜸 N/A {0, 0.01} 

 

7.3.4 Evalua&on Metrics 

At test $me, the accuracy of the segmenta$ons es$mated by the segmenta$on method 

developed using each augmenta$on approach were evaluated using two metrics: the DSC 

and the HD (introduced in sec$on 3.3.2). 

 

7.3.5 Five-Fold Cross-Valida&on 

A five-fold cross-valida$on was performed to evaluate the generalisability of the 

segmenta$on method. In each fold, the train/valida$on/test dataset split was 9/3/3 
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respec$vely. Test datasets were created by randomly splilng the 15 images into five groups 

of three images. Valida$on datasets were created in the same way, while ensuring that in 

each fold the images in the valida$on dataset were all different from the images in the test 

dataset. As a result, each image was included in the valida$on dataset of one fold, the 

tes$ng dataset of another fold, and the training datasets of the remaining three folds. Table 

13 lists the images in each dataset. Since hyperparameter op$misa$on was not performed 

as nnU-Net instead iden$fies suitable hyperparameter values using heuris$c rules, a nested 

cross-valida$on was not required and the test dataset was held out un$l test $me. 

 

Table 13: The iden>fiers of the images in the valida>on and test datasets of each fold, and the iden>fiers of the images used 

as the reference images during sta>s>cal deforma>on model crea>on. 

Fold Reference Valida$on dataset Test dataset 

1 1 2, 10, 12 6, 7, 9 

2 4 1, 5, 13 3, 8, 15 

3 13 4, 9, 11 5, 10, 14 

4 14 6, 8, 15 1, 12, 13 

5 15 3, 7, 14 2, 4, 11 

 

7.3.6 Sta&s&cal Tests 

Paired sample t-tests were performed to compare the DSCs of the segmenta$ons es$mated 

by different versions of the segmenta$on method. Groups of HDs were compared in the 

same way as groups of DSCs. Since each of the 15 image was included in one of the test 

datasets in the cross-valida$on, each group consisted of 15 values (one per image). The 

normality of a group was assessed using a Chi-squared goodness-of-fit test. All values were 

normally distributed. All sta$s$cal tests were performed using MATLAB 2019b (MathWorks, 

Na$ck, MA). A significance level of 5% was used, corrected using the Holm-Bonferroni 

method to compensate for mul$ple comparisons. 
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7.4 Results 

Examples of segmenta$ons es$mated by different versions of the proposed method are 

shown in Figure 79. Columns (A), (B) and (C) in Figure 79 show examples with rela$vely low, 

average and high DSCs respec$vely. 

The segmenta$on CNN training and valida$on losses are shown in Figure 80. The 

number of epochs required for valida$on loss stabilisa$on depended on the data 

augmenta$on method used during CNN training. On average (median), stabilisa$on required 

approximately 40 epochs. Stabilisa$on was fastest, requiring approximately 20 epochs, when 

only SDM-based data augmenta$on was used. Conversely, stabilisa$on was slowest, 

requiring approximately 60 epochs, when no data augmenta$on was used. 

The effect of the post-processing step of the proposed method on the accuracy of the 

es$mated segmenta$ons is shown in Figure 81. In most cases, the step improved the 

accuracy of the es$mated segmenta$ons. On average (median), the step increased the DSCs 

of the es$mated LVP and pharynx segmenta$ons in 60% (9 of 15) and 80% (12 of 15) cases 

respec$vely, and decreased the HDs of the segmenta$ons in 67% (10 of 15) cases. However, 

on average (median), the step also decreased the DSCs of the es$mated LVP segmenta$ons 

in 13% (2 of 15) cases. The only version of the proposed method where the step did not 

reduce the accuracy of any of the segmenta$ons was the one where only the default nnU-

Net data augmenta$ons were used during training. 
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Figure 79: Segmenta>ons es>mated by different versions of the proposed method. The “Aug” column indicates the type of 

data augmenta>on used during segmenta>on convolu>onal neural network training: “None” indicates no augmenta>on; 

“D” indicates the default nnU-Net augmenta>ons; “RB” indicates registra>on-based augmenta>on; “SiSDM” indicates 

single sta>s>cal deforma>on model (SDM) based augmenta>on; “MuSDM” indicates mul>ple SDM based augmenta>on; “+ 

D” indicates that the default nnU-Net augmenta>ons were also used; “GT” indicates ground-truth segmenta>ons. Each 

column shows segmenta>ons of a different image. Columns (A), (B) and (C) show segmenta>ons with rela>vely low, 

average and high Dice coefficients respec>vely. Dark and light grey indicate the levator veli pala>ni and pharynx 

respec>vely. 

