5,920 research outputs found

    Self-Paced Learning: an Implicit Regularization Perspective

    Full text link
    Self-paced learning (SPL) mimics the cognitive mechanism of humans and animals that gradually learns from easy to hard samples. One key issue in SPL is to obtain better weighting strategy that is determined by minimizer function. Existing methods usually pursue this by artificially designing the explicit form of SPL regularizer. In this paper, we focus on the minimizer function, and study a group of new regularizer, named self-paced implicit regularizer that is deduced from robust loss function. Based on the convex conjugacy theory, the minimizer function for self-paced implicit regularizer can be directly learned from the latent loss function, while the analytic form of the regularizer can be even known. A general framework (named SPL-IR) for SPL is developed accordingly. We demonstrate that the learning procedure of SPL-IR is associated with latent robust loss functions, thus can provide some theoretical inspirations for its working mechanism. We further analyze the relation between SPL-IR and half-quadratic optimization. Finally, we implement SPL-IR to both supervised and unsupervised tasks, and experimental results corroborate our ideas and demonstrate the correctness and effectiveness of implicit regularizers.Comment: 12 pages, 3 figure

    Curriculum Dropout

    Full text link
    Dropout is a very effective way of regularizing neural networks. Stochastically "dropping out" units with a certain probability discourages over-specific co-adaptations of feature detectors, preventing overfitting and improving network generalization. Besides, Dropout can be interpreted as an approximate model aggregation technique, where an exponential number of smaller networks are averaged in order to get a more powerful ensemble. In this paper, we show that using a fixed dropout probability during training is a suboptimal choice. We thus propose a time scheduling for the probability of retaining neurons in the network. This induces an adaptive regularization scheme that smoothly increases the difficulty of the optimization problem. This idea of "starting easy" and adaptively increasing the difficulty of the learning problem has its roots in curriculum learning and allows one to train better models. Indeed, we prove that our optimization strategy implements a very general curriculum scheme, by gradually adding noise to both the input and intermediate feature representations within the network architecture. Experiments on seven image classification datasets and different network architectures show that our method, named Curriculum Dropout, frequently yields to better generalization and, at worst, performs just as well as the standard Dropout method.Comment: Accepted at ICCV (International Conference on Computer Vision) 201

    Simple to Complex Cross-modal Learning to Rank

    Get PDF
    The heterogeneity-gap between different modalities brings a significant challenge to multimedia information retrieval. Some studies formalize the cross-modal retrieval tasks as a ranking problem and learn a shared multi-modal embedding space to measure the cross-modality similarity. However, previous methods often establish the shared embedding space based on linear mapping functions which might not be sophisticated enough to reveal more complicated inter-modal correspondences. Additionally, current studies assume that the rankings are of equal importance, and thus all rankings are used simultaneously, or a small number of rankings are selected randomly to train the embedding space at each iteration. Such strategies, however, always suffer from outliers as well as reduced generalization capability due to their lack of insightful understanding of procedure of human cognition. In this paper, we involve the self-paced learning theory with diversity into the cross-modal learning to rank and learn an optimal multi-modal embedding space based on non-linear mapping functions. This strategy enhances the model's robustness to outliers and achieves better generalization via training the model gradually from easy rankings by diverse queries to more complex ones. An efficient alternative algorithm is exploited to solve the proposed challenging problem with fast convergence in practice. Extensive experimental results on several benchmark datasets indicate that the proposed method achieves significant improvements over the state-of-the-arts in this literature.Comment: 14 pages; Accepted by Computer Vision and Image Understandin

    Constrained Deep Networks: Lagrangian Optimization via Log-Barrier Extensions

    Full text link
    This study investigates the optimization aspects of imposing hard inequality constraints on the outputs of CNNs. In the context of deep networks, constraints are commonly handled with penalties for their simplicity, and despite their well-known limitations. Lagrangian-dual optimization has been largely avoided, except for a few recent works, mainly due to the computational complexity and stability/convergence issues caused by alternating explicit dual updates/projections and stochastic optimization. Several studies showed that, surprisingly for deep CNNs, the theoretical and practical advantages of Lagrangian optimization over penalties do not materialize in practice. We propose log-barrier extensions, which approximate Lagrangian optimization of constrained-CNN problems with a sequence of unconstrained losses. Unlike standard interior-point and log-barrier methods, our formulation does not need an initial feasible solution. Furthermore, we provide a new technical result, which shows that the proposed extensions yield an upper bound on the duality gap. This generalizes the duality-gap result of standard log-barriers, yielding sub-optimality certificates for feasible solutions. While sub-optimality is not guaranteed for non-convex problems, our result shows that log-barrier extensions are a principled way to approximate Lagrangian optimization for constrained CNNs via implicit dual variables. We report comprehensive weakly supervised segmentation experiments, with various constraints, showing that our formulation outperforms substantially the existing constrained-CNN methods, both in terms of accuracy, constraint satisfaction and training stability, more so when dealing with a large number of constraints
    • …
    corecore