1,151,900 research outputs found

    A Theory of Fault-Tolerant Quantum Computation

    Full text link
    In order to use quantum error-correcting codes to actually improve the performance of a quantum computer, it is necessary to be able to perform operations fault-tolerantly on encoded states. I present a general theory of fault-tolerant operations based on symmetries of the code stabilizer. This allows a straightforward determination of which operations can be performed fault-tolerantly on a given code. I demonstrate that fault-tolerant universal computation is possible for any stabilizer code. I discuss a number of examples in more detail, including the five-qubit code.Comment: 30 pages, REVTeX, universal swapping operation added to allow universal computation on any stabilizer cod

    Research in mathematical theory of computation

    Get PDF
    Research progress in the following areas is reviewed: (1) new version of computer program LCF (logic for computable functions) including a facility to search for proofs automatically; (2) the description of the language PASCAL in terms of both LCF and in first order logic; (3) discussion of LISP semantics in LCF and attempt to prove the correctness of the London compilers in a formal way; (4) design of both special purpose and domain independent proving procedures specifically program correctness in mind; (5) design of languages for describing such proof procedures; and (6) the embedding of ideas in the first order checker

    Theory and computation of covariant Lyapunov vectors

    Full text link
    Lyapunov exponents are well-known characteristic numbers that describe growth rates of perturbations applied to a trajectory of a dynamical system in different state space directions. Covariant (or characteristic) Lyapunov vectors indicate these directions. Though the concept of these vectors has been known for a long time, they became practically computable only recently due to algorithms suggested by Ginelli et al. [Phys. Rev. Lett. 99, 2007, 130601] and by Wolfe and Samelson [Tellus 59A, 2007, 355]. In view of the great interest in covariant Lyapunov vectors and their wide range of potential applications, in this article we summarize the available information related to Lyapunov vectors and provide a detailed explanation of both the theoretical basics and numerical algorithms. We introduce the notion of adjoint covariant Lyapunov vectors. The angles between these vectors and the original covariant vectors are norm-independent and can be considered as characteristic numbers. Moreover, we present and study in detail an improved approach for computing covariant Lyapunov vectors. Also we describe, how one can test for hyperbolicity of chaotic dynamics without explicitly computing covariant vectors.Comment: 21 pages, 5 figure
    corecore