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1 Introduction

Bounded arithmetic theories are formal systems tailored to capture computa-
tional complexity classes. The foundational work in this area is [3], where S.
Buss introduced the families of theories Si

2 and T i
2 (i ≥ 0) and showed that they

can be considered as formal counterparts of the Polynomial Time Hierarchy PH .
Since then a variety of related systems have been introduced in order to deal
with other complexity classes. Among the fundamental results on these systems
two groups can be isolated: (a) characterizations of their computational strength,
mainly, by determining their Σb

i –definable functions ; and (b) relationship among
different axiomatizations, especially, conservation results.

Here we present model–theoretic methods to obtain both kinds of results for
restricted versions of Buss’s theories Si

2, T i
2 as well as for the Σb

i –replacement
scheme BBΣb

i . Systems Si
2 and T i

2 are axiomatized over a certain base theory by
axiom schemes expressing (respectively) the polynomial and the usual induction
principles restricted to Σb

i –formulas. We shall weaken these theories in two ways:
(1) by formalizing the corresponding induction or replacement principle as an
inference rule instead of an axiom scheme, or (2) by restricting the induction
schemes to parameter free formulas. In the first case we drop the axiom scheme
and consider the closure of the base theory under first order logic and nested
applications of the corresponding inference rule. In the second case we still deal
with an axiom scheme but now it is restricted to formulas with no other free
variables than the induction variable. While the effects of these restrictions have
been extensively investigated for fragments of Peano Arithmetic, it is not the
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case of Bounded Arithmetic. To our best knowledge, parameter free systems
have only been systematically studied by S. Bloch in the second part of his
thesis [2]. On the other hand, systems described by inference rules in the sense
above seldom appear in an explicit manner in the literature. A recent exception
is J. Johannsen and C. Pollett’s work [7], where the authors study the Δb

1–bit–
comprehension rule in connection with the complexity class TC0 of functions
computable by uniform threshold circuit families of polynomial size and constant
depth. Moreover, both in [2] and in [7] the analysis of those systems has been
carried out by means of proof–theoretic methods.

In this paper we shall develop a model–theoretic approach to the investigation
of these restricted systems. To this end, the key ingredient is the notion of
an ∃Π̂b

i –maximal model, a hierarchical version of the well known notion of an
existentially closed model. These models allow us to clarify the relationships
between the considered theories and their restricted versions in a particularly
simple way. Namely, if T denotes Si

2, T i
2 or BBΣb

i and T R (resp. T−) denotes
its inference rule (resp. parameter free) version, then (see Thm. 1 and Prop. 3)

– every ∃Π̂b
i –maximal model of T R is a model of T , and

– every theory extending T− is closed under the corresponding inference rule
and, so, every ∃Π̂b

i –maximal model of T−is a model of T .

From these facts we shall derive our main results (see Theorems 3 and 4): (1)
Si

2, T i
2 and BBΣb

i are ∀Σb
i –conservative over their inference rule versions; and

(2) Si
2, T i

2 are ∃∀Σb
i –conservative over their parameter free versions. As far as we

know, these results are new, and the ∃∀Σb
i –conservation results for parameter

free systems improve previous ∀Σb
i –conservation obtained in [2].

Finally, in Sect. 4 we apply the results obtained for Σb
1–replacement to the

analysis of the Δb
1–bit–comprehension rule Δb

1–BCR. This rule was introduced in
[7] to capture the complexity class TC0 and is the final refinement of a series of
theories introduced in [5,6,7] in the quest for natural theories for TC0. In [7] it is
proved that TC0 coincides with the Σb

1-definable functions of the system Δb
1–CR

given by the closure under Δb
1–BCR of a certain base theory; and that the Σb

0–
replacement scheme BBΣb

0 is ∀Σb
1–conservative over Δb

1–CR. Here, we prove
that TC0 also coincides with the Σ̂b

1–definable functions of the (apparently)
weaker system Δ̂b

1–CR and reformulate this system in terms of Σb
i –replacement

rule, obtaining as a corollary a new proof of the conservation result in [7]. Our
analysis is of independent interest in view of the open problems on Δb

1–BCR
posed in [7]; however, it also supports Johannsen–Pollett’s claim on Δb

1–CR
as a minimal natural theory for TC0 and makes more transparent the close
relationship between Δb

1–bit–comprehension and Σb
1–replacement.