(A) (B) (C)Aug

None

D
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Figure 80: Training and valida>on losses of the segmenta>on convolu>onal neural network (CNN). “Aug” indicates the type 

of data augmenta>on used during segmenta>on convolu>onal neural network training: “None” indicates no augmenta>on; 

“Default” indicates the default nnU-Net augmenta>on; “Reg-based” indicates registra>on-based augmenta>on; “Single 

SDM” indicates single sta>s>cal deforma>on model (SDM) based augmenta>on; “Mul>ple SDM” indicates mul>ple SDM 

based augmenta>on; “+ Default” indicates that the default nnU-Net augmenta>ons were also used. In the figure legend, 

“Fold” indicates the cross-valida>on fold. Solid lines indicate training losses, while dashed lines indicate valida>on losses. 
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Figure 81: Effect of post-processing step of proposed method on segmenta>on es>ma>on accuracy. The colour code 

indicates the type of data augmenta>on used during segmenta>on convolu>onal neural network training: “None” indicates 

no augmenta>on; “Default” indicates the default nnU-Net augmenta>on; “Registra>on-based” indicates registra>on-based 

augmenta>on; “Single SDM” indicates single sta>s>cal deforma>on model (SDM) based augmenta>on; “Mul>ple SDM” 

indicates mul>ple SDM based augmenta>on; “+ Default” indicates that the default nnU-Net augmenta>ons were also used. 

 

The accuracy of the segmenta$ons es$mated by different versions of the proposed 

method are shown in Figure 82. In all cases, the DSC of the LVP segmenta$on was lower 

than that of the pharynx segmenta$on. However, on average (median), in 47% (7 of 15) 

cases the HD of the LVP segmenta$on was lower than that of the pharynx segmenta$on. 

Two versions of the proposed method consistently segmented both the LVP and pharynx 

with a lower accuracy than the other methods: the versions where single SDM based data 

augmenta$on was used during segmenta$on CNN training. No version consistently 
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segmented both the LVP and pharynx with a higher accuracy than all the other versions. In 

fact, there were no sta$s$cally significant differences between the accuracies of the 

segmenta$ons (neither LVP nor pharynx) es$mated by the other six versions of the method. 

On average (median), the DSC and HD of the LVP segmenta$on es$mated by the other six 

versions of the method was approximately 0.70 and 6 mm respec$vely, while the DSC and 

HD of the pharynx segmenta$on was approximately 0.85 and 6 mm respec$vely. 

 

 
Figure 82: Dice coefficients and general Hausdorff distances of segmenta>ons es>mated by different versions of the 

proposed method. The colour code indicates the type of data augmenta>on used during segmenta>on convolu>onal neural 

network training: “None” indicates no augmenta>on; “Default” indicates the default nnU-Net augmenta>on; “Registra>on-

based” indicates registra>on-based augmenta>on; “Single SDM” indicates single sta>s>cal deforma>on model (SDM) based 

augmenta>on; “Mul>ple SDM” indicates mul>ple SDM based augmenta>on; “+ Default” indicates that the default nnU-Net 

augmenta>ons were also used. Black bars above box plots indicate sta>s>cally significant differences (5% significance level, 

p<0.001 unless indicated) between groups of Dice coefficients. There were no sta>s>cally significant differences between 

groups of general Hausdorff distances. 

7.5 Discussion 

A DL-based method to automa$cally segment the LVP and pharynx in 3D T2-weighted MR 

images of the vocal tract was successfully developed using a state-of-the-art framework 

(nnU-Net). The method consists of three sequen$al steps: a pre-processing step to 

normalise the image voxel values, segmenta$on es$ma$on using a CNN and then a post-

processing step to ensure there is only a single region of voxels per class in the es$mated 

segmenta$ons. 

