1,131 research outputs found

    Translation of EEG spatial filters from resting to motor imagery using independent component analysis.

    Get PDF
    Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) often use spatial filters to improve signal-to-noise ratio of task-related EEG activities. To obtain robust spatial filters, large amounts of labeled data, which are often expensive and labor-intensive to obtain, need to be collected in a training procedure before online BCI control. Several studies have recently developed zero-training methods using a session-to-session scenario in order to alleviate this problem. To our knowledge, a state-to-state translation, which applies spatial filters derived from one state to another, has never been reported. This study proposes a state-to-state, zero-training method to construct spatial filters for extracting EEG changes induced by motor imagery. Independent component analysis (ICA) was separately applied to the multi-channel EEG in the resting and the motor imagery states to obtain motor-related spatial filters. The resultant spatial filters were then applied to single-trial EEG to differentiate left- and right-hand imagery movements. On a motor imagery dataset collected from nine subjects, comparable classification accuracies were obtained by using ICA-based spatial filters derived from the two states (motor imagery: 87.0%, resting: 85.9%), which were both significantly higher than the accuracy achieved by using monopolar scalp EEG data (80.4%). The proposed method considerably increases the practicality of BCI systems in real-world environments because it is less sensitive to electrode misalignment across different sessions or days and does not require annotated pilot data to derive spatial filters

    High-resolution broadband spectroscopy using externally dispersed interferometry at the Hale telescope: Part 1, data analysis and results

    Full text link
    High-resolution broadband spectroscopy at near-infrared wavelengths (950 to 2450 nm) has been performed using externally dispersed interferometry (EDI) at the Hale telescope at Mt. Palomar. Observations of stars were performed with the “TEDI” interferometer mounted within the central hole of the 200-in. primary mirror in series with the comounted TripleSpec near-infrared echelle spectrograph. These are the first multidelay EDI demonstrations on starlight, as earlier measurements used a single delay or laboratory sources. We demonstrate very high (10×) resolution boost, from original 2700 to 27,000 with current set of delays (up to 3 cm), well beyond the classical limits enforced by the slit width and detector pixel Nyquist limit. Significantly, the EDI used with multiple delays rather than a single delay as used previously yields an order of magnitude or more improvement in the stability against native spectrograph point spread function (PSF) drifts along the dispersion direction. We observe a dramatic (20×) reduction in sensitivity to PSF shift using our standard processing. A recently realized method of further reducing the PSF shift sensitivity to zero is described theoretically and demonstrated in a simple simulation which produces a 350× times reduction. We demonstrate superb rejection of fixed pattern noise due to bad detector pixels—EDI only responds to changes in pixel intensity synchronous to applied dithering. This part 1 describes data analysis, results, and instrument noise. A section on theoretical photon limited sensitivity is in a companion paper, part 2