2 Fragments of Bounded Arithmetic

In what follows we state some definitions and results on Bounded Arithmetic
that will be used through this paper (see [3,8] for more information). The first
order language of Bounded Arithmetic L2 comprises the usual language of Peano



Arithmetic {0, S, +, ·, ≤} together with five new function symbols: �x
2 �, |x|, #,

MSP and −•; where �x
2 � is x divided by 2 rounded down, |x| is the length of x in

binary notation, x#y is 2|x|·|y|, MSP (x, i) is � x
2i �, and x −• y is the subtraction

function. As usual, we also write x + 1 and 2|x| for Sx and 1#x, respectively.
Bounded formulas of L2 are classified in a hierarchy of sets Σb

i and Πb
i by

counting the alternations of bounded quantifiers (∃x ≤ t, ∀x ≤ t), ignoring
sharply bounded quantifiers (∃x ≤ |t|, ∀x ≤ |t|).

The induction axiom for ϕ(x), Iϕ, is the formula

ϕ(0) ∧ ∀x (ϕ(x) → ϕ(Sx)) → ∀xϕ(x)

The length induction axiom for ϕ(x), LINDϕ, and the double length induc-
tion axiom for ϕ(x), LLINDϕ, are obtained replacing the consequent of Iϕ by
∀xϕ(|x|) and ∀xϕ(||x||), respectively. The polynomial induction axiom for ϕ(x),
PINDϕ, is the formula

ϕ(0) ∧ ∀x (ϕ(�x

2
�) → ϕ(x)) → ∀xϕ(x)

In all cases, ϕ(x) may contain other free variables, which are called parameters.
On a par with these induction axioms, we consider induction inference rules.
The induction rule for ϕ(x), IR, is

ϕ(0) , ∀x (ϕ(x) → ϕ(Sx))
∀xϕ(x)

Similarly, PINDR, LINDR and LLINDR are defined.
BASIC denotes a finite set of open (quantifier–free) axioms specifying the

interpretations of the nonlogical symbols of L2. Following [7,10], our base theory
will be LIOpen = BASIC + {LINDϕ : ϕ is open}. As shown there, LIOpen
allows for simple definitions of tuple–encoding and sequence–encoding functions.
First, observe that there are L2–terms Bit(x, i) and LSP (x, i) returning the
value of the bit in the 2i position of the binary representation of x, and the
number consisting of the low i bits of x, respectively. The code of a sequence
{b0, b1, . . . , b|s|} with all its elements less than or equal to some a is the number
w < 4(a#2s) whose binary representation consists of a 1 followed by the binary
representations of the elements bi concatenated, each padded with zeroes to
length |a| (we shall write bd(a, s) for the bounding term 4(a#2s)). Thus, the L2–
term βa(w, i) := MSP (LSP (w, Si · |a|), i · |a|) returns the i–th element of such a
sequence. As for tuple–encoding, pairs are coded as 〈x, y〉 := (B+y)·2B+(B+x),
where B = 2|max(x,y)|. Then there is an open formula ispair(u) defining the range
of the function 〈x, y〉; and there are terms (u)0, (u)1 returning the left and right
coordinates from a coded pair (see [10] for details). Interestingly, the encoding
and decoding functions are all L2–terms so can be used in an L2–formula without
altering its quantifier complexity.

The theories we shall deal with are defined as follows. Let Γ be a set of
formulas and let E denote one of the schemes: I, PIND, LIND, LLIND. First,



the theory EΓ is LIOpen + {Eϕ : ϕ ∈ Γ}. Second, the fragment T + Γ–ER
is the closure of T under first order logic and nested applications of the E–rule
restricted to formulas in Γ , where T is an arbitrary L2–theory extending LIOpen.
Finally, EΓ− is LIOpen + {Eϕ : ϕ(x) ∈ Γ−}, where ϕ(x) ∈ Γ− means that x
is the only free variable occurring in ϕ.

With this terminology, the three classic families of Bounded Arithmetic the-
ories T i

2, Si
2 and Ri

2 correspond to IΣb
i , PINDΣb

i and LLINDΣb
i , respectively.

Let us remark, however, that L2 differs from the language of Buss’s original
theories Si

2 and T i
2, which does not include the MSP and −• symbols. In addi-

tion, Buss’s theories are axiomatized over BASIC instead of over LIOpen. But
these facts are inessential for sufficiently strong theories since both additional
functions are Σb

1–definable in Buss’s S1
2 , and this last theory implies LIOpen.

Bounded formulas of L2 are also classified in a hierarchy of sets strict Σb
i (=

Σ̂b
i ) and strict Πb

i (= Π̂b
i ), where no sharply bounded quantifier is allowed to

precede a quantifier that is not sharply bounded. Each Σb
i (resp. Πb

i ) formula
is equivalent to a Σ̂b

i (resp. Π̂b
i ) formula and the Π̂b

i−1–replacement scheme
BBΠ̂b

i−1 is a natural theory which proves that equivalence. The replacement or
bounded collection axiom for a formula ϕ(x, y) and a term t(x), BBϕ, is

∀x ≤ |s| ∃y ≤ t(x)ϕ(x, y) →
∃w < bd(t∗(|s|), s)∀x ≤ |s| (βt∗(|s|)(w, x) ≤ t(x) ∧ ϕ(x, βt∗(|s|))),

where t∗ denotes an L2–term canonically associated to t so that, provably in
LIOpen, t∗ is monotonic and t ≤ t∗ (see [7,10] for details).