(A) (B)
p = 0.002
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 The method segmented the pharynx more accurately than the LVP, with a median 

DSC of 0.85 and 0.70 respec$vely and a median HD of 6 mm for both classes. This result is 

unsurprising for two main reasons. First, the image contrast between the pharynx and the 

so. $ssue that surrounds it is much greater than that of the LVP, thus facilita$ng pharynx 

boundary iden$fica$on. Second, since the LVP is a smaller anatomical feature than the 

pharynx, its segmenta$ons consist of a smaller number of voxels and segmenta$on errors 

therefore have a larger impact on the DSC. 

 As shown in Figure 80, in almost all cases during segmenta$on CNN training the 

valida$on loss stabilised and then stayed approximately constant in the later stages of 

training. This result suggests that 200 epochs was a suitable training dura$on that did not 

result in the segmenta$on CNN overfilng the training data, thus jus$fying the reduc$on in 

training dura$on from the default nnU-Net one of 1000 epochs. 

 Several different data augmenta$on methods were inves$gated to try to improve the 

generalisa$on of the proposed method. None of the methods caused a sta$s$cally 

significant improvement in performance compared with no augmenta$on, when evaluated 

using the DSC and HD. This result suggests that the methods did not sufficiently increase the 

anatomical variability in the training dataset images to cause an improvement in the 

generalisability of the segmenta$on CNN. This result is not surprising for the default nnU-

Net data augmenta$ons as these do not increase anatomical variability. 

Registra$on-based augmenta$on methods have been shown to cause improvements 

in the performance of DL-based methods to segment the brain [297,298] and knee [298] in 

3D MR images, even when the training dataset is created from a small number of images 

[298]. In [297,298], the size of each training dataset created using registra$on-based 

augmenta$on methods was at least 1500 images, while in this work the size was 45 images. 

The former datasets will contain more anatomical variability than the laXer. It is therefore 

possible that a larger training dataset than 45 images is required before a segmenta$on 

method performance improvement occurs. 

Single SDM based data augmenta$on caused sta$s$cally significant decreases in 

segmenta$on method performance. This result was most likely caused by insufficient 

anatomical variability in the augmented images, as a result of them being synthesised from a 

single image. In contrast, mul$ple SDM based data augmenta$on did not cause a decrease 

in segmenta$on method performance. 
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The LVP and pharynx GT segmenta$ons each consist of a single region of voxels. 

However, most LVP and pharynx segmenta$ons es$mated by the CNN of the proposed 

method consisted of several unconnected voxel regions. The purpose of the post-processing 

step of the proposed method is to remove all connected components apart from the largest 

one. As shown in Figure 81, in most cases the post-processing step improved the accuracy of 

the es$mated segmenta$ons. This shows that most of the unconnected regions in the 

es$mated segmenta$ons were spurious. However, in several cases the post-processing step 

decreased the accuracy of the es$mated LVP segmenta$ons. In these cases, the es$mated 

segmenta$ons consisted of several rela$vely large unconnected regions as well as rela$vely 

small unconnected regions. The removal of these rela$vely large regions decreased the 

accuracy of the es$mated LVP segmenta$ons (see Figure 79 column (A) for example). A 

more sophis$cated post-processing step which considers the size of each connected 

component may be able to avoid removing such regions, however, ideally there should only 

be a single region per class in the segmenta$ons es$mated by the CNN. The only version of 

the proposed method where the step did not reduce the accuracy of any of the 

segmenta$ons was the one where only the default nnU-Net data augmenta$ons were used 

during CNN training. However, it should be noted that the step only decreased the accuracy 

of a single LVP segmenta$on es$mated by the version of the proposed method where no 

data augmenta$on was used during CNN training. 

In very recent work [17], four state-of-the-art DL-based methods, including a 3D U-

Net created using nnU-Net, were used to segment the LVP and five other anatomical 

features (adenoids, lateral pharyngeal wall, posterior pharyngeal wall, pterygoid raphe and 

so. palate) in 3D T1-weighted MR images. The best performing method (3D UX-Net [219]) 

segmented the LVP with an average DSC of 0.56, while the proposed method, developed to 

segment 3D T2-weighted rather than T1-weighted MR images, segmented the LVP with an 

average DSC of 0.70. One likely reason for the difference in performance is that images 

cropped about the vocal tract were used to train the proposed method, while images of the 

en$re head were used in [17]. Iden$fica$on of the loca$on of the LVP within the laXer 

images is less challenging than in the former, thus making segmenta$on less challenging. 

