We report on the fabrication and characterization of an optimized comb-drive
actuator design for strain-dependent transport measurements on suspended
graphene. We fabricate devices from highly p-doped silicon using deep reactive
ion etching with a chromium mask. Crucially, we implement a gold layer to
reduce the device resistance from ≈51.6 kΩ to
≈236Ω at room temperature in order to allow for
strain-dependent transport measurements. The graphene is integrated by
mechanically transferring it directly onto the actuator using a
polymethylmethacrylate membrane. Importantly, the integrated graphene can be
nanostructured afterwards to optimize device functionality. The minimum feature
size of the structured suspended graphene is 30 nm, which allows for
interesting device concepts such as mechanically-tunable nanoconstrictions.
Finally, we characterize the fabricated devices by measuring the Raman spectrum
as well as the a mechanical resonance frequency of an integrated graphene sheet
for different strain values.Comment: 10 pages, 9 figure