    Assessing and Improving 4D-CT Imaging for Radiotherapy Applications

    Get PDF
    Lung cancer has both a high incidence and death rate. A contributing factor to these high rates comes from the difficulty of treating lung cancers due to the inherent mobility of the lung tissue and the tumour. 4D-CT imaging has been developed to image lung tumours as they move during respiration. Most 4D-CT imaging methods rely on data from an external respiratory surrogate to sort the images according to respiratory phase. However, it has been shown that respiratory surrogate 4D-CT methods can suffer from imaging artifacts that degrade the image quality of the 4D-CT volumes that are used to plan a patient\u27s radiation therapy. In Chapter 2 of this thesis a method to investigate the correlation between an external respiratory surrogate and the internal anatomy was developed. The studies were performed on ventilated pigs with an induced inconsistent amplitude of breathing. The effect of inconsistent breathing on the correlation between the external marker and the internal anatomy was tested using a linear regression. It was found in 10 of the 12 studies performed that there were significant changes in the slope of the regression line as a result of inconsistent breathing. From this study we conclude that the relationship between an external marker and the internal anatomy is not stable and can be perturbed by inconsistent breathing amplitudes. Chapter 3 describes the development of a image based 4D-CT imaging algorithm based on the concept of normalized cross correlation (NCC) between images. The volumes produced by the image based algorithm were compared to volumes produced using a clinical external marker 4D-CT algorithm. The image based method produced 4D-CT volumes that had a reduced number of imaging artifacts when compared to the external marker produced volumes. It was shown that an image based 4D-CT method could be developed and perform as well or better than external marker methods that are currently in clinical use. In Chapter 4 a method was developed to assess the uncertainties of the locations of anatomical structures in the volumes produced by the image based 4D-CT algorithm developed in Chapter 3. The uncertainties introduced by using NCC to match a pair of images according to respiratory phase were modeled and experimentally determined. Additionally, the assumption that two subvolumes could be matched in respiratory phase using a single pair of 2D overlapping images was experimentally validated. It was shown that when the image based 4D-CT algorithm developed in Chapter 3 was applied to data acquired from a ventilated pig with induced inconsistent breathing the displacement uncertainties were on the order of 1.0 millimeter. The results of this thesis show that there exists the possibility of a miscorrelation between the motion of a respiratory surrogate (marker) and the internal anatomy under inconsistent breathing amplitude. Additionally, it was shown that an image based 4D-CT method that operates without the need of one or more external respiratory surrogate(s) could produce artifact free volumes synchronous with respiratory phase. The spatial uncertainties of the volumes produced by the image based 4D-CT method were quantified and shown to be small (~ 1mm) which is an acceptable accuracy for radiation treatment planning. The elimination of the external respiratory surrogates simplifies the implementation and increases the throughput of the image based 4D-CT method as well

    Rotating single-shot acquisition (RoSA) with composite reconstruction for fast high-resolution diffusion imaging

    Get PDF
    PURPOSE: To accelerate high-resolution diffusion imaging, rotating single-shot acquisition (RoSA) with composite reconstruction is proposed. Acceleration was achieved by acquiring only one rotating single-shot blade per diffusion direction, and high-resolution diffusion-weighted (DW) images were reconstructed by using similarities of neighboring DW images. A parallel imaging technique was implemented in RoSA to further improve the image quality and acquisition speed. RoSA performance was evaluated by simulation and human experiments. METHODS: A brain tensor phantom was developed to determine an optimal blade size and rotation angle by considering similarity in DW images, off-resonance effects, and k-space coverage. With the optimal parameters, RoSA MR pulse sequence and reconstruction algorithm were developed to acquire human brain data. For comparison, multishot echo planar imaging (EPI) and conventional single-shot EPI sequences were performed with matched scan time, resolution, field of view, and diffusion directions. RESULTS: The simulation indicated an optimal blade size of 48 × 256 and a 30 ° rotation angle. For 1 × 1 mm2 in-plane resolution, RoSA was 12 times faster than the multishot acquisition with comparable image quality. With the same acquisition time as SS-EPI, RoSA provided superior image quality and minimum geometric distortion. CONCLUSION: RoSA offers fast, high-quality, high-resolution diffusion images. The composite image reconstruction is model-free and compatible with various diffusion computation approaches including parametric and nonparametric analyses. Magn Reson Med 79:264-275, 2018. © 2017 International Society for Magnetic Resonance in Medicine

    Domain Adaptation for Robust Workload Level Alignment Between Sessions and Subjects using fNIRS

    Full text link
    Significance: We demonstrated the potential of using domain adaptation on functional Near-Infrared Spectroscopy (fNIRS) data to classify different levels of n-back tasks that involve working memory. Aim: Domain shift in fNIRS data is a challenge in the workload level alignment across different experiment sessions and subjects. In order to address this problem, two domain adaptation approaches -- Gromov-Wasserstein (G-W) and Fused Gromov-Wasserstein (FG-W) were used. Approach: Specifically, we used labeled data from one session or one subject to classify trials in another session (within the same subject) or another subject. We applied G-W for session-by-session alignment and FG-W for subject-by-subject alignment to fNIRS data acquired during different n-back task levels. We compared these approaches with three supervised methods: multi-class Support Vector Machine (SVM), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN). Results: In a sample of six subjects, G-W resulted in an alignment accuracy of 68 ±\pm 4 % (weighted mean ±\pm standard error) for session-by-session alignment, FG-W resulted in an alignment accuracy of 55 ±\pm 2 % for subject-by-subject alignment. In each of these cases, 25 % accuracy represents chance. Alignment accuracy results from both G-W and FG-W are significantly greater than those from SVM, CNN and RNN. We also showed that removal of motion artifacts from the fNIRS data plays an important role in improving alignment performance. Conclusions: Domain adaptation has potential for session-by-session and subject-by-subject alignment of mental workload by using fNIRS data