Another likely reason is greater anatomical variability in the dataset used in the previous 

work, compared with the dataset used in this work. More specifically, the dataset used in 

previous work included 50 images while the dataset used in this work included 15 images. 
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An addi$onal possible reason for the difference in performance is that LVP visibility is beXer 

in T2-weighted images than T1-weighted images, thus making segmenta$on less challenging. 

This work is a step towards the ul$mate goal of automa$c LVP segmenta$on and 

measurement in clinical prac$ce. However, a large amount of future work is required to 

develop a method suitable for use in clinical prac$ce. More specifically, three major 

challenges must be overcome. One challenge concerns the dataset used to develop the 

method, while the other two are technical. 

First, as explained in sec$on 4.2.3.2, a larger and more diverse dataset, both in terms 

of subjects and image acquisi$on, must be created and used to develop the method. More 

specifically, a dataset more representa$ve of the target pa$ent popula$on is required: since 

the target pa$ent popula$on primarily consists of children, the dataset must contain images 

of children. In addi$on, since LVP anomalies are prevalent in the target popula$on, the 

dataset must contain images of LVPs with anomalies as well as LVPs without. In addi$on, a 

dataset with images acquired using many different MRI scanners and pulse sequences is 

required to ensure that methods developed using the dataset perform well on images from 

different sources. This generalisability is a key requirement for methods suitable for use in 

clinical prac$ce. While there are publicly available 3D MR image sets of the vocal tract 

[18,19], these do not have the required image contrast to visualise the LVP. 

Second, a method suitable for clinical prac$ce must include any image cropping pre-

processing steps so that these steps do not need to be performed separately. The inputs to 

the proposed method are cropped images centred on the LVP and pharynx. However, to be 

suitable for clinical prac$ce, the input should be full images. Future work should therefore 

aim to add a pre-processing step to automa$cally crop images. 

Third, a method suitable for use in clinical prac$ce must automa$cally measure 

aspects of the LVP such as its length and thickness. Future work should therefore aim to 

develop such methods in partnership with clinical teams to ensure that the measured 

aspects are clinically relevant. The development of such methods could aid the development 

of segmenta$on methods by informing the segmenta$on accuracy required for reliable 

measurements. 
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7.6 Conclusions 

For the first $me, the feasibility of automa$c segmenta$on of the LVP and pharynx in 3D T2-

weighted MR images of the vocal tract has been demonstrated. This work is a step towards 

the ul$mate goal of automa$c LVP segmenta$on and measurement in clinical prac$ce. The 

effect of different data augmenta$on methods on the accuracy of the proposed 

segmenta$on method was inves$gated, but none of the methods was found to cause 

sta$s$cally significant improvements in segmenta$on method accuracy. 

Regarding automa$c LVP segmenta$on and measurement, several challenges must s$ll 

be overcome to enable the development of a method suitable for use in clinical prac$ce. In 

par$cular, a larger, more diverse and representa$ve dataset of 3D MR images of the vocal 

tract must be created, methods to automa$cally crop such images must be developed, and 

methods to automa$cally measure aspects of the LVP must be developed. 
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Chapter 8: Conclusions 

8 Conclusions 
8.1 Summary 

The main aim of the work presented in this thesis was to begin to address the unmet need 

for methods to perform automa$c quan$ta$ve analysis of the vocal tract, so. palate and 

LVP in MR images, by developing methods to segment such images and developing a 

framework for mo$on quan$fica$on. 

 The first contribu$on of this work was the crea$on of GT segmenta$ons of the en$re 

vocal tract and so. palate in an exis$ng speech MRI datasets. Crea$on of such 

segmenta$ons was necessary to enable the development and evalua$on of segmenta$on 

methods due to the lack of publicly available speech MRI datasets that include 

segmenta$ons. A dataset acquired using a speech MRI technique that does not require 

specialised MRI equipment and so.ware was deliberately chosen in order to facilitate 

acquisi$on of similar images in other centres and consequently the applica$on of image 

analysis methods developed using the dataset. As described in sec$on 4.1.4, a protocol for 

crea$ng GT segmenta$ons was devised and used to segment the vocal tract, so. palate and 

four other anatomical structures in 392 2D rtMR images of speech. Intra-rater agreement in 

the segmenta$ons was found to be high, sugges$ng that the GT segmenta$on crea$on 

protocol enabled reproducible results. 

