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Abstract We investigate the long time behavior of the following efficient second-
order in time scheme for the 2D Navier–Stokes equations in a periodic box:

3ωn+1 − 4ωn + ωn−1

2k
+ ∇⊥(2ψn − ψn−1) · ∇(2ωn − ωn−1)− ν�ωn+1 = f n+1,

−�ψn = ωn .

The scheme is a combination of a 2nd-order in time backward-differentiation and a
particular explicit Adams–Bashforth treatment of the advection term. Therefore only a
linear constant coefficient Poisson solver is needed at each time step. We prove uniform
in time bounds on this scheme in L̇2, Ḣ1

per and Ḣ2
per provided that the time-step is

sufficiently small. These time uniform estimates further lead to the convergence of
long time statistics (stationary statistical properties) of the scheme to that of the NSE
itself at vanishing time-step.

Mathematics Subject Classification (2010) 65M12 · 37M25 · 65P99 · 76F65 ·
76F20 · 76D06 · 76M25

1 Introduction

It is well-known that incompressible fluid flows could be extremely complex exhibiting
seemingly random, chaotic and/or turbulent behavior. Statistical approach is neces-
sary in order to describe such kind of complex behavior (see for instance the treatises
by Monin and Yaglom [35], Frisch [14], Foias et al. [12], Lasota and Mackey [30],
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754 X. Wang

Majda and Wang [33] among others). If the the long time statistics of the system, i.e.,
the climate, is the subject of study, we then need to investigate the invariant measures
of the system since it is the invariant measure (or stationary statistical solutions) that
describes the long time statistics of the underlying dynamical system. Since most of
these chaotic and/or turbulent systems are not amenable to analytical techniques at
the present and in the near future, the issue of the development of numerical methods
that are able to capture the long time statistics becomes very important. Higher order
efficient schemes are apparently preferred due to the long time integration needed.

In this paper, we will focus on the development and analysis of an efficient second
order two step numerical method that is able to capture the long time statistics for the
following two dimensional Navier–Stokes system for homogeneous incompressible
Newtonian fluids in the vorticity-streamfunction formulation (see for instance [36])

∂ω

∂t
+ ∇⊥ψ · ∇ω − ν�ω = f, (1.1)

−�ψ = ω, (1.2)

where ω denotes the vorticity, ψ is the streamfunction, f represents (given) external
body forcing, and ν denotes the kinematic viscosity. For simplicity we will assume peri-
odic boundary condition, i.e., the domain is a two dimensional torus T

2 = (0, 2π)×
(0, 2π), and that all functions are mean zero over the torus.

For analytical data, it is known that the solution is analytic in space (in fact Gevrey
class regular due to Foias and Temam [13]), and hence Fourier spectral is the obvious
choice for spatial discretization. As for time discretization, efficiency requires explicit
treatment of the nonlinear term while stability calls for the implicit treatment of the dif-
fusion term. Therefore we propose the following two step second order semi-implicit
algorithm which treat the viscous term implicitly and the nonlinear advection term
explicitly

3ωn+1 − 4ωn + ωn−1

2k
+∇⊥(2ψn −ψn−1) · ∇(2ωn − ωn−1)−ν�ωn+1 = f n+1,

(1.3)

−�ψ j =ω j . (1.4)

Here k is the time step, and ωn−1, ωn, ωn+1 are the approximation of the vorticity
at discrete time (n − 1)k, nk, (n + 1)k respectively. The convergence of this scheme
on any fixed time interval can be derived via standard methods (see for instance
[34]). There are many over-the-shelf efficient solvers of the (1.3) since it essentially
reduces to a Poisson solver at each time step. This scheme falls into the category of the
so-called implicit–explicit schemes (IMEX) [1,7] which combines second order back-
ward-differentiation (BDF) and a special second order Adams–Bashforth treatment of
the nonlinear term. However, we would like to point out that our scheme is different
from those classical ones where the Adams–Bashforth treatment of the nonlinear term
is in the form of linear multistep fashion of 2∇⊥ψn · ∇ωn − ∇⊥ψn−1 · ∇ωn−1 (see
for instance Karniadakis et al. [26], or Ascher et al. [1], or Varah [48]). The classical
one is also known as extrapolated Gear’s scheme. The new alternative treatment of
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An efficient second order in time scheme 755

the nonlinear advection term proves to be crucial in our long time energy stability
analysis.

There is a long list of work on time and spatial discretization of the NSE and
related dissipative systems that preserves the dissipativity in various forms (see for
instance [10,11,15,22–25,29,34,37,38,46,54] among many others). In particular, a
general framework for the convergence of global attractor (in upper semi-contin-
uous fashion) for one step scheme was derived by Hale et al. [21]. The issue of the
design of numerical schemes that can capture long time statistical behavior was clearly
identified by Sigurgeirsson and Stuart [39]. Related issue in the case of Hamiltonian
system was discussed in Tupper [47]. It was discovered recently by the author that
if the dissipativity of a dissipative system is preserved appropriately, then a one-step
numerical scheme would be able to capture the long time statistical property of the
underlying dissipative system asymptotically in the sense that invariant measures of
the scheme would converge to those of the continuous in time system [52]. This general
framework for the convergence of long time statistics has been applied to the infinite
Prandtl number model for convection by Cheng and Wang [4], and Wang [52], the
2D Rayleigh–Benard convection by Tone and Wang [45], the 2D incompressible NSE
by Gottlieb et al. [17]. The idea of preserving certain properties of PDE in numerical
discretization is a well-known theme (see for instance [32] and the references therein
for preserving the sympletic structure for Hamiltonian systems, [41] for preserving
dispersive relation in dispersive equations, as well as works cited above on preserving
dissipativity for dissipative systems).

The main purpose of this manuscript is to show that the long time statistical proper-
ties of the scheme (1.3) converge to those of the 2D NSE (1.1) at vanishing time-step.
We also show, as long as the time-step is sufficiently small, that the second order two
step (three level) scheme (1.3) is long time energy stable in the sense that we are able
to derive uniform in time estimates in various Sobolev spaces for the solutions to the
scheme. We emphasize that the time-step restriction we have is independent of the
spatial discretization although it depends on the data. Hence this is different from the
usual CFL condition. We also show that the marginal distributions of the invariant
measures of the scheme converge to those of the NSE (1.1) at vanishing time-step in
an upper semi-continuous fashion after projection. This may be viewed as an improve-
ment of our earlier result on the convergence of long time statistical properties for a
first order classical efficient scheme for the 2D Navier–Stokes equations [17].

Multi-level numerical schemes are not discrete dynamical systems on their natural
phase spaces. However, they can be viewed as dynamical systems on product space
(see for instance the book by Stuart and Humphries [40], or Hill and Süli’s work
on approximating global attractor of sectorial evolution equation via linear multi-
step methods [22] among others). Nevertheless, the limit of this dynamical system
on product space is not the product of the original (NSE) system, and certain projec-
tions must be used in order to put it into a framework that is similar to the semigroup
set-up (Hill and Süli [22] called it monoid). Therefore, the result presented here is
not a direct application of the general theory from [52]. Moreover, a general theory
for multi-step schemes that are able to approximate long time statistical properties is
not currently available although we speculate that such a theory may be derived by
combining the general framework for convergence of stationary statistical properties
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756 X. Wang

for one-step schemes [52] with the monoid theory [22]. Here we use a more direct
approach based on Liouville type equations as was done in the case of a first order
scheme for the infinite Prandtl number model for convection, see Cheng and Wang [4].
The limit invariant measure should be concentrated on the diagonal heuristically since
the numerical method converges. We have to consider marginal distributions of the
invariant measures of the scheme as a dynamical system on the product space so that
it is compartible to the phase space of the NSE. We are able to show that all marginal
distributions/measures of the invariant measure of the scheme converge to an invariant
measure/stationary stationary statistical property of the NSE (1.1) (see Wang [50] for
an application in terms of taking appropriate marginal distribution and convergence of
stationary statistical properties in the context of infinite Prandtl number limit within
the Boussinesq model for convection). Therefore long time statistics of the scheme
(in the sense of generalized time average for instance) converges to those of the 2D
NSE as the time-step shrinks to zero.

