135,935 research outputs found

    Heavily Irradiated N-in-p Thin Planar Pixel Sensors with and without Active Edges

    Full text link
    We present the results of the characterization of silicon pixel modules employing n-in-p planar sensors with an active thickness of 150 μ\mathrm{\mu}m, produced at MPP/HLL, and 100-200 μ\mathrm{\mu}m thin active edge sensor devices, produced at VTT in Finland. These thin sensors are designed as candidates for the ATLAS pixel detector upgrade to be operated at the HL-LHC, as they ensure radiation hardness at high fluences. They are interconnected to the ATLAS FE-I3 and FE-I4 read-out chips. Moreover, the n-in-p technology only requires a single side processing and thereby it is a cost-effective alternative to the n-in-n pixel technology presently employed in the LHC experiments. High precision beam test measurements of the hit efficiency have been performed on these devices both at the CERN SpS and at DESY, Hamburg. We studied the behavior of these sensors at different bias voltages and different beam incident angles up to the maximum one expected for the new Insertable B-Layer of ATLAS and for HL-LHC detectors. Results obtained with 150 μ\mathrm{\mu}m thin sensors, assembled with the new ATLAS FE-I4 chip and irradiated up to a fluence of 4×\times1015neq/cm2^{15}\mathrm{n}_{\mathrm{eq}}/\mathrm{cm}^2, show that they are excellent candidates for larger radii of the silicon pixel tracker in the upgrade of the ATLAS detector at HL-LHC. In addition, the active edge technology of the VTT devices maximizes the active area of the sensor and reduces the material budget to suit the requirements for the innermost layers. The edge pixel performance of VTT modules has been investigated at beam test experiments and the analysis after irradiation up to a fluence of 5×\times1015neq/cm2^{15}\mathrm{n}_{\mathrm{eq}}/\mathrm{cm}^2 has been performed using radioactive sources in the laboratory.Comment: Proceedings for iWoRiD 2013 conference, submitted to JINS

    Thin n-in-p planar pixel sensors and active edge sensors for the ATLAS upgrade at HL-LHC

    Full text link
    Silicon pixel modules employing n-in-p planar sensors with an active thickness of 200 μ\mum, produced at CiS, and 100-200 μ\mum thin active/slim edge sensor devices, produced at VTT in Finland have been interconnected to ATLAS FE-I3 and FE-I4 read-out chips. The thin sensors are designed for high energy physics collider experiments to ensure radiation hardness at high fluences. Moreover, the active edge technology of the VTT production maximizes the sensitive region of the assembly, allowing for a reduced overlap of the modules in the pixel layer close to the beam pipe. The CiS production includes also four chip sensors according to the module geometry planned for the outer layers of the upgraded ATLAS pixel detector to be operated at the HL-LHC. The modules have been characterized using radioactive sources in the laboratory and with high precision measurements at beam tests to investigate the hit efficiency and charge collection properties at different bias voltages and particle incidence angles. The performance of the different sensor thicknesses and edge designs are compared before and after irradiation up to a fluence of 1.4×1016neq/cm21.4\times10^{16}n_{eq}/cm^{2}.Comment: In proceedings of the 10th International Conference on Position Sensitive Detectors, PSD10 201

    Thermal response of large area high temperature superconducting YBaCuO infrared bolometer

    Get PDF
    Thermal analysis of large area high temperature superconducting infrared detector operating in the equilibrium mode (bolometer) was performed. An expression for the temperature coefficient beta=1/R(dR/dT) in terms of the thermal conductance and the thermal time constant of the detector were derived. A superconducting transition edge bolometer is a thermistor consisting of a thin film superconducting YBaCuO evaporated into a suitable thermally isolated substrate. The operating temperature of the bolometer is maintained close to the midpoint of the superconducting transition region where the resistance R has a maximum dynamic range. A detector with a strip configuration was analyzed and an expression for the temperature rise (delta T) above the ambient due to a uniform illumination with a source of power density P(sub i) was calculated. An expression for the thermal responsivity of the detector was derived using the thermal diffusion analysis with appropriate boundary conditions. It was found that the thermal responsibility depends upon the spatial modulation frequency and the angular frequency of the incoming radiation. The problem of the thermal cross talk between different detector elements was addressed. In the case of monolithic HTS detector array with a row of square elements of dimensions 2a and CCD or CID readout electronics the thermal spread function was derived for different spacing between elements. This analysis can be critical for future design and applications of large area focal plane arrays as broad band optical detectors made of granular thin films HTS YBaCuO