 The second contribu$on of this work was the development of a method to segment 

the en$re vocal tract and so. palate and four other anatomical structures in 2D rtMR images 

of speech. The method, described in chapter 5, has been peer reviewed and published [205] 

and is a step towards enabling automa$c measurement of vocal tract and so. palate size, 

shape and mo$on in 2D rtMR images of speech. It was developed and evaluated using the 

speech MRI dataset and GT segmenta$ons described in sec$on 4.1, and is DL-based, 

consis$ng of a CNN to segment images followed by a post-processing step to remove 

anatomically impossible regions in the images. At the $me it was published [205], the 

method overcame the limita$ons of exis$ng segmenta$on methods that either only 

segmented the air-$ssue boundaries between the vocal tract and adjacent $ssues or only 
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fully segmented the vocal tract. Since then, three similar methods have been developed 

[206,207,218], however, the proposed method remains the method that achieved the 

highest accuracy. The method includes an extension to automa$cally calculate the minimum 

distance between the so. palate and the posterior pharyngeal wall, a measurement of 

par$cular interest to clinicians who perform speech assessments. Although primarily 

designed to enable automa$c measurement of vocal tract and so. palate size, shape and 

mo$on in 2D rtMR images of speech, the 2D segmenta$on method was designed to also 

enable measurement of tongue size, shape and mo$on in order to broaden its poten$al 

applica$ons and u$lity. 

 The third contribu$on of this work was the development of a novel metric based on 

velopharyngeal closure to enable more clinically relevant evalua$on of the performance of 

the image analysis methods. To calculate the metric, GT segmenta$ons are compared with 

the segmenta$ons es$mated by a method. The metric quan$fies the number of 

velopharyngeal closures in the GT segmenta$ons that also occur in the es$mated 

segmenta$ons. In chapter 5 and chapter 6, the metric was shown to be more sensi$ve to 

differences in method performance than standard evalua$on metrics. 

The fourth contribu$on of this work was the development of a framework for mo$on 

es$ma$on in 2D rtMR images of speech. This deep learning framework for nonlinear 

registra$on of 2D MR images of speech, described in chapter 6, builds on the 2D 

segmenta$on method described in chapter 5 and es$mates displacement fields between 

such images. The framework was developed using the speech MRI datasets and GT 

segmenta$ons described in sec$on 4.1 and has been peer reviewed and published [291]. It 

represents another step towards enabling automa$c measurement of so. palate mo$on in 

2D rtMR images of speech. The framework was compared with several state-of-the-art 

tradi$onal registra$on methods and deep learning frameworks for nonlinear registra$on 

and found to es$mate displacement fields that more accurately captured velopharyngeal 

closures. There are currently no other reports in the literature of the applica$on of deep 

learning frameworks for nonlinear registra$on to 2D rtMR images of speech. 

 The fi.h contribu$on of this work was the acquisi$on of a new MRI dataset and the 

crea$on of corresponding GT segmenta$ons of the LVP and pharynx. Acquisi$on of such a 

dataset was necessary to enable the development and evalua$on of segmenta$on methods 

due to the lack of publicly available MRI datasets in which the LVP can be adequately 
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visualised. As described in sec$on 3.1.9, due to the current lack of consensus on the op$mal 

image contrast for visualising the LVP in 3D MR images, an image contrast inves$ga$on was 

performed prior to acquiring the dataset. In this inves$ga$on, MR images with different 

image contrasts were acquired and the visibility of the LVP in these images was compared. 

The results of this inves$ga$on suggested that the LVP was more visible in T2-weighted 

images than in T1-weighted and PD-weighted images. Consequently, a dataset of 15 3D T2-

weighted images of the vocal tract was acquired. The dataset was acquired using a 3D MRI 

technique that does not require specialised MRI equipment and so.ware in order to 

facilitate acquisi$on of similar images in other centres and consequently the applica$on of 

image analysis methods developed using the dataset. As described in sec$on 4.2.3.1.2, a 

protocol for crea$ng GT segmenta$ons was devised and used to segment the LVP and 

pharynx in the images. 

