1,432 research outputs found

    Forest Management and Water Resources in the Anthropocene

    Get PDF
    Decades of research has provided a depth of understanding on the relationships among forests and water, and how these relationships change in response to climate variability, disturbance, and forest management. This understanding has facilitated a strong predictive capacity and the development of best management practices to protect water resources with active management. Despite this understanding, the rapid pace of changes in climate, disturbance regimes, invasive species, human population growth, and land use expected in the 21st century is likely to create substantial challenges for watershed management that may require new approaches, models, and best management practices. These challenges are likely to be complex and large scale, involving a combination of direct effects and indirect biophysical watershed responses, as well as socioeconomic impacts and feedbacks. We explore the complex relationships between forests and water in a rapidly changing environment, examine the trade-offs and conflicts between water and other resources, and examine new management approaches for sustaining water resources in the future

    A Model for Continental-Scale Water Erosion and Sediment Transport and Its Application to the Yellow River Basin

    Get PDF
    Quantifying suspended sediment discharge at large catchment scales has significant implications for various research fields such as water quality, global carbon and nutrient cycle, agriculture sustainability, and landscape evolution. There is growing evidence that climate warming is accelerating the water cycle, leading to changes in precipitation and runoff and increasing the frequency and intensity of extreme weather events, which could lead to intensive erosion and sediment discharge. However, suspended sediment discharge is still rarely represented in regional climate models because it depends not only on the sediment transport capacity based on streamflow characteristics but also on the sediment availability in the upstream basin. This thesis introduces a continental-scale Atmospheric and Hydrological-Sediment Modelling System (AHMS-SED), which overcomes the limitations of previous large-scale water erosion models. Specifically, AHMS-SED includes a complete representation of key hydrological, erosion and sediment transport processes such as runoff and sediment generation, flow and sediment routing, sediment deposition, gully erosion and river irrigation. In this thesis, we focus on developing and applying AHMS-SED in the Yellow River Basin of China, an arid and semi-arid region known for its wide distribution of loess and the highest soil erosion rate in the world. There are three key issues involving the model development and application: human perturbation (irrigation) of the water cycle, the uncertainty of precipitation forcing on the water discharge and the large-scale water erosion and sediment transport. This thesis addresses all these three issues in the following way. First, a new irrigation module is integrated into the Atmospheric and Hydrological Modelling System (AHMS). The model is calibrated and validated using in-situ and remote sensing observations. By incorporating the irrigation module into the simulation, a more realistic hydrological response was obtained near the outlet of the Yellow River Basin. Second, an evaluation of six precipitation-reanalysis products is performed based on observed precipitation and model-simulated river discharge by the AHMS for the Yellow River Basin. The hydrological model is driven with each of the precipitation-reanalysis products in two ways, one with the rainfall-runoff parameters recalibrated and the other without. Our analysis contributes to better quantifying the reliability of hydrological simulations and the improvement of future precipitation-reanalysis products. Third, a regional-scale water erosion and sediment transport model, referred to as AHMS-SED, is developed and applied to predicting continental-scale fluvial transport in the Yellow River Basin. This model couples the AHMS with the CASCade 2-Dimensional SEDiment (CASC2D-SED) and takes into account gully erosion, a process that strongly affects the sediment supply in the Chinese Loess Plateau. The AHMS-SED is then applied to simulate water erosion and sediment processes in the Yellow River Basin for a period of eight years, from 1979 to 1987. Overall, the results demonstrate the good performance of the AHMS-SED and the upland sediment discharge equation based on rainfall erosivity and gully area index. AHMS-SED is also used to predict the evolution of sediment transport in the Yellow River Basin under specific climate change scenarios. The model results indicate that changes in precipitation will have a significant impact on sediment discharge, while increased irrigation will reduce the sediment discharge from the Yellow River

