7 research outputs found

    Theories for TC0 and Other Small Complexity Classes

    Full text link
    We present a general method for introducing finitely axiomatizable "minimal" two-sorted theories for various subclasses of P (problems solvable in polynomial time). The two sorts are natural numbers and finite sets of natural numbers. The latter are essentially the finite binary strings, which provide a natural domain for defining the functions and sets in small complexity classes. We concentrate on the complexity class TC^0, whose problems are defined by uniform polynomial-size families of bounded-depth Boolean circuits with majority gates. We present an elegant theory VTC^0 in which the provably-total functions are those associated with TC^0, and then prove that VTC^0 is "isomorphic" to a different-looking single-sorted theory introduced by Johannsen and Pollet. The most technical part of the isomorphism proof is defining binary number multiplication in terms a bit-counting function, and showing how to formalize the proofs of its algebraic properties.Comment: 40 pages, Logical Methods in Computer Scienc

    On Rules and Parameter Free Systems in Bounded Arithmetic

    Get PDF
    We present model–theoretic techniques to obtain conservation results for first order bounded arithmetic theories, based on a hierarchical version of the well known notion of an existentially closed model.Ministerio de Educación y Ciencia MTM2005-0865

    Existentially Closed Models and Conservation Results in Bounded Arithmetic

    Get PDF
    We develop model-theoretic techniques to obtain conservation results for first order Bounded Arithmetic theories, based on a hierarchical version of the well-known notion of an existentially closed model. We focus on the classical Buss' theories Si2 and Ti2 and prove that they are ∀Σbi conservative over their inference rule counterparts, and ∃∀Σbi conservative over their parameter-free versions. A similar analysis of the Σbi-replacement scheme is also developed. The proof method is essentially the same for all the schemes we deal with and shows that these conservation results between schemes and inference rules do not depend on the specific combinatorial or arithmetical content of those schemes. We show that similar conservation results can be derived, in a very general setting, for every scheme enjoying some syntactical (or logical) properties common to both the induction and replacement schemes. Hence, previous conservation results for induction and replacement can be also obtained as corollaries of these more general results.Ministerio de Educación y Ciencia MTM2005-08658Junta de Andalucía TIC-13

    Short Propositional Refutations for Dense Random 3CNF Formulas

    Full text link
    Random 3CNF formulas constitute an important distribution for measuring the average-case behavior of propositional proof systems. Lower bounds for random 3CNF refutations in many propositional proof systems are known. Most notably are the exponential-size resolution refutation lower bounds for random 3CNF formulas with Ω(n1.5ϵ)\Omega(n^{1.5-\epsilon}) clauses [Chvatal and Szemeredi (1988), Ben-Sasson and Wigderson (2001)]. On the other hand, the only known non-trivial upper bound on the size of random 3CNF refutations in a non-abstract propositional proof system is for resolution with Ω(n2/logn)\Omega(n^{2}/\log n) clauses, shown by Beame et al. (2002). In this paper we show that already standard propositional proof systems, within the hierarchy of Frege proofs, admit short refutations for random 3CNF formulas, for sufficiently large clause-to-variable ratio. Specifically, we demonstrate polynomial-size propositional refutations whose lines are TC0TC^0 formulas (i.e., TC0TC^0-Frege proofs) for random 3CNF formulas with n n variables and Ω(n1.4) \Omega(n^{1.4}) clauses. The idea is based on demonstrating efficient propositional correctness proofs of the random 3CNF unsatisfiability witnesses given by Feige, Kim and Ofek (2006). Since the soundness of these witnesses is verified using spectral techniques, we develop an appropriate way to reason about eigenvectors in propositional systems. To carry out the full argument we work inside weak formal systems of arithmetic and use a general translation scheme to propositional proofs.Comment: 62 pages; improved introduction and abstract, and a changed title. Fixed some typo

    Theories for TC0 and Other Small Complexity Classes

    No full text
    We present a general method for introducing finitely axiomatizable "minimal"two-sorted theories for various subclasses of P (problems solvable inpolynomial time). The two sorts are natural numbers and finite sets of naturalnumbers. The latter are essentially the finite binary strings, which provide anatural domain for defining the functions and sets in small complexity classes.We concentrate on the complexity class TC^0, whose problems are defined byuniform polynomial-size families of bounded-depth Boolean circuits withmajority gates. We present an elegant theory VTC^0 in which the provably-totalfunctions are those associated with TC^0, and then prove that VTC^0 is"isomorphic" to a different-looking single-sorted theory introduced byJohannsen and Pollet. The most technical part of the isomorphism proof isdefining binary number multiplication in terms a bit-counting function, andshowing how to formalize the proofs of its algebraic properties.Comment: 40 pages, Logical Methods in Computer Scienc

    Theories for TC0 and Other Small Complexity Classes

    No full text
    We present a general method for introducing finitely axiomatizable "minimal" two-sorted theories for various subclasses of P (problems solvable in polynomial time). The two sorts are natural numbers and finite sets of natural numbers. The latter are essentially the finite binary strings, which provide a natural domain for defining the functions and sets in small complexity classes. We concentrate on the complexity class TC^0, whose problems are defined by uniform polynomial-size families of bounded-depth Boolean circuits with majority gates. We present an elegant theory VTC^0 in which the provably-total functions are those associated with TC^0, and then prove that VTC^0 is "isomorphic" to a different-looking single-sorted theory introduced by Johannsen and Pollet. The most technical part of the isomorphism proof is defining binary number multiplication in terms a bit-counting function, and showing how to formalize the proofs of its algebraic properties
    corecore