    Early-state damage detection, characterization, and evolution using high-resolution computed tomography

    Get PDF
    Safely using materials in high performance applications requires adequately understanding the mechanisms which control the nucleation and evolution of damage. Most of a material\u27s operational life is spent in a state with noncritical damage, and, for example in metals only a small portion of its life falls within the classical Paris Law regime of crack growth. Developing proper structural health and prognosis models requires understanding the behavior of damage in these early stages within the material\u27s life, and this early-stage damage occurs on length scales at which the material may be considered ``granular\u27\u27 in the sense that the discrete regions which comprise the whole are large enough to require special consideration. Material performance depends upon the characteristics of the granules themselves as well as the interfaces between granules. As a result, properly studying early-stage damage in complex, granular materials requires a means to characterize changes in the granules and interfaces. The granular-scale can range from tenths of microns in ceramics, to single microns in fiber-reinforced composites, to tens of millimeters in concrete. The difficulty of direct-study is often overcome by exhaustive testing of macro-scale damage caused by gross material loads and abuse. Such testing, for example optical or electron microscopy, destructive and further, is costly when used to study the evolution of damage within a material and often limits the study to a few snapshots. New developments in high-resolution computed tomography (HRCT) provide the necessary spatial resolution to directly image the granule length-scale of many materials. Successful application of HRCT with fiber-reinforced composites, however, requires extending the HRCT performance beyond current limits. This dissertation will discuss improvements made in the field of CT reconstruction which enable resolutions to be pushed to the point of being able to image the fiber-scale damage structures and the application of this new capability to the study of early-stage damage

    Geometrical Calibration and Filter Optimization for Cone-Beam Computed Tomography

    Get PDF
    This thesis will discuss the requirements of a software library for tomography and will derive a framework which can be used to realize various applications in cone-beam computed tomography (CBCT). The presented framework is self-contained and is realized using the MATLAB environment in combination with native low-level technologies (C/C++ and CUDA) to improve its computational performance, while providing accessibility and extendability through to use of a scripting language environment. On top of this framework, the realization of Katsevich’s algorithm on multicore hardware will be explained and the resulting implementation will be compared to the Feldkamp, Davis and Kress (FDK) algorithm. It will also be shown that this helical reconstruction method has the potential to reduce the measurement uncertainty. However, misalignment artifacts appear more severe in the helical reconstructions from real data than in the circular ones. Especially for helical CBCT (H-CBCT), this fact suggests that a precise calibration of the computed tomography (CT) system is inevitable. As a consequence, a self-calibration method will be designed that is able to estimate the misalignment parameters from the cone-beam projection data without the need of any additional measurements. The presented method employs a multi-resolution 2D-3D registration technique and a novel volume update scheme in combination with a stochastic reprojection strategy to achieve a reasonable runtime performance. The presented results will show that this method reaches sub-voxel accuracy and can compete with current state-of-the-art online- and offline-calibration approaches. Additionally, for the construction of filters in the area of limited-angle tomography a general scheme which uses the Approximate Inverse (AI) to compute an optimized set of 2D angle-dependent projection filters will be derived. Optimal sets of filters are then precomputed for two angular range setups and will be reused to perform various evaluations on multiple datasets with a filtered backprojection (FBP)-type method. This approach will be compared to the standard FDK algorithm and to the simultaneous iterative reconstruction technique (SIRT). The results of the study show that the introduced filter optimization produces results comparable to those of SIRT with respect to the reduction of reconstruction artifacts, whereby its runtime is comparable to that of the FDK algorithm
    • …
    corecore