8,758 research outputs found

    An efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier-Stokes equations

    Get PDF
    We investigate the long tim behavior of the following efficient second order in time scheme for the 2D Navier-Stokes equation in a periodic box: \frac{3\omega^{n+1}-4\omega^n+\omega^{n-1}}{2k} + \nabla^\perp(2\psi^n-\psi^{n-1})\cdot\nabla(2\omega^n-\omega^{n-1}) - \nu\Delta\omega^{n+1} = f^{n+1}, \quad -\Delta \psi^n = \om^n. The scheme is a combination of a 2nd order in time backward-differentiation (BDF) and a special explicit Adams-Bashforth treatment of the advection term. Therefore only a linear constant coefficient Poisson type problem needs to be solved at each time step. We prove uniform in time bounds on this scheme in \dL2, \dH1 and H˙per2\dot{H}^2_{per} provided that the time-step is sufficiently small. These time uniform estimates further lead to the convergence of long time statistics (stationary statistical properties) of the scheme to that of the NSE itself at vanishing time-step. Fully discrete schemes with either Galerkin Fourier or collocation Fourier spectral method are also discussed

    A temporally adaptive hybridized discontinuous Galerkin method for time-dependent compressible flows

    Full text link
    The potential of the hybridized discontinuous Galerkin (HDG) method has been recognized for the computation of stationary flows. Extending the method to time-dependent problems can, e.g., be done by backward difference formulae (BDF) or diagonally implicit Runge-Kutta (DIRK) methods. In this work, we investigate the use of embedded DIRK methods in an HDG solver, including the use of adaptive time-step control. Numerical results demonstrate the performance of the method for both linear and nonlinear (systems of) time-dependent convection-diffusion equations

    Strong and auxiliary forms of the semi-Lagrangian method for incompressible flows

    No full text
    We present a review of the semi-Lagrangian method for advection-diusion and incompressible Navier-Stokes equations discretized with high-order methods. In particular, we compare the strong form where the departure points are computed directly via backwards integration with the auxiliary form where an auxiliary advection equation is solved instead; the latter is also referred to as Operator Integration Factor Splitting (OIFS) scheme. For intermediate size of time steps the auxiliary form is preferrable but for large time steps only the strong form is stable

    A High-Order Radial Basis Function (RBF) Leray Projection Method for the Solution of the Incompressible Unsteady Stokes Equations

    Get PDF
    A new projection method based on radial basis functions (RBFs) is presented for discretizing the incompressible unsteady Stokes equations in irregular geometries. The novelty of the method comes from the application of a new technique for computing the Leray-Helmholtz projection of a vector field using generalized interpolation with divergence-free and curl-free RBFs. Unlike traditional projection methods, this new method enables matching both tangential and normal components of divergence-free vector fields on the domain boundary. This allows incompressibility of the velocity field to be enforced without any time-splitting or pressure boundary conditions. Spatial derivatives are approximated using collocation with global RBFs so that the method only requires samples of the field at (possibly scattered) nodes over the domain. Numerical results are presented demonstrating high-order convergence in both space (between 5th and 6th order) and time (up to 4th order) for some model problems in two dimensional irregular geometries.Comment: 34 pages, 8 figure

    A semi-explicit multi-step method for solving incompressible navier-stokes equations

    Get PDF
    The fractional step method is a technique that results in a computationally-efficient implementation of Navier–Stokes solvers. In the finite element-based models, it is often applied in conjunction with implicit time integration schemes. On the other hand, in the framework of finite difference and finite volume methods, the fractional step method had been successfully applied to obtain predictor-corrector semi-explicit methods. In the present work, we derive a scheme based on using the fractional step technique in conjunction with explicit multi-step time integration within the framework of Galerkin-type stabilized finite element methods. We show that under certain assumptions, a Runge–Kutta scheme equipped with the fractional step leads to an efficient semi-explicit method, where the pressure Poisson equation is solved only once per time step. Thus, the computational cost of the implicit step of the scheme is minimized. The numerical example solved validates the resulting scheme and provides the insights regarding its accuracy and computational efficiency.Peer ReviewedPostprint (published version
    • …
    corecore