5,408 research outputs found

    Joint space aspect reconstruction of wide-angle SAR exploiting sparsity

    Get PDF
    In this paper we present an algorithm for wide-angle synthetic aperture radar (SAR) image formation. Reconstruction of wide-angle SAR holds a promise of higher resolution and better information about a scene, but it also poses a number of challenges when compared to the traditional narrow-angle SAR. Most prominently, the isotropic point scattering model is no longer valid. We present an algorithm capable of producing high resolution reflectivity maps in both space and aspect, thus accounting for the anisotropic scattering behavior of targets. We pose the problem as a non-parametric three-dimensional inversion problem, with two constraints: magnitudes of the backscattered power are highly correlated across closely spaced look angles and the backscattered power originates from a small set of point scatterers. This approach considers jointly all scatterers in the scene across all azimuths, and exploits the sparsity of the underlying scattering field. We implement the algorithm and present reconstruction results on realistic data obtained from the XPatch Backhoe dataset

    Analysis of Features for Synthetic Aperture Radar Target Classification

    Get PDF
    Considering two classes of vehicles, we aim to identify the physical elements of the vehicles with the most impact on identifying the class of the vehicle in synthetic aperture radar (SAR) images. We classify vehicles using features, from polarimetric SAR images, corresponding to the structure of physical elements. We demonstrate a method which determines the most impactful features to classification by applying subset selection on the features. Determination of the most impactful elements of the vehicles is beneficial to the development of low observables, target models, and automatic target recognition (ATR) algorithms. We show how previous work with features from individual pixels is applied to a greater number of target states. At a greater number of target states, the previous work has poor classification performance. Additionally, the nature of the features from pixels limits the identification of the most impactful elements of vehicles. We apply concepts from optical sensing to reduce the limitation on identification of physical elements. We draw from optical sensing feature extraction with the use of Histogram of Oriented Gradients (HOG). From the cells of HOG, we form features from frequency and polarization attributes of SAR images. Using a subset set of features, we achieve a classification performance of 96.10 percent correct classification. Using the features from HOG and the cells, we identify the features with the most impact. Using backward selection, a process for subset selection, we identify the features with the most impact to classification. The execution of backward selection removes the features which induce the most error

    Phase History Decomposition for Efficient Scatterer Classification in SAR Imagery

    Get PDF
    A new theory and algorithm for scatterer classification in SAR imagery is presented. The automated classification process is operationally efficient compared to existing image segmentation methods requiring human supervision. The algorithm reconstructs coarse resolution subimages from subdomains of the SAR phase history. It analyzes local peaks in the subimages to determine locations and geometric shapes of scatterers in the scene. Scatterer locations are indicated by the presence of a stable peak in all subimages for a given subaperture, while scatterer shapes are indicated by changes in pixel intensity. A new multi-peak model is developed from physical models of electromagnetic scattering to predict how pixel intensities behave for different scatterer shapes. The algorithm uses a least squares classifier to match observed pixel behavior to the model. Classification accuracy improves with increasing fractional bandwidth and is subject to the high-frequency and wide-aperture approximations of the multi-peak model. For superior computational efficiency, an integrated fast SAR imaging technique is developed to combine the coarse resolution subimages into a final SAR image having fine resolution. Finally, classification results are overlaid on the SAR image so that analysts can deduce the significance of the scatterer shape information within the image context

    Salient Feature Identification and Analysis using Kernel-Based Classification Techniques for Synthetic Aperture Radar Automatic Target Recognition

    Get PDF
    An investigation into feature saliency for application to synthetic aperture radar (SAR) automatic target recognition (ATR) is presented. Specifically, research is focused on improving the SAR binary classification performance aspect of ATR, or the ability to accurately determine the class of a SAR target. The key to improving ATR classification performance lies in characterizing the salient target features. Salient features may be loosely defined as the most consistently impactful parts of a SAR target contributing to effective SAR ATR classification. To better understand the notion of salience, an investigation is conducted into the nature of saliency as applied to Air Force Research Lab\u27s (AFRL) civilian vehicle (CV) data domes simulated phase history data set. After separating vehicles into two SAR data classes, sedan and SUV, frequency and polarization features are extracted from SAR data and formed into either 1D high range resolution (HRR) or 2D spectrum parted linked image test (SPLIT) feature vectors. A series of experiments comparing vehicle classes are designed and conducted to focus specifically on the saliency effects of various SAR collection parameters including azimuth angle, aperture size, elevation angle, and bandwidth. The popular kernel-based Bayesian Relevance Vector Machine (RVM) classifier is utilized for sparse identification of relevant vectors contributing most to the creation of a hyperplane decision boundary. Analysis of experimental results ultimately leads to recommendations of the salient feature vectors and SAR collection parameters which provide the most potential impact to improving vehicle classification. Demonstrating the proposed saliency characterization algorithm with simulated civilian vehicle data provides a road map for salient feature identification and analysis of other SAR data classes in future operational scenarios. ATR practitioners may use saliency results to focus more attention on the identified salient features of a target class, improving efficiency and effectiveness of SAR ATR

    Curvelet Approach for SAR Image Denoising, Structure Enhancement, and Change Detection