The rest of the paper is organized as follows. We demonstrate the long time stabil-
ity (boundedness) of the solution to the scheme in L̇2, Ḣ1

per and Ḣ2
per in Sect. 2. In

Sect. 3, we prove the convergence of the long time statistical properties. We briefly
touch upon the issue of spatial discretization in Sect. 4. Final remarks and conclusions
are offered at the end. An appendix covers two technical lemmas that are used in this
manuscript.

2 Time uniform bounds for the semi-discrete scheme

We first recall the well-known periodic Sobolev spaces on � = (0, 2π) × (0, 2π)
with average zero:

Ḣm
per (�) :=

⎧
⎨

⎩
φ ∈ Hm(�)

∣
∣
∣
∣

∫

�

φ=0, φ periodic with period 2π in each direction

⎫
⎬

⎭

(2.1)

Ḣ−m
per is defined as the dual space of Ḣm

per with the duality induced by the L2 inner

product. We will use ‖ · ‖ :=
√∫

�
| · |2 dx to denote the L2(�) norm.

The adoption of Ḣm
per is well-known (see for instance Constantin and Foias [6]

or Temam [43]) since this space is invariant under the Navier–Stokes dynamics (1.1)
provided that the initial data and the forcing term belongs to the same space.

2.1 Well-posedness of the scheme

We first demonstrate that the scheme (1.3) is well-posed in the space L2.

Lemma 1 For f n+1 ∈ L̇2, the scheme (1.3) is well-posed on L2 in the sense that
there exists a unique solution in L2 with L2 data. Moreover, the following estimates
hold:
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An efficient second order in time scheme 757

2‖ωn+1‖2 + νk‖∇ωn+1‖2

≤ (4‖ωn‖ + ‖ωn−1‖)2
4

+ 2k

ν
‖ f n+1‖2

H−1

+2kC2
w

ν
(2‖ωn‖ + ‖ωn−1‖)4, ∀n ≥ 1, (2.2)

2‖∇ωn+1‖2 + νk‖�ωn+1‖2

≤ (4‖∇ωn‖ + ‖∇ωn−1‖)2
4

+ 2k

ν
‖ f n+1‖2

+2kC2
w

ν
(2‖ωn‖ + ‖ωn−1‖)2(2‖∇ωn‖ + ‖∇ωn−1‖)2, ∀n ≥ 3. (2.3)

In particular, ωn, ωn−1 ∈ L̇2 implies ωn+1, ωn+2 ∈ Ḣ1
per , ω

n+3 ∈ Ḣ2
per . Further-

more, if f n+1 ∈ Ḣ1
per we have

‖�ωn+1‖2 + νk

2
‖∇�ωn+1‖2

≤ (4‖�ωn‖ + ‖�ωn−1‖)2
2

+ 4k

ν
‖∇ f n+1‖2

+4kC2
w

ν
(2‖∇ωn‖ + ‖∇ωn−1‖)2(2‖�ωn‖ + ‖�ωn−1‖)2, ∀n ≥ 4. (2.4)

Hence, ωn, ωn−1 ∈ L̇2 implies ωn+1, ωn+2 ∈ Ḣ1
per , ω

n+3 ∈ Ḣ2
per , ω

n+4 ∈ Ḣ3.

Proof It is easy to see that for ωn, ωn−1 ∈ L̇2, we have ψn, ψn−1 ∈ Ḣ2
per . Hence

‖∇⊥(2ψn − ψn−1) · ∇(2ωn − ωn−1)‖Ḣ−1
per

≤ Cw(2‖ωn‖ + ‖ωn−1‖)2 (2.5)

by the Wente type estimate (see Proposition 3). Therefore, the scheme (1.3) which can
be viewed as a Poisson type problem

3ωn+1

2k
− ν�ωn+1 = f n+1 − ∇⊥(2ψn − ψn−1) · ∇(2ωn − ωn−1)

+4ωn − ωn−1

2k
∈ Ḣ−1

per (2.6)

possesses a unique solution in L̇2 (in fact in Ḣ1
per ) and the solution depends con-

tinuously on the data. Therefore it is well-posed on L̇2. The bounds on the solution
follow from taking the inner product of the equation above with ωn+1, −�ωn+1

and �2ωn+1 respectively, utilizing Cauchy–Schwarz as well as Wente type estimates
(see Appendix). 	


2.2 Time uniform bound in L̇2

Now we derive the long time energy stability of the scheme (1.3) in L̇2.
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758 X. Wang

There are two approaches to derive the uniform in time bounds. The first one utilizes
a generalized G-stability property of the 2nd order BDF due to Hill and Süli [23]. The
second one utilizes the original G-stability of the 2nd order BDF scheme [20] together
with a novel two step discrete Gronwall type inequality (see Lemma 4).

We first introduce the first approach based on a generalized G-stability of 2nd order
BDF.

2.2.1 Generalized G-norm and G-stability identity

We will utilize the G-stability of the 2nd order backward differentiation in an essential
way. More specifically, we introduce the following positive definite matrix for μ ≥ 0

G(μ) =
( 1

2 −1
−1 5

2 + μ
2

)

(2.7)

and we define a family of generalized G-norms on R
2 as

|V|2G(μ) = VT G(μ)V, V ∈ R
2, (2.8)

and the associated norms on R
2 valued functions as

‖V‖2
G(μ) =

∫

�

VT (x)G(μ)V(x) dx, V(x) : � → R
2. (2.9)

It is easy to see that |V|G(μ) is monotonically increasing in μ, and is an equivalent
norm on R

2 for μ ∈ [0, 1] in the sense that there exist 0 < Cl < 1 < Cu , such that
for all μ ∈ [0, 1],∀V ∈ R

2,

Cl |V|2G(0) := Cl |V|2G ≤ Cl |V|2G(μ) ≤ |V|2 ≤ Cu |V|2G(0) := Cu |V|2G ≤ Cu |V|2G(μ),
(2.10)

and for all μ ∈ [0, 1],∀V : � → R
2

Cl‖V‖2
G(0) := Cl‖V‖2

G ≤ Cl‖V‖2
G(μ) ≤ ‖V‖2

L2 ≤ Cu‖V‖2
G(0)

:= Cu‖V‖2
G ≤ Cu‖V‖2

G(μ). (2.11)

Moreover, we have the following identity due to Hill and Süli [23] (contained in the
proof of their Lemma 6.1) which is a generalization of the G-stability of the BDF
method (see for instance the classical book by Hairer and Wanner [20])

(
3

2
v2 − 2v1 + 1

2
v0

)

v2 + μ

2
v2

2 = 1

2

(

|V1|2G(μ) − 1

1 + μ
|V0|2G(μ)

)

+ ((1 + μ)v2 − 2v1 + v0)
2

4(1 + μ)
(2.12)

where V0 = [v0, v1]T ,V1 = [v1, v2]T ∈ R
2. This identity can be verified directly.

