55,252 research outputs found

    Maximum entropy generation in open systems: the Fourth Law?

    Full text link
    This paper develops an analytical and rigorous formulation of the maximum entropy generation principle. The result is suggested as the Fourth Law of Thermodynamics

    Paths and stochastic order in open systems

    Full text link
    The principle of maximum irreversible is proved to be a consequence of a stochastic order of the paths inside the phase space; indeed, the system evolves on the greatest path in the stochastic order. The result obtained is that, at the stability, the entropy generation is maximum and, this maximum value is consequence of the stochastic order of the paths in the phase space, while, conversely, the stochastic order of the paths in the phase space is a consequence of the maximum of the entropy generation at the stability

    Quantum Collapse and the Second Law of Thermodynamics

    Full text link
    A heat engine undergoes a cyclic operation while in equilibrium with the net result of conversion of heat into work. Quantum effects such as superposition of states can improve an engine's efficiency by breaking detailed balance, but this improvement comes at a cost due to excess entropy generated from collapse of superpositions on measurement. We quantify these competing facets for a quantum ratchet comprised of an ensemble of pairs of interacting two-level atoms. We suggest that the measurement postulate of quantum mechanics is intricately connected to the second law of thermodynamics. More precisely, if quantum collapse is not inherently random, then the second law of thermodynamics can be violated. Our results challenge the conventional approach of simply quantifying quantum correlations as a thermodynamic work deficit.Comment: 11 pages, 2 figure

    Entanglement Typicality

    Full text link
    We provide a summary of both seminal and recent results on typical entanglement. By typical values of entanglement, we refer here to values of entanglement quantifiers that (given a reasonable measure on the manifold of states) appear with arbitrarily high probability for quantum systems of sufficiently high dimensionality. We work within the Haar measure framework for discrete quantum variables, where we report on results concerning the average von Neumann and linear entropies as well as arguments implying the typicality of such values in the asymptotic limit. We then proceed to discuss the generation of typical quantum states with random circuitry. Different phases of entanglement, and the connection between typical entanglement and thermodynamics are discussed. We also cover approaches to measures on the non-compact set of Gaussian states of continuous variable quantum systems.Comment: Review paper with two quotes and minimalist figure

    Molecular modeling for physical property prediction

    Get PDF
    Multiscale modeling is becoming the standard approach for process study in a broader framework that promotes computer aided integrated product and process design. In addition to usual purity requirements, end products must meet new constraints in terms of environmental impact, safety of goods and people, specific properties. This chapter adresses the use of molecular modeling tools for the prediction of physical property usefull for chemical engineering practice
    • 

    corecore