    Soil-Water Conservation, Erosion, and Landslide

    Get PDF
    The predicted climate change is likely to cause extreme storm events and, subsequently, catastrophic disasters, including soil erosion, debris and landslide formation, loss of life, etc. In the decade from 1976, natural disasters affected less than a billion lives. These numbers have surged in the last decade alone. It is said that natural disasters have affected over 3 billion lives, killed on average 750,000 people, and cost more than 600 billion US dollars. Of these numbers, a greater proportion are due to sediment-related disasters, and these numbers are an indication of the amount of work still to be done in the field of soil erosion, conservation, and landslides. Scientists, engineers, and planners are all under immense pressure to develop and improve existing scientific tools to model erosion and landslides and, in the process, better conserve the soil. Therefore, the purpose of this Special Issue is to improve our knowledge on the processes and mechanics of soil erosion and landslides. In turn, these will be crucial in developing the right tools and models for soil and water conservation, disaster mitigation, and early warning systems

    The Effect of Hydrology on Soil Erosion

    Get PDF
    This Special Issue includes manuscripts about soil erosion and degradation processes and the accelerated rates due to hydrological processes and climate change. The new research included in this issue focuses on measurements, modeling, and experiments in field or laboratory conditions developed at different scales (pedon, hillslope, and catchment). This Special Issue received investigations from different parts of the world such as Ethiopia, Morocco, China, Iran, Italy, Portugal, Greece, and Spain, among others. We are happy to see that all papers presented findings characterized as unconventional, provocative, innovative, and methodologically new. We hope that the readers of the journal Water can enjoy and learn about hydrology and soil erosion using the published material, and share the results with the scientific community, policymakers, and stakeholders to continue this amazing adventure, facing plenty of issues and challenges

    Modeling of Soil Erosion and Sediment Transport

    Get PDF
    The Special Issue entitled “Modeling of Soil Erosion and Sediment Transport” focuses on the mathematical modeling of soil erosion caused by rainfall and runoff at a basin scale, as well as on the sediment transport in the streams of the basin. In concrete terms, the quantification of these phenomena by means of mathematical modeling and field measurements has been studied. The following mathematical models (software) were used, amongst others: AnnAGNPS, SWAT, SWAT-Twn, TUSLE, WRF-Hydro-Sed, CORINE, LCM-MUSLE, EROSION-3D, HEC-RAS, SRC, WA-ANN. The Special Issue contains 14 articles that can be classified into the following five categories: Category A: “Soil erosion and sediment transport modeling in basins”; Category B: “Inclusion of soil erosion control measures in soil erosion models”; Category C: “Soil erosion and sediment transport modeling in view of reservoir sedimentation”; Category D: “Field measurements of gully erosion”; Category E: “Stream sediment transport modeling”. Most studies presented in the Special Issue were applied to different basins in Europe, America, and Asia, and are the result of the cooperation between universities and/or research centers in different countries and continents, which constitutes an optimistic fact for the international scientific communication

    Soil Water Erosion

    Get PDF
    The purpose of this book is to provide novel results related to soil water erosion that could help landowners and land-users, farmers, politicians, and other representatives of our global society to protect and, if possible, improve the quality and quantity of our precious soil resources. Published papers on the topics are related to new ways of mapping, maps with more detailed input data, maps about areas that have never been mapped before, sediment yield estimations, modelling sheets and gully erosion, USLE models, RUSLE models, dams which stop sediment runoff, sediment influx, solute transport, soil detachment capacities, badland morphology, freeze-thaw cycles, armed conflicts, use of rainfall simulators, rainfall erosivity, soil erodibility, etc

    Water Resource Variability and Climate Change

    Get PDF
    Climate change affects global and regional water cycling, as well as surficial and subsurface water availability. These changes have increased the vulnerabilities of ecosystems and of human society. Understanding how climate change has affected water resource variability in the past and how climate change is leading to rapid changes in contemporary systems is of critical importance for sustainable development in different parts of the world. This Special Issue focuses on “Water Resource Variability and Climate Change” and aims to present a collection of articles addressing various aspects of water resource variability as well as how such variabilities are affected by changing climates. Potential topics include the reconstruction of historic moisture fluctuations, based on various proxies (such as tree rings, sediment cores, and landform features), the empirical monitoring of water variability based on field survey and remote sensing techniques, and the projection of future water cycling using numerical model simulations
    • …
    corecore