123



An efficient second order in time scheme 759

2.2.2 Time uniform bound in L̇2

We are now ready to show that the scheme (1.3) is uniformly bounded in L2, provided
that the time step is sufficiently small. In order to do so, we take the scalar product of
(1.3) with 2kωn+1 in L̇2 and utilize the generalized G-stability of the 2nd order BDF
scheme (2.12) to obtain, with μ = νk,

‖Vn‖2
G(νk) − 1

1 + νk
‖Vn−1‖2

G(νk) + ‖(1 + νk)ωn+1 − 2ωn + ωn−1‖2
L2

2(1 + νk)

+2νk‖∇ωn+1‖2 − νk‖ωn+1‖2+2k b(2ψn − ψn−1, 2ωn − ωn−1, ωn+1)

= 2k( f n+1, ωn+1), n = 1, 2, . . . (2.13)

where Vn = [ωn, ωn+1]T , and the trilinear term b is defined as

b(ψ, φ, ϕ) =
∫

�

∇⊥ψ · ∇φ ϕ dx. (2.14)

Using the Cauchy–Schwarz type inequality, and the equivalent norm on Ḣ1
per that

is determined by the L2 norm of the gradient, we majorise the right-hand side of (2.13)
by

2k‖ f n+1‖H−1‖∇ωn+1‖ ≤ νk

2
‖∇ωn+1‖2 + 2k

ν
‖ f n+1‖2

H−1 . (2.15)

Utilising the Wente type estimate (5.3), and the skew-symmetry of the trilinear term
b in the last two variables (2.14), we bound the nonlinear term as

2k |b(2ψn − ψn−1, 2ωn − ωn−1, ωn+1)|
= 2k |b(2ψn − ψn−1,−(1 + νk)ωn+1 + 2ωn − ωn−1, ωn+1)|
= 2k |b(2ψn − ψn−1, ωn+1, (1 + νk)ωn+1 − 2ωn + ωn−1)|
≤ 2kCw‖∇⊥(2ψn − ψn−1)‖H1‖∇ωn+1‖‖(1 + νk)ωn+1 − 2ωn + ωn−1‖
≤ 2

√
5kCw‖Vn−1‖‖∇ωn+1‖‖(1 + νk)ωn+1 − 2ωn + ωn−1‖

≤ 1

4
‖(1 + νk)ωn+1 − 2ωn + ωn−1‖2 + 20k2C2

w‖Vn−1‖2‖∇ωn+1‖2, (2.16)

where we have used the fact that ‖2ωn − ωn−1‖ ≤ √
5‖Vn−1‖.

Relations (2.13)–(2.16) imply, under the assumption that νk ≤ 1

‖Vn‖2
G(νk) − 1

1 + νk
‖Vn−1‖2

G(νk) + (
ν

2
− 20C2

wk‖Vn−1‖2)k‖∇ωn+1‖2

≤ 2

ν
k‖ f n+1‖2

H−1 . (2.17)

We are now able to prove the following long time global energy stability result:
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760 X. Wang

Theorem 1 (time uniform bound in L̇2) Assume νk ≤ 1. Let ωn+1 be the solution of
the numerical scheme (1.3) and let f ∈ L∞(R+; H−1), with | f |∞ := | f |L∞(R+;H−1).

Then there exists M0k = max{‖V0‖G(νk), ρ0} where ρ0 = 2| f |∞
ν

such that if the
following time-step restriction is satisfied

k ≤ ν

40C2
wCu M2

0k

, (2.18)

then

1√
Cu

‖Vn‖ ≤ ‖Vn‖G(νk) ≤ M0k, ∀ n ≥ 0, (2.19)

‖Vn‖2
G(νk) ≤ 1

(1 + νk)n
‖V0‖2

G(νk) + ρ2
0

[

1 − 1

(1 + νk)n

]
1 + νk

2
, ∀ n ≥ 0.

(2.20)

In particular, any ball in (L̇2)2 of radiusρ ≥ ρ0 in the G(νk) norm, denoted BG(νk)(ρ),
is invariant under the scheme.

Proof The proof is straightforward by induction on n. Indeed, utilising the fact that
the G norm is equivalent to classical norm (2.10), we deduce from (2.17) that

‖Vn‖2
G(νk) − 1

1 + νk
‖Vn−1‖2

G(νk)

+(ν
2

− 20C2
wCuk‖Vn−1‖2

G(νk))k‖∇ωn+1‖2 ≤ ν

2
kρ2

0 . (2.21)

It is clear that (2.20) and (2.19) hold for n = 0.
Assuming that (2.20) and (2.19) hold for n = 0, . . . ,m, we then have

ν

2
− 20C2

wCuk‖Vm‖2
G(νk) ≥ 0 (2.22)

and hence when combined with (2.17) and the definition of ρ0, we have

‖Vm+1‖2
G(νk) ≤ 1

1 + νk
‖Vm‖2

G(νk) + νk

2
ρ2

0

≤ 1

(1+νk)m+1 ‖V0‖2
G(νk)+ρ2

0

[

1− 1

(1+νk)m

]
1+νk

2

1

1+νk
+ νk

2
ρ2

0

= 1

(1 + νk)m+1 ‖V0‖2
G(νk) + ρ2

0

[

1 − 1

(1 + νk)m+1

]
1 + νk

2
.

This shows that (2.20) remains valid for n = m + 1 which further implies the validity
of (2.19) for n = m + 1.

We remark here that M0k could be replaced by a time-step k independent quantity

M0 = max{‖V0‖G(ν), ρ0}, or M̃0 = max
{‖V0‖√

Cl
, ρ0

}
(2.23)
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An efficient second order in time scheme 761

due to the monotonicity of the generalized G-norm in μ and the assumption that we
consider time-step k ≤ 1.

This completes the Proof of theorem 1. 	

An immediate consequence of this theorem is the following absorbing property.

Corollary 1 (absorbing property) If the time-step is sufficiently small so that

0 < k ≤ ν

40C2
wCu M2

0

=: k0, (2.24)

then

1

Cu
‖Vn‖2 ≤‖Vn‖2

G(νk) ≤ 2ρ2
0 , ∀ nk ≥T0(‖V0‖G(ν), | f |∞) := 4

ν
ln

(‖V0‖G(ν)

ρ0

)

.

(2.25)

Proof The corollary is an easy consequence of the time uniform bound (2.20), equiv-
alence of the generalized G-norms (2.10), and the fact that 1 + μ ≥ exp(μ/2) if
μ = νk ∈ (0, 1). 	

Remark 1 (alternative derivation of time uniform bound via discrete Grönwall type
inequality with two steps) We now sketch the second approach of deriving uniform in
time estimates based on the original G-stability of the 2nd order BDF scheme together
with the two level generalized discrete Gronwall inequality presented in Lemma 4.
We first notice that after taking the inner product of (1.3) with ωn+1, and applying the
classical G-stability for 2nd order BDF scheme (corresponding to (2.12) with μ = 0),
together with the same kind of estimates utilized in the proof of Theorem 1 leads to

‖Vm‖2
G − ‖Vm−1‖2

G + νk‖∇ωm+1‖2

+(ν
2

− 20C2
wCuk‖Vm−1‖2

G)k‖∇ωm+1‖2 ≤ ν

2
kρ2

0 . (2.26)

Multiplying (2.26) at m = n by λ ∈ (0, 1) and add to (2.26) with m = n + 1, we
obtain, after utilizing the Poincaré inequality, the equivalence of the G-norm (2.10),

and denoting gn = ‖Vn‖2
G, ε = νClλk, β = (1+λ)ρ2

0
Cl

(1 + ε)gn+1 ≤ (1 − λ)gn + λgn−1 + βε

−
(ν

2
− 20C2

wCukgn
)

k‖∇ωn+2‖2

−λ
(ν

2
− 20C2

wCukgn−1
)

k‖∇ωn+1‖2 (2.27)

where we have used the fact that

νk(‖∇ωn+2‖2 + λ‖∇ωn+1‖2) ≥ λνk‖Vn+1‖2 ≥ Clλνk‖Vn+1‖2
G .
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Now we assume that the following time-step restriction is satisfied:

40C2
w max{gn, gn−1, 2β}k ≤ ν (2.28)

It is then easy to see that if this time-step restriction is satisfied at n, then the same time
step restriction is satisfied for all subsequent time thanks to Lemma 4 (5.7). Therefore
the assumption in Lemma 4 is valid for all n provided it is valid initially. Hence the
uniform in time estimates follows from Lemma 4 with a long time bound independent
of the initial data as a result of (5.8). The same approach works in deriving uniform
bound in Ḣ1

per and Ḣ2
per as well when combined with the techniques from the next

section.
A potential advantage of this alternative approach lies in the fact that only G-norm

is utilized instead of the generalize G-norm.

