19 research outputs found
Fabrication of comb-drive actuators for straining nanostructured suspended graphene
We report on the fabrication and characterization of an optimized comb-drive
actuator design for strain-dependent transport measurements on suspended
graphene. We fabricate devices from highly p-doped silicon using deep reactive
ion etching with a chromium mask. Crucially, we implement a gold layer to
reduce the device resistance from k to
at room temperature in order to allow for
strain-dependent transport measurements. The graphene is integrated by
mechanically transferring it directly onto the actuator using a
polymethylmethacrylate membrane. Importantly, the integrated graphene can be
nanostructured afterwards to optimize device functionality. The minimum feature
size of the structured suspended graphene is 30 nm, which allows for
interesting device concepts such as mechanically-tunable nanoconstrictions.
Finally, we characterize the fabricated devices by measuring the Raman spectrum
as well as the a mechanical resonance frequency of an integrated graphene sheet
for different strain values.Comment: 10 pages, 9 figure
MEMS micro-bridge actuator for potential application in optical switching
In this thesis, the development of a novel electro-thermally actuated bi-stable out-of-plane two way actuated buckled micro-bridge for a potential application in optical switching is presented.
The actuator consists of a bridge supported by 'legs' and springs at its four corners. The springs and the bridge are made of a tri-layer structure comprising of 2.5µm thick low-stress PECVD oxide, 1µm thick high-stress PECVD oxide and 2µm thick heavily phosphorus doped silicon. The legs, on the other hand, are 2µm thick single layer heavily phosphorus doped silicon. Both legs and springs provide elastically constrained boundary conditions at the supporting ends, without of which important features of the micro-bridge actuator could not have been achieved. This microbridge actuator is designed, simulated using ANSYS, fabricated and tested. The results from the testing have shown a good agreement with analytical prediction and ANSYS simulation. The actuator demonstrated bi-stability, two-way actuation and 31µm out-of-plane movement between the two-states using low voltage drive. Buckled shape model, design method for bi-stability and thermo-mechanical model are developed and employed in the design of the micro-bridge.
These models are compared with Finite Element (FE) based ANSYS simulation and measurements from the fabricated micro-bridge and have shown a good agreement. In order to demonstrate the potential application of this actuator to optical switching, ANSYS simulation studies have been performed on a micro-mirror integrated with the micro-bridge actuator. From these studies, the optimum micro-mirror size that is appropriate for the integration has been obtained. This optimal mirror size ensures the important features of the actuator. Mirror fabrication experiments in (110) wafer have been carried out to find out the appropriate compensation mask size for a given etch depth and the suitable wafer thickness that can be used to fabricate the integrated system
Large-rotation and low-voltage driving of micromirror realized by tense thin-film torsion bar
Performance of Tense Thin-Film Torsion Bar for Large Rotation and Low-Voltage Driving of Micromirror
Development and implementation of a deflection amplification mechanism for capacitive accelerometers
Micro-Electro-Mechanical-Systems (MEMS) and especially physical sensors are part of a flourishing market ranging from consumer electronics to space applications. They have seen a great evolution throughout the last decades, and there is still considerable research effort for further improving their performance. This is reflected by the plethora of commercial applications using them but also by the demand from industry for better specifications. This demand together with the needs of novel applications fuels the research for better physical sensors.Applications such as inertial, seismic, and precision tilt sensing demand very high sensitivity and low noise. Bulk micromachined capacitive inertial sensors seem to be the most viable solution as they offer a large inertial mass, high sensitivity, good noise performance, they are easy to interface with, and of low cost. The aim of this thesis is to improve the performance of bulk micromachined capacitive sensors by enhancing their sensitivity and noise floor.MEMS physical sensors, most commonly, rely on force coupling and a resulting deflection of a proof mass or membrane to produce an output proportional to a stimulus of the physical quantity to be measured. Therefore, the sensitivity to a physical quantity may be improved by increasing the resulting deflection of a sensor. The work presented in this thesis introduces an approach based on a mechanical motion amplifier with the potential to improve the performance of mechanical MEMS sensors that rely on deflection to produce an output signal.The mechanical amplifier is integrated with the suspension system of a sensor. It comprises a system of micromachined levers (microlevers) to enhance the deflection of a proof mass caused by an inertial force. The mechanism can be used in capacitive accelerometers and gyroscopes to improve their performance by increasing their output signal. As the noise contribution of the electronic read-out circuit of a MEMS sensor is, to first order, independent of the amplitude of its input signal, the overall signal-to-noise ratio (SNR) of the sensor is improved.There is a rather limited number of reports in the literature for mechanical amplification in MEMS devices, especially when applied to amplify the deflection of inertial sensors. In this study, after a literature review, mathematical and computational methods to analyse the behaviour of microlevers were considered. By using these methods the mechanical and geometrical characteristics of microlevers components were evaluated. In order to prove the concept, a system of microlevers was implemented as a mechanical amplifier in capacitive accelerometers.All the mechanical structures were simulated using Finite Element Analysis (FEA) and system level simulations. This led to first order optimised devices that were used to design appropriate masks for fabrication. Two main fabrication processes were used; a Silicon on Insulator (SOI) process and a Silicon on Glass (SoG) process. The SOI process carried out at the University of Southampton evolved from a one mask to a two mask dicing free process with a yield of over 95%, in its third generation. The SoG is a well-established process at the University of Peking that uses three masks.The sensors were evaluated using both optical and electrical means. The results from the first prototype sensor design (1HAN) revealed an amplification factor of 40 and a mechanically amplified sensitivity of 2.39V/g. The measured natural frequency of the first mode of the sensor was at 734Hz and the full-scale measurement range was up to 7g with a maximum nonlinearity of 2%. The measurements for all the prototype sensor designs were very close to the predicted values with the highest discrepancy being 22%. The results of this research show that mechanical amplification is a very promising concept that can offer increased sensitivity in inertial sensors without increasing the noise. Experimental results show that there is plenty of room for improvement and that viable solutions may be produced by using the presented approach. The applications of this scheme are not restricted only to inertial sensors but as the results show it can be used in a broader range of micromachined devices