    Testing sTGC with small angle wire edges for the ATLAS New Small Wheel Muon Detector Upgrade

    Full text link
    The LHC upgrade scheduled for 2018 is expected to significantly increase the accelerator's luminosity, and as a result the radiation background rates in the ATLAS Muon Spectrometer will increase too. Some of its components will have to be replaced in order to cope with these high rates. Newly designed small-strip Thin Gap chambers (sTGC) will replace them at the small wheel region. One of the differences between the sTGC and the currently used TGC is the alignment of the wires along the azimuthal direction. As a result, the outermost wires approach the detector's edge with a small angle. Such a configuration may be a cause for various problems. Two small dedicated chambers were built and tested in order to study possible edge effects that may arise from the new configuration. The sTGC appears to be stable and no spark have been observed, yet some differences in the detector response near the edge is seen and further studies should be carried out.Comment: ANIMMA 2015 Conference proceedings, 20-24 April 2015, Lisbon, Portuga

    Performance evaluation of thin active-edge planar sensors for the CLIC vertex detector

    Get PDF
    Thin planar silicon sensors with a pitch of 55μm, active edge and various guard-ring layouts are investigated,using two-dimensional finite-element T-CAD simulations. The simulation results have been compared toexperimental data, and an overall good agreement is observed. It is demonstrated that the 50μm thick active-edge planar silicon sensors with floating guard-ring or without guard-ring can be operated fully efficiently upto the physical edge of the sensor. The simulation findings are used to identify suitable sensor designs forapplication in the high-precision vertex detector of the future CLIC linear e+^{+}e^{-} collider

    Optimization of transition edge sensor arrays for cosmic microwave background observations with the South Pole Telescope

    Get PDF
    In this paper, we describe the optimization of transition-edge-sensor (TES) detector arrays for the third-generation camera for the South Pole Telescope. The camera, which contains ~16 000 detectors, will make high-angular-resolution maps of the temperature and polarization of the cosmic microwave background. Our key results are scatter in the transition temperature of Ti/Au TESs is reduced by fabricating the TESs on a thin Ti(5 nm)/Au(5 nm) buffer layer and the thermal conductivity of the legs that support our detector islands is dominated by the SiOx dielectric in the microstrip transmission lines that run along the legs

    Performance of irradiated thin n-in-p planar pixel sensors for the ATLAS Inner Tracker upgrade

    Full text link
    The ATLAS collaboration will replace its tracking detector with new all silicon pixel and strip systems. This will allow to cope with the higher radiation and occupancy levels expected after the 5-fold increase in the luminosity of the LHC accelerator complex (HL-LHC). In the new tracking detector (ITk) pixel modules with increased granularity will implement to maintain the occupancy with a higher track density. In addition, both sensors and read-out chips composing the hybrid modules will be produced employing more radiation hard technologies with respect to the present pixel detector. Due to their outstanding performance in terms of radiation hardness, thin n-in-p sensors are promising candidates to instrument a section of the new pixel system. Recently produced and developed sensors of new designs will be presented. To test the sensors before interconnection to chips, a punch-through biasing structure has been implemented. Its design has been optimized to decrease the possible tracking efficiency losses observed. After irradiation, they were caused by the punch-through biasing structure. A sensor compatible with the ATLAS FE-I4 chip with a pixel size of 50x250 μ\mathrm{\mu}m2^{2}, subdivided into smaller pixel implants of 30x30 μ\mathrm{\mu}m2^{2} size was designed to investigate the performance of the 50x50 μ\mathrm{\mu}m2^{2} pixel cells foreseen for the HL-LHC. Results on sensor performance of 50x250 and 50x50 μ\mathrm{\mu}m2^{2} pixel cells in terms of efficiency, charge collection and electric field properties are obtained with beam tests and the Transient Current Technique
    corecore