2.3 Time uniform bound in Ḣ1
per and Ḣ2

per

For the purpose of proving the uniform in time Ḣ1
per estimates on the solution to the

scheme (1.3), we simply multiply the scheme by −�ωn+1 and utilize the generalized
G-stability of the 2nd order BDF scheme to obtain

‖∇Vn‖2
G(νk) − 1

1 + νk
‖∇Vn−1‖2

G(νk) + ‖∇((1 + νk)ωn+1 − 2ωn + ωn−1)‖2

1 + νk

+2νk‖�ωn+1‖2 − νk‖∇ωn+1‖2 − 2k b(2ψn − ψn−1, 2ωn − ωn−1,�ωn+1)

= −2k( f n+1,�ωn+1), n = 1, 2, . . . . (2.29)

The right-hand side of (2.29) can be majorized by

2k‖ f n+1‖‖�ωn+1‖ ≤ νk

4
‖�ωn+1‖2 + 4k

ν
‖ f n+1‖2. (2.30)

Utilising the Wente type estimate (5.3), we bound the nonlinear term as

2k |b(2ψn − ψn−1, 2ωn − ωn−1,�ωn+1)|
≤ 2kCw‖�(2ψn − ψn−1)‖‖∇(2ωn − ωn−1)‖‖�ωn+1‖
≤ 2

√
5kCw‖Vn−1‖(2‖∇ωn+1‖ + ‖∇((1 + νk)ωn+1 − 2ωn + ωn−1)‖)‖�ωn+1‖

= 2
√

5kCw‖Vn−1‖‖∇((1 + νk)ωn+1 − 2ωn + ωn−1)‖‖�ωn+1‖
+4

√
5kCw‖Vn−1‖‖∇ωn+1‖‖�ωn+1‖

≤ 1

4
‖∇((1 + νk)ωn+1 − 2ωn + ωn−1)‖2 + 20k2C2

w‖Vn−1‖2‖�ωn+1‖2

+4
√

5kCw‖Vn−1‖‖ωn+1‖ 1
2 ‖�ωn+1‖ 3

2
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≤ 1

4
‖∇((1 + νk)ωn+1 − 2ωn + ωn−1)‖2 + 20k2C2

w‖Vn−1‖2‖�ωn+1‖2

+νk

4
‖�ωn+1‖2 + Ck

ν3 ‖Vn−1‖4‖ωn+1‖2. (2.31)

Combining the inequalities above, under the assumption that νk ≤ 1, we obtain

‖∇Vn‖2
G(νk) − 1

1 + νk
‖∇Vn−1‖2

G(νk) + (
ν

2
− 20C2

wk‖Vn−1‖2)k‖�ωn+1‖2

≤ 4

ν
k‖ f n+1‖2 + Ck

ν3 ‖Vn−1‖4‖ωn+1‖2. (2.32)

Similar to the derivation of theorem 1, we are able to show the following time
uniform estimate in Ḣ1

per and Ḣ2
per :

Theorem 2 (time uniform bound in Ḣ1
per and Ḣ2

per ) Assume νk ≤ 1. Let ωn+1

be the solution of the numerical scheme (1.3) and let f ∈ L∞(R+; Ḣ1
per ), with

‖ f ‖∞ := ‖ f ‖L∞(R+;L̇2), ‖∇ f ‖∞ := ‖∇ f ‖L∞(R+;L̇2). Then there exist constants
ρ1(‖V0‖, ρ0, ν, ‖ f ‖∞), ρ2(‖V0‖, ρ0, ν, ‖∇ f ‖∞) such that if the time-step restric-
tion (2.18) is satisfied, we have,

‖∇Vn‖2
G(νk)

≤ 1

(1 + νk)n−2 ‖∇V2‖2
G(νk) + ρ2

1 (‖V0‖, ρ0, ν, ‖ f ‖∞)

×
[

1 − 1

(1 + νk)n−2

]
1 + νk

2
, n ≥ 2, (2.33)

‖�Vn‖2
G(νk)

≤ 1

(1 + νk)n−3 ‖�V3‖2
G(νk) + ρ2

2 (‖V0‖, ρ0, ν, ‖∇ f ‖∞)

×
[

1 − 1

(1 + νk)n−3

]
1 + νk

2
, n ≥ 3. (2.34)

Therefore, there exist integers N1(‖V0‖G(νk), ρ0, ν, ‖ f ‖∞, k), N2(‖V0‖G(νk), ρ0, ν,

‖∇ f ‖∞, k) such that

‖∇Vn‖G(νk) ≤ √
2ρ1,∀n ≥ N1, ‖�Vn‖G(νk) ≤ √

2ρ2,∀n ≥ N2. (2.35)

Proof The bound in Ḣ1
per is essentially there already. Indeed, if the time-step restric-

tion (2.18) is valid, we have

‖∇Vn‖2
G(νk) − 1

1 + νk
‖∇Vn−1‖2

G(νk)

≤ 4

ν
k‖ f n+1‖2 + Ck

ν3 ‖Vn−1‖4‖ωn+1‖2
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≤ 4

ν
k‖ f n+1‖2 + Ck

ν3

(
1

(1 + νk)3n
‖V0‖6 + ρ6

0

)

(by Theorem 1, and the equivalence of G-norms (2.10))

≤ νkρ2
1/2

where

ρ2
1 := 8

ν2 ‖ f ‖2∞ + C

ν4 (‖V0‖6 + ρ6
0). (2.36)

We then deduce

‖∇Vn‖2
G(νk) ≤ 1

(1 + νk)n−2 ‖∇V2‖2
G(νk) + ρ2

1 .

The desired Ḣ1
per estimate then follows.

As for the Ḣ2
per bound, we multiply (1.3) by �2ωn+1 and utilize the following

estimate on the nonlinear term:

2k |b(2ψn − ψn−1, 2ωn − ωn−1,�2ωn+1)|
≤ 2k ‖∇⊥(2ψn − ψn−1) · ∇(2ωn − ωn−1)‖H1‖∇�ωn+1‖
≤ 2kCw‖�(2ψn − ψn−1)‖‖�(2ωn − ωn−1)‖‖∇�ωn+1‖
≤2

√
5kCw‖Vn−1‖(2‖�ωn+1‖+‖�((1+νk)ωn+1−2ωn +ωn−1)‖)‖∇�ωn+1‖

≤ 1

4
‖�((1 + νk)ωn+1 − 2ωn + ωn−1)‖2 + 20k2C2

w‖Vn−1‖2‖∇�ωn+1‖2

+4
√

5kCw‖Vn−1‖‖ωn+1‖ 1
3 ‖∇�ωn+1‖ 5

3

≤ 1

4
‖�((1 + νk)ωn+1 − 2ωn + ωn−1)‖2 + 20k2C2

w‖Vn−1‖2‖∇�ωn+1‖2

+νk

4
‖∇�ωn+1‖2 + Ck

ν5
‖Vn−1‖6‖ωn+1‖2, (2.37)

where we have utilized the fact that solutions to the numerical scheme (1.3) are smooth
(elements of H3) for n ≥ 5 provided that ω0, ω1 ∈ L̇2 (see Lemma 1).

The rest of the proof is the same as those for the Ḣ1
per estimate after we combine

with Lemma 1 and notice that V3 ∈ Ḣ2
per since V2 ∈ Ḣ1

per .
This completes the proof of Theorem 2. 	


