25,223 research outputs found

    Microgrids: Planning, Protection and Control

    Get PDF
    This Special Issue will include papers related to the planning, protection, and control of smart grids and microgrids, and their applications in the industry, transportation, water, waste, and urban and residential infrastructures. Authors are encouraged to present their latest research; reviews on topics including methods, approaches, systems, and technology; and interfaces to other domains such as big data, cybersecurity, human–machine, sustainability, and smart cities. The planning side of microgrids might include technology selection, scheduling, interconnected microgrids, and their integration with regional energy infrastructures. The protection side of microgrids might include topics related to protection strategies, risk management, protection technologies, abnormal scenario assessments, equipment and system protection layers, fault diagnosis, validation and verification, and intelligent safety systems. The control side of smart grids and microgrids might include control strategies, intelligent control algorithms and systems, control architectures, technologies, embedded systems, monitoring, and deployment and implementation

    Grid-Connected Renewable Energy Sources

    Get PDF
    The use of renewable energy sources (RESs) is a need of global society. This editorial, and its associated Special Issue “Grid-Connected Renewable Energy Sources”, offers a compilation of some of the recent advances in the analysis of current power systems that are composed after the high penetration of distributed generation (DG) with different RESs. The focus is on both new control configurations and on novel methodologies for the optimal placement and sizing of DG. The eleven accepted papers certainly provide a good contribution to control deployments and methodologies for the allocation and sizing of DG

    Energy Management

    Get PDF
    Forecasts point to a huge increase in energy demand over the next 25 years, with a direct and immediate impact on the exhaustion of fossil fuels, the increase in pollution levels and the global warming that will have significant consequences for all sectors of society. Irrespective of the likelihood of these predictions or what researchers in different scientific disciplines may believe or publicly say about how critical the energy situation may be on a world level, it is without doubt one of the great debates that has stirred up public interest in modern times. We should probably already be thinking about the design of a worldwide strategic plan for energy management across the planet. It would include measures to raise awareness, educate the different actors involved, develop policies, provide resources, prioritise actions and establish contingency plans. This process is complex and depends on political, social, economic and technological factors that are hard to take into account simultaneously. Then, before such a plan is formulated, studies such as those described in this book can serve to illustrate what Information and Communication Technologies have to offer in this sphere and, with luck, to create a reference to encourage investigators in the pursuit of new and better solutions

    Power Electronics and Energy Management for Battery Storage Systems

    Get PDF
    The deployment of distributed renewable generation and e-mobility systems is creating a demand for improved dynamic performance, flexibility, and resilience in electrical grids. Various energy storages, such as stationary and electric vehicle batteries, together with power electronic interfaces, will play a key role in addressing these requests thanks to their enhanced functionality, fast response times, and configuration flexibility. For the large-scale implementation of this technology, the associated enabling developments are becoming of paramount importance. These include energy management algorithms; optimal sizing and coordinated control strategies of different storage technologies, including e-mobility storage; power electronic converters for interfacing renewables and battery systems, which allow for advanced interactions with the grid; and increase in round-trip efficiencies by means of advanced materials, components, and algorithms. This Special Issue contains the developments that have been published b researchers in the areas of power electronics, energy management and battery storage. A range of potential solutions to the existing barriers is presented, aiming to make the most out of these emerging technologies

    Data Mining Applications to Fault Diagnosis in Power Electronic Systems: A Systematic Review

    Get PDF

    Development Schemes of Electric Vehicle Charging Protocols and Implementation of Algorithms for Fast Charging under Dynamic Environments Leading towards Grid-to-Vehicle Integration

    Get PDF
    This thesis focuses on the development of electric vehicle (EV) charging protocols under a dynamic environment using artificial intelligence (AI), to achieve Vehicle-to-Grid (V2G) integration and promote automobile electrification. The proposed framework comprises three major complementary steps. Firstly, the DC fast charging scheme is developed under different ambient conditions such as temperature and relative humidity. Subsequently, the transient performance of the controller is improved while implementing the proposed DC fast charging scheme. Finally, various novel techno-economic scenarios and case studies are proposed to integrate EVs with the utility grid. The proposed novel scheme is composed of hierarchical stages; In the first stage, an investigation of the temperature or/and relative humidity impact on the charging process is implemented using the constant current-constant voltage (CC-CV) protocol. Where the relative humidity impact on the charging process was not investigated or mentioned in the literature survey. This was followed by the feedforward backpropagation neural network (FFBP-NN) classification algorithm supported by the statistical analysis of an instant charging current sample of only 10 seconds at any ambient condition. Then the FFBP-NN perfectly estimated the EV’s battery terminal voltage, charging current, and charging interval time with an error of 1% at the corresponding temperature and relative humidity. Then, a nonlinear identification model of the lithium-polymer ion battery dynamic behaviour is introduced based on the Hammerstein-Wiener (HW) model with an experimental error of 1.1876%. Compared with the CC-CV fast charging protocol, intelligent novel techniques based on the multistage charging current protocol (MSCC) are proposed using the Cuckoo optimization algorithm (COA). COA is applied to the Hierarchical technique (HT) and the Conditional random technique (CRT). Compared with the CC-CV charging protocol, an improvement in the charging efficiency of 8% and 14.1% was obtained by the HT and the CRT, respectively, in addition to a reduction in energy losses of 7.783% and 10.408% and a reduction in charging interval time of 18.1% and 22.45%, respectively. The stated charging protocols have been implemented throughout a smart charger. The charger comprises a DC-DC buck converter controlled by an artificial neural network predictive controller (NNPC), trained and supported by the long short-term memory neural network (LSTM). The LSTM network model was utilized in the offline forecasting of the PV output power, which was fed to the NNPC as the training data. The NNPC–LSTM controller was compared with the fuzzy logic (FL) and the conventional PID controllers and perfectly ensured that the optimum transient performance with a minimum battery terminal voltage ripple reached 1 mV with a very high-speed response of 1 ms in reaching the predetermined charging current stages. Finally, to alleviate the power demand pressure of the proposed EV charging framework on the utility grid, a novel smart techno-economic operation of an electric vehicle charging station (EVCS) in Egypt controlled by the aggregator is suggested based on a hierarchical model of multiple scenarios. The deterministic charging scheduling of the EVs is the upper stage of the model to balance the generated and consumed power of the station. Mixed-integer linear programming (MILP) is used to solve the first stage, where the EV charging peak demand value is reduced by 3.31% (4.5 kW). The second challenging stage is to maximize the EVCS profit whilst minimizing the EV charging tariff. In this stage, MILP and Markov Decision Process Reinforcement Learning (MDP-RL) resulted in an increase in EVCS revenue by 28.88% and 20.10%, respectively. Furthermore, the grid-to-vehicle (G2V) and vehicle-to-grid (V2G) technologies are applied to the stochastic EV parking across the day, controlled by the aggregator to alleviate the utility grid load demand. The aggregator determined the number of EVs that would participate in the electric power trade and sets the charging/discharging capacity level for each EV. The proposed model minimized the battery degradation cost while maximizing the revenue of the EV owner and minimizing the utility grid load demand based on the genetic algorithm (GA). The implemented procedure reduced the degradation cost by an average of 40.9256%, increased the EV SOC by 27%, and ensured an effective grid stabilization service by shaving the load demand to reach a predetermined grid average power across the day where the grid load demand decreased by 26.5% (371 kW)
    corecore