 The sixth contribu$on of this work was the development of a method to segment the 

LVP and pharynx in 3D T2-weighted MR images of the vocal tract. The method, described in 

chapter 7, is a step towards enabling automa$c measurement of LVP size, shape and 

configura$on in this type of image. It was developed and evaluated using the new dataset 

and GT segmenta$ons described in sec$on 4.2 and is DL-based, consis$ng of a CNN to 

segment images. Un$l very recently [17], there were no reports in the literature of any 

methods to segment the LVP. CNNs trained using small amounts of data typically do not 

generalise well to new data. As only a small amount of data was available to train the 

segmenta$on method, aXempts were made to improve the generalisa$on of the method by 

using data augmenta$on to increase the size of the training dataset. As described in chapter 

7, several different data augmenta$on methods were inves$gated, however, none of these 

were found to improve the generalisa$on of the method. 

 

8.2 Future work 

While the work presented in this thesis makes several contribu$ons towards addressing the 

unmet need for methods to perform automa$c quan$ta$ve analysis of the vocal tract, so. 

palate and LVP in MR images, much future work is required to develop methods suitable for 

use in clinical assessment of speech. The two main challenges to overcome are firstly to 

develop methods that automa$cally perform the specific quan$ta$ve analysis of interest to 
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clinicians and secondly to thoroughly evaluate these methods in order for them to be 

accepted by clinicians and approved for use in clinical prac$ce. 

 A key requirement to overcome these two main challenges is the crea$on of larger 

and more diverse datasets with GT segmenta$ons. More specifically, datasets that are more 

diverse in terms of subjects and image contrasts are required. Future work should therefore 

aim to create such datasets. Crea$on of this type of dataset is essen$al for two main 

reasons. First, it would enable the development of DL-based methods that are more 

generalisable and consequently perform as intended on a wider range of data. Second, it 

would enable more thorough evalua$on of the methods, providing the evidence required 

for approval of the methods for use in clinical prac$ce and for promo$on of trust in the 

methods by clinicians. 

Regarding subjects, the datasets used in this work consisted of healthy adult 

volunteers. While using such datasets is appropriate for demonstra$ng the feasibility of 

developing specific image analysis methods, datasets that beXer represent the target 

pa$ent popula$on are required to develop methods suitable for use in clinical prac$ce, 

especially given that DL-based methods typically perform poorly on data with different 

characteris$cs to the data used to train them. Since the target pa$ent popula$on primarily 

consists of children, datasets that includes images of children are required. In addi$on, since 

velopharyngeal closure does not always occur in the speech of pa$ents with VPI, speech 

MRI datasets containing image series where velopharyngeal closure does not occur as well 

as image series where it does are required. Since some pa$ents with VPI have an abnormal 

LVP, MRI datasets that include images of individuals with such an LVP as well as images of 

individuals with a normal LVP are required to enable the development of generalisable 

methods to segment the LVP in such images. Finally, crea$ng datasets of images of 

individuals with a range of demographics is cri$cal in order to enable the development of 

methods that are generalisable and fair. 

Regarding image acquisi$on, each dataset used in this work consisted of images 

acquired using a single MRI scanner and pulse sequence. Again, while using such datasets is 

appropriate for demonstra$ng the feasibility of specific image analysis methods, datasets of 

images acquired using many different MRI scanners and pulse sequences are required to 

develop methods that are more generalisable and therefore more suitable for use in clinical 

prac$ce. 
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As part of the work presented in this thesis, two segmenta$on methods and a 

mo$on quan$fica$on framework were developed. While the development of these 

methods and framework are steps towards automa$c quan$ta$ve analysis of the vocal 

tract, so. palate and LVP in MR images, future work is required to extend these methods 

and framework so that they automa$cally perform the measurements of par$cular interest 

to clinicians. More specifically, the 2D image segmenta$on method should be extended so 

that it automa$cally measures the total length, effec$ve length and thickness of the so. 

palate and the depth of the pharynx [8]. The 3D image segmenta$on method should be 

extended so that it automa$cally measures LVP length and thickness and the distance 

between origins of the muscle [8]. The mo$on quan$fica$on framework should be extended 

so that it automa$cally measures the direc$on in which the so. palate elevates during 

speech, the speed at which the so. palate elevates and the distance by which the so. palate 

elevates. 

In conclusion, the work presented in this thesis makes several contribu$ons towards 

addressing the unmet need for image analysis methods suitable for use in clinical speech 

assessment. While future work is required to extend the methods and framework presented 

in this thesis so that they are suitable for use in clinical prac$ce, their development is 

nevertheless an achievement and has created new opportuni$es to contribute to the 

ul$mate goal of improving the treatment outcomes of pa$ents with VPI. 
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