3 Convergence of stationary statistical properties

The purpose of this section is to derive the main result of this paper, i.e., the conver-
gence of long time stationary statistical properties of the scheme (1.3) to those of the
Navier–Stokes system (1.1) as the time-step approaches zero.
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3.1 Dynamical system formulation

We first recall the classical approach of writing the two step scheme (1.3) as a
dynamical system on (L̇2)2:

Sk

[
ωn

ωn−1

]

=
[
ωn+1

ωn

]

, i.e., Sk(Vn−1) = Vn, (3.1)

thanks to Lemma 1. Moreover, the rewritten scheme (3.1) can be also viewed as a
dynamical system on BG(νk)(ρ),∀ρ ≥ ρ0 as long as the time-step restriction (2.18) is
satisfied thanks to Theorem 1. Furthermore, the trajectory is long time bounded in the
H1, H2 norm independent of the initial data thanks to the time uniform estimates in
H1, H2 that we derived in theorem 2. Therefore the dynamical system (3.1) possesses
a unique global attractor Ak ⊂ BG(νk)(ρ0) independent of ρ (see for instance Temam
[44]) and uniformly bounded in H1, H2 (independent of k) provided that the external
forcing term f is time-independent.

Due to the dissipativity of the 2nd order BDF scheme, we are able to show that
the two components of Ak are close in the sense that the distance is no more than a
constant multiply of the time step k. This may be viewed as a consistency result.

Lemma 2 (attractor bound and consistency) Let f ∈ Ḣ1
per be a time independent func-

tion. Then the dynamical system (3.1) is dissipative on BG(νk)(ρ),∀ρ ≥ ρ0 as long
as the time-step restriction (2.18) is satisfied. Moreover, the attractors are uniformly
bounded in the sense that for all V ∈ Ak

1√
Cu

‖V‖ ≤ ‖V‖G(νk) ≤ ρ0, (3.2)

1√
Cu

‖∇V‖ ≤ ‖∇V‖G(νk) ≤ ρ1(ρ0, ρ0, ν, ‖ f ‖), (3.3)

1√
Cu

‖�V‖ ≤ ‖�V‖G(νk) ≤ ρ2(ρ0, ρ0, ν, ‖∇ f ‖). (3.4)

Furthermore, we have the following consistency estimate in the sense that there exists
a constant Cd independent of k such that

‖v1 − v2‖ + √
k‖∇(v1 − v2)‖ ≤ Cdk,∀V = [v1, v2]T ∈ Ak . (3.5)

Proof The uniform bound follows directly from Theorems 1 and 2, and the equiva-
lence of the G-norms (2.10).

As for the distance between the two coordinates, it is straightforward from the
scheme (1.3), as well as the time uniform estimates derived in Theorem 2 that are valid
on the attractor Ak , and the equivalence of the G-norm and the classical norm (2.10),

‖ωn+1 − ωn‖ ≤ 1

3
‖ωn − ωn−1‖ + 2

3
k(‖�ωn+1‖ + ‖ f ‖

+‖∇⊥(2ψn − ψn−1) · ∇(2ωn − ωn−1)‖)
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≤ 1

3
‖ωn − ωn−1‖ + 2

3
k(‖�ωn+1‖ + ‖ f ‖ + 5Cw‖Vn−1‖‖∇Vn−1‖)

≤ 1

3
‖ωn − ωn−1‖ + 2

3
k(‖�Vn‖G(νk) + ‖ f ‖

+5CwCu‖Vn−1‖G(νk)‖∇Vn−1‖G(νk))

≤ 1

3
‖ωn − ωn−1‖ + 2

3
k(ρ2 + ‖ f ‖ + 5CwCuρ0ρ1)

≤ 1

3n
‖ω1 − ω0‖ + k(ρ2 + ‖ f ‖ + 5CwCuρ0ρ1)

provided that V j = [ω j+1, ω j ]T , j = 0, . . . , n ∈ Ak . Therefore

‖(Sk
nV0)2 − (Sk

nV0)1‖ ≤ 1

3n
‖ω1 − ω0‖ + k(ρ2 + ‖ f ‖ + 5CwCuρ0ρ1). (3.6)

On the other hand, thanks to the invariance of Ak under (3.1), for any V ∈ Ak and
any integer n, there always exists a V0 ∈ Ak so that Sk

nV0 = V. Letting n approach
infinity in the last inequality above, we deduce the desired estimate on v1 − v2.

The desired H1 estimate follows from interpolating the time uniform H2 estimates
on the solution derived in Theorem 2 and the L̇2 consistency estimate obtained above.

This ends the proof of the lemma. 	

We remark that the distance between the two coordinates in the Ḣ1

per norm can
be improved to order k as well. This desired estimate in H1 follows from a similar
argument by multiplying the scheme (1.3) by −�(ωn+1 −ωn) and perform the usual
energy estimates. We leave the detail to the interested reader.

3.2 Convergence of stationary statistical properties

We first recall the notion of invariant measure and stationary statistical solution that
characterizes the long time statistics of any given dynamical system.

We recall the definition of invariant measures.

Definition 3.1 (Invariant measures) A Borel probability measure μk on BG(νk)(ρ0)

is called an invariant measure for Sk if
∫

BG(νk)(ρ0)

�(Sk(V))dμk =
∫

BG(νk)(ρ0)

�(V)dμk (3.7)

for all bounded continuous test functional �.
The set of all invariant measures for Sk is denoted IMk .
We also recall that a Borel probability measure μ on L̇2 is an invariant measure,

or stationary statistical solution, for the Navier–Stokes system (1.1), if

1.
∫

L̇2

‖∇ω‖2 dμ(ω) < ∞, (3.8)
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2.
∫

L̇2

〈ν�ω − ∇⊥ψ · ∇ω + f,�′(ω)〉 dμ(ω) = 0 (3.9)

for any cylindrical test functional �(ω) = φ((ω,w1), . . . , (ω,wm)) where φ is
a C∞ function on R

m, {w j , j ≥ 1} being the standard Fourier basis which are
also the eigenfunctions of � in L̇2, and <,> denotes the H−1, Ḣ1

per duality.
3.

∫

L̇2

∫

�

{ν|∇ω|2 − f ω} dx dμ(ω) ≤ 0. (3.10)

The set of all stationary statistical solutions for the Navier–Stokes system is denoted
IM.

Roughly speaking, the first condition says that the invariant measures are supported
on the smaller and finer space of Ḣ1

per , the second condition is the differential form
of the weak formulation of the invariance of the measure under the flow (the Liouville
type equation), and the third condition is a statistical version of the energy inequality.

We also recall the well-known fact that the Navier–Stokes system (1.1) generates
a dissipative dynamical system on L̇2 with an absorbing ball of radius ρ0 (see for
instance [6,44]). Consequently the support of any invariant measure or stationary
statistical solution to (1.1) must be contained in BL̇2(ρ0) since all invariant measures
are supported on the global attractor (see for instance [12,51]). Henceforth, we only
need to take test functionals (observables) � to be supported on BL̇2(ρ0).

Next, we observe that the invariant measures of the dynamical system defined by
our numerical scheme (3.1) and our Navier–Stokes system (1.1) do not share the same
phase space. Moreover, a simple extension of the NSE to the product space is not
appropriate. Therefore we should look at convergence of marginal distributions of the
stationary statistical solutions to our scheme (3.1). Since the attractors of the scheme
(3.1) converge to the diagonal in the product space at vanishing step-size due to the
consistency estimates (3.5), we anticipate that all marginal measures of the invariant
measures of (3.1) would converge to some invariant measure (stationary statistical
solution) to the NSE (1.1). Hence we anticipate the following result which is the main
finding of this manuscript.

Theorem 3 (convergence of stationary statistical properties) Let f ∈ Ḣ1
per be a time-

independent function. Then the discrete dynamical system defined via the scheme (3.1)
is autonomous and dissipative with non-empty set of invariant measures IMk . Denote
P j , j = 1, 2 the projection from (L̇2)2 onto its j th coordinate. Let {μk, k ∈ (0, k0]}
withμk ∈ IMk,∀k, be an arbitrary invariant measure of the numerical scheme (3.1).
Then each subsequence of {μk} must contain a subsubsequence (still denoted {μk}) and
two invariant measure μ j of the NSE (1.1) so that P∗

jμ
k weakly converges to μ j , i.e.,

P∗
jμ

k ⇀ μ j , k → 0, (3.11)

where P∗
jμ

k(S) = μk(P−1
j (S)),∀S ∈ B(L̇2).
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Proof The non-emptiness of the set of the invariant measures IMk follows from the
uniform estimates in H1 on the global attractors of the scheme (3.1) proved in Lemma
3.5, as well as the classical Bogoliubov–Krylov technique (see for instance [12,49]).

