1,151,900 research outputs found
A Theory of Fault-Tolerant Quantum Computation
In order to use quantum error-correcting codes to actually improve the
performance of a quantum computer, it is necessary to be able to perform
operations fault-tolerantly on encoded states. I present a general theory of
fault-tolerant operations based on symmetries of the code stabilizer. This
allows a straightforward determination of which operations can be performed
fault-tolerantly on a given code. I demonstrate that fault-tolerant universal
computation is possible for any stabilizer code. I discuss a number of examples
in more detail, including the five-qubit code.Comment: 30 pages, REVTeX, universal swapping operation added to allow
universal computation on any stabilizer cod
Research in mathematical theory of computation
Research progress in the following areas is reviewed: (1) new version of computer program LCF (logic for computable functions) including a facility to search for proofs automatically; (2) the description of the language PASCAL in terms of both LCF and in first order logic; (3) discussion of LISP semantics in LCF and attempt to prove the correctness of the London compilers in a formal way; (4) design of both special purpose and domain independent proving procedures specifically program correctness in mind; (5) design of languages for describing such proof procedures; and (6) the embedding of ideas in the first order checker
Theory and computation of covariant Lyapunov vectors
Lyapunov exponents are well-known characteristic numbers that describe growth
rates of perturbations applied to a trajectory of a dynamical system in
different state space directions. Covariant (or characteristic) Lyapunov
vectors indicate these directions. Though the concept of these vectors has been
known for a long time, they became practically computable only recently due to
algorithms suggested by Ginelli et al. [Phys. Rev. Lett. 99, 2007, 130601] and
by Wolfe and Samelson [Tellus 59A, 2007, 355]. In view of the great interest in
covariant Lyapunov vectors and their wide range of potential applications, in
this article we summarize the available information related to Lyapunov vectors
and provide a detailed explanation of both the theoretical basics and numerical
algorithms. We introduce the notion of adjoint covariant Lyapunov vectors. The
angles between these vectors and the original covariant vectors are
norm-independent and can be considered as characteristic numbers. Moreover, we
present and study in detail an improved approach for computing covariant
Lyapunov vectors. Also we describe, how one can test for hyperbolicity of
chaotic dynamics without explicitly computing covariant vectors.Comment: 21 pages, 5 figure
- …