    Get PDF
    In this paper we present an alternative method for SAR image denoising, structure enhancement, and change detection based on the curvelet transform. Curvelets can be denoted as a two dimensional further development of the well-known wavelets. The original image is decomposed into linear ridge-like structures, that appear in different scales (longer or shorter structures), directions (orientation of the structure) and locations. The influence of these single components on the original image is weighted by the corresponding coefficients. By means of these coefficients one has direct access to the linear structures present in the image. To suppress noise in a given SAR image weak structures indicated by low coefficients can be suppressed by setting the corresponding coefficients to zero. To enhance structures only coefficients in the scale of interest are preserved and all others are set to zero. Two same-sized images assumed even a change detection can be done in the curvelet coefficient domain. The curvelet coefficients of both images are differentiated and manipulated in order to enhance strong and to suppress small scale (pixel-wise) changes. After the inverse curvelet transform the resulting image contains only those structures, that have been chosen via the coefficient manipulation. Our approach is applied to TerraSAR-X High Resolution Spotlight images of the city of Munich. The curvelet transform turns out to be a powerful tool for image enhancement in fine-structured areas, whereas it fails in originally homogeneous areas like grassland. In the change detection context this method is very sensitive towards changes in structures instead of single pixel or large area changes. Therefore, for purely urban structures or construction sites this method provides excellent and robust results. While this approach runs without any interaction of an operator, the interpretation of the detected changes requires still much knowledge about the underlying objects

    CCAT-prime: Science with an Ultra-widefield Submillimeter Observatory at Cerro Chajnantor

    Full text link
    We present the detailed science case, and brief descriptions of the telescope design, site, and first light instrument plans for a new ultra-wide field submillimeter observatory, CCAT-prime, that we are constructing at a 5600 m elevation site on Cerro Chajnantor in northern Chile. Our science goals are to study star and galaxy formation from the epoch of reionization to the present, investigate the growth of structure in the Universe, improve the precision of B-mode CMB measurements, and investigate the interstellar medium and star formation in the Galaxy and nearby galaxies through spectroscopic, polarimetric, and broadband surveys at wavelengths from 200 um to 2 mm. These goals are realized with our two first light instruments, a large field-of-view (FoV) bolometer-based imager called Prime-Cam (that has both camera and an imaging spectrometer modules), and a multi-beam submillimeter heterodyne spectrometer, CHAI. CCAT-prime will have very high surface accuracy and very low system emissivity, so that combined with its wide FoV at the unsurpassed CCAT site our telescope/instrumentation combination is ideally suited to pursue this science. The CCAT-prime telescope is being designed and built by Vertex Antennentechnik GmbH. We expect to achieve first light in the spring of 2021.Comment: Presented at SPIE Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX, June 14th, 201

    A perspective of synthetic aperture radar for remote sensing

    Get PDF
    The characteristics and capabilities of synthetic aperture radar are discussed so as to identify those features particularly unique to SAR. The SAR and Optical images were compared. The SAR is an example of radar that provides more information about a target than simply its location. It is the spatial resolution and imaging capability of SAR that has made its application of interest, especially from spaceborne platforms. However, for maximum utility to remote sensing, it was proposed that other information be extracted from SAR data, such as the cross section with frequency and polarization

    Three-Dimensional Polarimetric InISAR Imaging of Non-Cooperative Targets

    Get PDF
    A new Polarimetric Interferometry Inverse Synthetic Aperture Radar (Pol-InISAR) 3D imaging method for non-cooperative targets is proposed in this paper. 3D imaging of non-cooperative targets becomes possible by combining additional information of interferometric phase along with conventional 2D ISAR imaging. In the previously reported single-polarimetry InISAR based 3D imaging, only a single-channel based interferometric phase is available that can be exploited to reconstruct the 3D ISAR image. This limits the ability to obtain a full target's scattering response and therefore limits the estimation of an accurate interferometric phase. To overcome this constraint, full-polarimetry information is being exploited in this paper, which allows to select the optimal polarimetric combination through which the highest coherence can be obtained. A higher coherence leads to a reduction (optimally a minimization) of the phase estimation error. Consequently, with an optimal phase estimation, an accurate 3D imaging of the target is possible. To validate this proposed Pol-InISAR based 3D imaging approach, both simulated and real datasets are taken under consideration

    Analysis of geologic terrain models for determination of optimum SAR sensor configuration and optimum information extraction for exploration of global non-renewable resources. Pilot study: Arkansas Remote Sensing Laboratory, part 1, part 2, and part 3

    Get PDF
    Computer-generated radar simulations and mathematical geologic terrain models were used to establish the optimum radar sensor operating parameters for geologic research. An initial set of mathematical geologic terrain models was created for three basic landforms and families of simulated radar images were prepared from these models for numerous interacting sensor, platform, and terrain variables. The tradeoffs between the various sensor parameters and the quantity and quality of the extractable geologic data were investigated as well as the development of automated techniques of digital SAR image analysis. Initial work on a texture analysis of SEASAT SAR imagery is reported. Computer-generated radar simulations are shown for combinations of two geologic models and three SAR angles of incidence
    corecore