We observe that the family of Borel measures {μk, k ∈ (0, k0]} is tight in the space
of probability measures on (L̇2)2 (after trivial extension to the outside of the absorbing
ball) (see for instance Billingsley [2], or Lax [31]). Therefore, for any subsequence of
{μk, k ∈ (0, k0]}, there exists a subsubsequence, still denoted {μk, k ∈ (0, k0]}, and
a Borel probability measure μ0 on (L̇2)2 such that μk weakly converges to μ0. Our
goal here is to show that the marginal measures of μ0 are in fact stationary statistical
solutions of the Navier–Stokes system (1.1), i.e. P∗

jμ0 ∈ IM. We work on the case
of j = 1 without loss of generality. The proof is similar to those presented in Cheng
and Wang [4] by utilizing the differential form of the invariant measure (stationary
statistical solution).

The first condition in the definition is easily verified since the global attractors for
the discrete dynamical systems (3.1) are uniformly bounded in Ḣ1

per independent of
the time step k thanks to Lemma 3.5, and the fact that the invariant measures are
supported on the global attractor [12,51].

In order to check the second condition, i.e., the differential form of the weak formu-
lation of invariance or the Liouville type equation, we let�(ω) = φ((ω,w1), . . . , (ω,

wm)) = φ(z1, . . . , zm) be a smooth cylindrical test functional. Notice that

�′(ω) =
m∑

j=1

∂

∂z j
φ((ω,w1), . . . , (ω,wm))w j , (3.12)

hence, denoting <,> the duality between H−1 and Ḣ1
per , we have

∫

L̇2

〈
ν�ω − ∇⊥ψ · ∇ω + f,�′(ω)

〉
dP∗

1μ0(ω)

=
∫

(L̇2)2

〈
ν�v1−∇⊥ψ1 · ∇v1+ f,�′(v1)

〉
dμ0(V) (V=[v1, v2]T ,−�ψ j =v j , j = 1, 2)

(by definition of marginal measure)

=
∫

(L̇2)2

m∑

j=1

∂φ

∂z j

∫

�

(
νv1�w j + ∇⊥ψ1 · ∇w jv1 + fw j

)
dx dμ0(V)

(by the choice of the cylindrical test functional�and integrations by parts)

= lim
k→0

∫

(L̇2)2

m∑

j=1

∂φ

∂z j

∫

�

(
νv1�w j + ∇⊥ψ1 · ∇w jv1 + fw j

)
dx dμk(V)

(by the definition of weak convergence)

= lim
k→0

∫

(L̇2)2

m∑

j=1

∂φ

∂z j

∫

�

(
ν(Sk(V))2�w j +∇⊥(2ψ2−ψ1) · ∇w j (2v2−v1)+ fw j

)
dx dμk(V)

(by the consistency estimate (3.5) as well as the choice of the cylindrical test functional)
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= lim
k→0

∫

(L̇2)2

〈
ν�(Sk(V))2 − ∇⊥(2ψ2 − ψ1) · ∇(2v2 − v1)+ f,�′(v1)

〉
dμk(V)

(by the choice of the cylindrical test functional and integration by parts)

= lim
k→0

∫

(L̇2)2

〈

ν�(Sk(V))2 − ∇⊥(2ψ2 − ψ1) · ∇(2v2 − v1)+ f,�′(3

2
v2 − 1

2
v1)

〉

dμk(V)

(by the consistency estimate (3.5) as well as the choice of the cylindrical test functional)

= lim
k→0

∫

(L̇2)2

〈

[−1

2
,

3

2
]T · Sk(V)− V

k
,�′(3

2
v2 − 1

2
v1)

〉

dμk(V)

(according to the scheme (1.3), (3.1))

= lim
k→0

∫

(L̇2)2

1

k
(�(Sk(V) · [−1

2
,

3

2
]T )−�(V · [−1

2
,

3

2
]T )) dμk(V) = 0

(by calculus and Lemma 3.5)

(by the invariance of μk under Sk applied to the test functional �(V · [−1

2
,

3

2
]T ))

where we have used the boundedness and continuity of ∂φ
∂z j

on the union of the support

of μk , the consistency estimate (3.5), the invariance of μk under Sk , and the scheme
(1.3).

This proves the differential form of the weak invariance of P∗
1μ0 under the 2D

Navier–Stokes dynamics, i.e., condition no. 2.
The energy type inequality condition no.3 can be verified easily as well. For this

purpose, we first show that any invariant measure μk of the numerical scheme (1.3)
must satisfy an energy type estimate. The desired continuous one will be the limit as
the time step approaches zero.

Taking the inner product of the scheme (1.3) with ωn+1 and we have

1

2k
(‖Vn‖2

G − ‖Vn−1‖2
G + ‖ωn+1 − 2ωn − ωn−1‖2)+ ν‖∇ωn+1‖2

+
∫

�

(∇⊥(2ψn − ψn−1) · ∇(2ωn − ωn−1)ωn+1 − f ωn+1) = 0.

This can be re-written as, utilizing the discrete dynamical system notation Sk ,

1

2k
(‖Sk(V)‖2

G − ‖V‖2
G + ‖(Sk(V)− V) · [1,−1]T ‖2)+ ν‖∇(Sk(V))2‖2

+
∫

�

(∇⊥(2ψ2 − ψ1) · ∇(2v2 − v1)− f )(Sk(V))2 = 0.

Integrating this identity with respect to the invariant measure μk and letting k → 0
we have
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0 ≥ − lim inf
k→0

1

2k

∫

(L̇2)2

‖(Sk(V)− V) · [1,−1]T ‖2dμk(V)

= lim inf
k→0

∫

(L̇2)2

∫

�

(ν|∇(Sk(V))2|2 + (∇⊥(2ψ2 − ψ1)

·∇(2v2 − v1)− f )(Sk(V))2) dx dμk(V)

≥
∫

(L̇2)2

∫

�

(
ν|∇v1|2 + (∇⊥ψ1 · ∇v1 − f )v1

)
dx dμ0(V)

=
∫

L̇2

∫

�

{ν|∇ω|2 − f ω} dx dP∗
1μ0(ω),

where we have utilized the invariance of μk under Sk and the following estimates

∫

(L̇2)2

‖∇(Sk(V))2‖2 dμk(V) =
∫

(L̇2)2

lim
m→∞

m∑

j=1

(∇(Sk(V))2,∇w j )
2

‖∇w j‖2 dμk(V)

(since {w j } form an orthogonal basis in Ḣ1
per )

= lim
m→∞

m∑

j=1

∫

(L̇2)2

(∇(Sk(V))2,∇w j )
2

‖∇w j‖2 dμk(V)

(Lebesque dominated convergence theorem)

= lim
m→∞

m∑

j=1

∫

(L̇2)2

((Sk(V))2,�w j )
2

‖∇w j‖2 dμk(V)

(integration by parts)

= lim
m→∞

m∑

j=1

∫

(L̇2)2

(v2,�w j )
2

‖∇w j‖2 dμk(V)

(invariance ofμkunderSk)

= lim
m→∞

m∑

j=1

∫

(L̇2)2

((Sk(V))1,�w j )
2

‖∇w j‖2 dμk(V)

(notation following (3.1))

= lim
m→∞

m∑

j=1

∫

(L̇2)2

(v1,�w j )
2

‖∇w j‖2 dμk(V)
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(invariance ofμkunderSkagain and the fact

thatSk is a group on the support ofμk)

=
∫

(L̇2)2

‖∇v1‖2 dμk(V),

as well as

∫

(L̇2)2

‖∇v1‖2 dμ0(V) = lim
m→∞

m∑

j=1

∫

(L̇2)2

(∇v1,∇w j )
2

‖∇w j‖2 dμ0(V)

= lim
m→∞ lim

k→0

m∑

j=1

∫

(L̇2)2

(∇v1,∇w j )
2

‖∇w j‖2 dμk(V)

≤ lim inf
k→0

∞∑

j=1

∫

(L̇2)2

(∇v1,∇w j )
2

‖∇w j‖2 dμk(V)

= lim inf
k→0

∫

(L̇2)2

‖∇v1‖2 dμk(V),

together with the fact that on the support of μk

|b(2ψ2 − ψ1, 2v2 − v1, (Sk(V))2)− b(ψ1, v1, v1)|
≤ |b(2ψ2 − ψ1, 2v2 − v1, (Sk(V))2 − v1)| + |b(2ψ2 − ψ1, 2(v2 − v1), v1)|

+|b(2(ψ2 − ψ1), v1, v1)|
≤ 5Cw‖∇V‖2(‖(Sk(V))2 − v1)‖ + ‖v2 − v1‖)
≤ O(k)

thanks to Lemma 3.5 and the Wente type estimates Lemma 3.
This completes the proof of the energy type inequality (no.3 in the definition) for

the limit probability measure P∗
1μ0. Therefore we conclude that the limit P∗

1μ0 must
be an invariant measure of the 2D Navier–Stokes system. 	


Remark 2 (attractor convergence) Convergence of the whole global attractor (in an
upper semi-continuous fashion) may be discussed as well following the “monoid”
framework introduced by Hill and Süli [22]. One would work with the so-called
“monoid” [1, 1]T S(t)[− 1

2 ,
3
2 ] : (L̇2)2 → (L̇2)2. This is not a semi-group since it

does not satisfy the requirement that it is the identity map at time zero. We would like
to point out that the convergence of the global attractors bears no implication on the
convergence of invariant measures since knowing the support of the measure provides
little info on the measure itself.
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4 Fully discretized case

The analysis above can be carried over to the fully discretized case with either Galerkin
Fourier spectral approximation or collocation Fourier spectral approximation (see the
classical books by Gottlieb and Orszag [16], or Canuto et al. [3], or Peyret [36] for more
on spectral methods as well as their applications in computational fluid dynamics).

4.1 Galerkin Fourier spectral approximation

This subsection is devoted to the long time stability of the following Galerkin Fourier
spectral in space and BDF2-AB2 in time approximation of the two dimensional Na-
vier–Stokes equations

3ωn+1
N − 4ωn

N + ωn−1
N

2k
+ PN (∇⊥(2ψn

N − ψn−1
N ) · ∇(2ωn

N − ωn−1
N ))

−ν�ωn+1
N = PN ( f n+1), (4.1)

where ωn
N , ψ

n
N ∈ PN , PN = {all trigonometric functions on � with frequency in

each direction at most N}, PN is defined as the orthogonal projection from L̇2(�)

onto PN .
Just like the semi-discrete scheme (1.3), we can show that the scheme (4.1) is uni-

formly bounded in various spaces, in dependent of the truncation wave number or
time-step, provided that the time step is sufficiently small. More precisely, we have
the following:

Theorem 4 (uniform in time bounds on the Galerkin Fourier BDF2AB2 scheme) Let
ωn

N be the solution of the numerical scheme (4.1) and let f ∈ L∞(R+; Ḣ1
per ). Then

the same estimates as those stated in Theorems 1, 2 hold under the same time-step
restriction (2.18). In particular, the Galerkin Fourier spectral scheme (4.1) is long
time energy stable in the sense that the solution is uniformly bounded in time and in
truncation wave number N using either the L̇2 or Ḣ1

per or Ḣ2
per norm.

The proof is essentially a verbatim copy of that of the semi-discrete in time case.
We leave it to the interested reader.

4.2 Fourier collocation approximation

We now consider Fourier collocation spectral approximation of the semi-discrete
scheme (1.3). The collocation spectral approximation may be desirable since fast
Fourier transform can be utilized to evaluate the nonlinear advection term efficiently.
The main purpose of this section is the description of the fully discrete scheme. We
postpone the analysis of the proposed scheme to a future time.

4.2.1 Fourier collocation notation

Here we follow a recent work by Gottlieb et al. [17].
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In order to present our fully discrete scheme with collocation spectral approxi-
mation, we need to introduce various discrete differential operators on the Fourier
collocation spectral space.

For a fixed positive integer N = Nx = Ny , we define the mesh size h = 2π
N = hx =

hy , together with the numerical grid points (xl , ym), with xl = lh, ym = mh, 0 ≤
l,m ≤ N .

Let f be a periodic function over the given 2-D numerical grid. Suppose its discrete
Fourier expansion given by

fl,m =
[N/2]∑

k1,l1=−[N/2]
f̂k1,l1 exp (k1ixl) exp (l1iym) . (4.2)

Then its collocation Fourier spectral approximations to first and second order partial
derivatives are given by

(DN x f )l,m =
[N/2]∑

k1,l1=−[N/2]
(k1i) f̂k1,l1 exp (i(k1xl + l1 ym)) , (4.3)

(D2
N x f )l,m =

[N/2]∑

k1,l1=−[N/2]
(−k2

1) f̂k1,l1 exp (i(k1xl + l1 ym)) , (4.4)

with DN y,D2
N y defined analogously. Consequently the discrete Laplacian, gradient

and divergence operators are defined naturally as

�N f =
(
D2

N x + D2
N y

)
f, ∇N f =

(DN x f
DN y f

)

, ∇N ·
(

f1
f2

)

=DN x f1 + DN y f2,

(4.5)

at the point-wise level. It is also straightforward to verify that

∇N · ∇N f = �N f. (4.6)

We also recall, for any given periodic grid functions f and g over the 2-D numerical
grid, the spectral approximations to the L2 inner product and L2 norm are defined as

‖ f ‖2 = √〈 f, f 〉, with 〈 f, g〉 = h2
N−1∑

l,m=0

fl,m gl,m . (4.7)

This discrete L2 inner product can also be represented utlizing the Fourier space with
the help of Parseval’s identity:

〈 f, g〉 =
[N/2]∑

k1,l1=−[N/2]
f̂k1,l1 ĝk1,l1 =

[N/2]∑

k1,l1=−[N/2]
ĝk1,l1 f̂k1,l1 , (4.8)
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in which f̂k1,l1 , ĝk1,l1 are the Fourier coefficients of the grid functions f and g in the
expansion as in (4.2). Furthermore, it can be checked that the following formulas of
integration by parts are also valid at the discrete level:

〈

f,∇N ·
(

g1
g2

)〉

= −
〈

∇N f,

(
g1
g2

)〉

, 〈 f,�N g〉 = − 〈∇N f,∇N g〉 . (4.9)

Discrete Sobolev spaces (with fractional order) on the 2D numerical grid can be
defined utilizing the same idea as in the continuous case with the help of the discrete
Laplace operator.

It is well-known that the existence of aliasing error in the nonlinear term poses a
serious challenge in the numerical analysis of Fourier collocation spectral scheme.
Next, we recall a periodic extension of a grid function and a Fourier collocation inter-
polation operator is introduced (see for instance [17]).

4.2.2 The collocation Fourier spectral BDF2 AB2 scheme

We are now ready to present a collocation Fourier spectral approximation in space of
the 2nd order BDF2AB2 scheme (1.3) as follows:

3ωn+1
N − 4ωn

N + ωn−1
N

2k
+ 1

2
(∇⊥

N (2ψ
n
N − ψn−1

N ) · ∇N (2ω
n
N − ωn−1

N )

+∇N · (∇⊥
N (2ψ

n
N − ψn−1

N )(2ωn
N − ωn−1))) = ν�ωn+1

N + f n+1
N , (4.10)

−�nψ
j = ω

j
N , j = n − 1, n. (4.11)

Note that the nonlinear term is an explicit 2nd order in time spectral approximation
to the alternative formulation of the nonlinear advection term as 1

2

(∇⊥ψ · ∇ω + ∇·
(∇⊥ψω

))
at time step n + 1. This alternative formulation of the nonlinear term is

due to Temam [42] that conserves the enstrophy. The following more refined form (of
Arakawa type) that also conserves the energy can be used if the conservation of energy
is also a highly desirable feature: 1

3

(∇⊥ψ · ∇ω + ∇ · (∇⊥ψω)+ ∇⊥ · (ψ∇ω)).
A straightforward application of the integration by parts formula (4.9) gives

〈ω, u·∇Nω + ∇N · (uω)〉 = 〈ω, u·∇Nω〉 − 〈∇Nω, uω〉 = 0. (4.12)

This orthogonality property is important in deriving uniform in time and in mesh
size estimates on the solutions to the scheme (4.10). Indeed, this can be combined
with a inductive and bootstrap argument starting with the assumption that there exists
a constant Cδ such that ‖ω j

N ‖H δ
h

≤ Cδ, for some δ > 0 at time step j = n − 1, n to
deduce uniform in time bounds. Details about a first order in time scheme that treats
the viscous term implicitly and the advection term explicitly can be found in the recent
work by Gottlieb et al. [17]. We postpone the details of the analysis of the 2nd order
in time scheme (4.10) as a future work.
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5 Conclusion and remarks

We have shown that the second order in time scheme (1.3) is long time energy stable in
the sense that the solutions remain bounded in L̇2 and are asymptotically bounded in
Ḣ1

per and Ḣ2
per provided that the time step is sufficiently small. This is a very efficient

scheme since only a Poisson type solver is needed at each time step. This scheme is
superior to the fully explicit ones in terms of stability, and to the fully implicit one in
terms of efficiency and unique solvability (the unique solvability of a fully implicit
scheme requires a small time-step as well). We have also demonstrated that this scheme
can be viewed as a dissipative discrete in time dynamical system on a product space
as defined in (3.1). Moreover, the sequence of marginal distributions of the invariant
measures of the discrete dynamical system (3.1) converge to invariant measures of
the Navier–Stokes system (1.1) at vanishing time-step. Hence the long time statistics
of the numerical scheme (1.3) converge to those of the original 2D NSE (1.1). Long
time energy stable fully discretized versions via spectral Galerkin or spectral collo-
cation are also discussed. Therefore, the scheme (1.3) that we proposed looks very
promising as a tool in the numerical study of long time statistical properties of the 2D
Navier–Stokes system in a periodic box. Numerical experiments are under way to test
physically interesting cases such as enstrophy transfer etc.

However, there are many questions that remain to be answered.
First, it is well-known that the set of invariant measures to the NSE (1.1) contains

more than one point at high enough generalized Grashoff number in general thanks to
classical bifurcation analysis result (since there are multiple steady states in generic
case, see for instance [43]). Therefore the convergence that we derived is only an upper
semi-continuity result. On the other hand, it is generally believed that the physically
relevant and observable equilibrium statistical property of the 2D NSE at large enough
Reynolds number is unique and consequently long time statistical properties such as
the energy spectrum can be discussed in an unambiguous fashion (e.g. Kraichan’s
theory, see for instance [5,12,14,35] among others). Hence the question whether the
numerical scheme that we proposed above (1.3) can capture this “physically relevant
one” becomes an important issue. One could argue that the physically relevant equi-
librium statistical properties should be robust under small perturbation and hence any
reasonable numerical scheme (such as the one that we proposed in this paper) should
be able to capture the robust behavior asymptotically. Yet another approach is to use
small random perturbation to extract the generic behavior of the underlying system
since it is known that many dissipative system with appropriate noise would possess
a unique invariant measure (see for instance Da Prato and Zabczyk [8], E [9], Hairer
and Mattingly [19] among many others). In this case we then need to study numer-
ical schemes that are able to capture the long time statistical properties of infinite
dimensional (PDE) random (for the noise) dynamical systems. Besides issues that
are parallel to the deterministic case, new questions arises such as the form of the
noise as well as the magnitude etc. Of course random dynamical systems emerge in
many other contexts including the important application of modeling model errors.
We refrain from surveying works in this area.

Second, the global in time energy stability result that is rigorously proved here
imposes a time-step restriction (2.18) although it is of the same order (in terms of the
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dependence on the viscosity) as that for the first order scheme that we investigated
earlier [17]. We believe that some kind of time-step restriction is needed due to the
explicit treatment of the advection term. It would be interesting to find out the best
possible time-step restriction for small ν (we need to set f to the order of ν if we
are interested in having a meaningful small ν asymptotics). In practice, an on-the-fly
criterion may be used to ensure the boundedness of the solution within the discrete
L2 norm for instance.

Third, we have investigated the periodic boundary and one particular efficient
second order in time discretization only. It would be interesting to study the case
with the physically more interesting no-slip boundary condition, as well as other effi-
cient implicit–explicit (IMEX) schemes such as treating the advection term explicitly
using classical second order linear multistep approach, Crank–Nicolson leap frog type
approach, other spatial discretization, as well as higher order in time schemes. We note
that long time stable energy schemes do exist according to Gottlieb and Wang [18].
However, it is not clear if those schemes are able to capture long time statistical prop-
erties since the modified energy used to show their stability depends on the time-step,
and the induced norm is not equivalent to the standard L2 norm. Higher order BDF
schemes may not be desirable due to the lack of A-stability [20].

Last but not the least, we would like to point out that the related three dimensional
problem is completely open at this time.

Acknowledgments This work is supported in part by grants from the National Science Foundation, and
a Modern Applied Mathematics 111 project at Fudan University from the Chinese MOE.

Appendix A: Wente type estimates

We recall here a few Wente type estimates from [17] that are applicable to our doubly
periodic setting. Original estimate of the Jacobian term (essentially H−1 norm) goes
back to Wente [53]. L2 norm of the Jacobian in the case with homogeneous Dirichlet
boundary condition can be found in Kozono and Taniuchi [28], as well as Kim [27].

Lemma 3 There exists an absolute constant Cw ≥ 1 such that

‖∇⊥ψ · ∇φ‖H−1 ≤ Cw‖ψ‖H1‖φ‖H1 , ∀ψ ∈ Ḣ1
per , φ ∈ Ḣ1

per (�), (5.1)

‖∇⊥ψ · ∇φ‖H−1 ≤ Cw‖ψ‖H2‖φ‖L2 , ∀ψ ∈ Ḣ2
per , φ ∈ L̇2(�), (5.2)

‖∇⊥ψ · ∇φ‖L2 ≤ Cw‖ψ‖H2‖φ‖H1 , ∀ψ ∈ Ḣ2
per , φ ∈ Ḣ1

per (�), (5.3)

‖∇⊥ψ · ∇φ‖L2 ≤ Cw‖ψ‖H1‖φ‖H2 , ∀ψ ∈ Ḣ1
per , φ ∈ Ḣ2

per (�), (5.4)

‖∇⊥ψ · ∇φ‖H1 ≤ Cw‖ψ‖H2‖φ‖H2 , ∀ψ, φ ∈ Ḣ2
per (�). (5.5)

Appendix B: A discrete Gronwall type inequality for two step iterations

Lemma 4 Let {gn} be a non-negative sequence. Suppose there exist constants ε >
0, β > 0, λ ∈ (0, 1) such that
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gn+1 ≤ λ

1 + ε
gn + 1 − λ

1 + ε
gn−1 + βε

1 + ε
, ∀n ≥ 1. (5.6)

Then we have, for γ = 1+ε/2
1+ε < 1, and n ≥ 2,

gn+1 ≤ γ max{gn, gn−1, 2β}, (5.7)

gn+1 ≤ γ max{γ � n−1
2 �g2, γ � n−1

2 �g1, 2β}. (5.8)

where �·� denotes the floor function (the biggest integer bounded by).

Proof The proof is a straightforward induction based on whether n is even or odd. We
leave it to the interested reader. 	
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