BBΓ is LIOpen + {BBϕ : ϕ ∈ Γ}. Similarly, the inference rule versions
T + Γ–BBR are defined. In [10] it is shown that every Σb

i formula is provably
equivalent in BBΠ̂b

i−1 to a Σ̂b
i –formula, and that PINDΣ̂b

i implies BBΠ̂b
i−1

(i ≥ 1). As a consequence, the author obtains the equivalences T i
2 ≡ IΣ̂b

i and
Si

2 ≡ PINDΣ̂b
i ≡ LINDΣ̂b

i . Finally, reasoning as in the proof of result 3.2 in [5],
it is easy to show that BBΣ̂b

i+1 ≡ BBΠ̂b
i , and T + Σ̂b

i+1–BBR ≡ T + Π̂b
i –BBR.

3 On ∃Π̂b
i –Maximal Models and Conservation Results

In this section we present our methods for proving conservation results. To illus-
trate these methods, we prove that Si

2, T i
2 and BBΣb

i are ∀Σb
i –conservative over

their inference rule versions; and we use these results to show that Si
2 and T i

2 are
∃∀Σb

i –conservative over their parameter free versions. The main idea involves
a basic model–theoretic argument: we show that each (countable) model of the
weak theory has a Σ̂b

i –elementary extension to a model of the strong theory (B
is a Γ–elementary extension of A, A ≺Γ B, if A ⊆ B and, for all ϕ(�x) ∈ Γ
and �a ∈ A, it holds that A |= ϕ(�a) ⇐⇒ B |= ϕ(�a)). The key ingredient for this
construction is the notion of an ∃Π̂b

i –maximal model for a theory T .

Definition 1. Let A be a model of T . We say that A is ∃Π̂b
i –maximal for T if,

for each B |= T , it holds that A ≺Σ̂b
i

B =⇒ A ≺∃Π̂b
i

B.



This notion is a suitably modified version of the general concept of an existen-
tially closed model. The use of similar notions to prove conservation results for
arithmetic systems was presented in a general setting in J. Avigad’s [1] (our
work is inspired by the methods in that paper). First of all, observe that ∃Π̂b

i –
maximal models do exist. The proof is an easy modification of the standard
iterative argument to construct existentially closed models.

Proposition 1. Suppose T is ∀∃Π̂b
i –axiomatizable and A is a countable model

of T . Then there is B |= T such that A ≺Σ̂b
i

B and B is ∃Π̂b
i –maximal for T .

Next, we prove the main property of these models of interest to us: each ∃Π̂b
i –

maximal model for T + Σ̂b
i –ER also satisfies the corresponding scheme EΣ̂b

i . We
first need the following result (the proof is a standard compactness argument).

Proposition 2. Let A be ∃Π̂b
i –maximal for T , �a ∈ A and ϕ(�x,�v) ∈ Σ̂b

i and let
Π̂b

i –Diag(A) denote the set of all the Π̂b
i -formulas (with parameters in A) valid

in A. The following conditions are equivalent.

1. A |= ∀�x ϕ(�x,�a).
2. There is θ(�a,�b) in Π̂b

i –Diag(A) satisfying T + θ(�a,�b) � ∀�x ϕ(�x,�a).

Theorem 1. Let E denote one of the following schemes: BB, I, PIND, LIND,
LLIND. If A is ∃Π̂b

i –maximal for T + Σ̂b
i –ER, then A |= EΣ̂b

i .

Proof. (Collection scheme): Assume A is ∃Π̂b
i –maximal for T + Σ̂b

i –BBR and
A |= ∀x ≤ |s| ∃y ≤ t ϕ(x, y, a), where ϕ(x, y, v) ∈ Σ̂b

i , a ∈ A and s, t are L2–
terms (for notational simplicity we omit the possible parameters in t, s). By
Proposition 2 there are b ∈ A and θ(v, u) in Π̂b

i such that A |= θ(a, b), and
(T +Σ̂b

i –BBR)+θ(a, b) � ∀x ≤ |s| ∃y ≤ t ϕ(x, y, a). So, T +Σ̂b
i –BBR � θ(v, u) →

∀x ≤ |s| ∃y ≤ t ϕ(x, y, v). Define δ(x, y, v, u) to be ¬θ(v, u) ∨ ϕ(x, y, v). Clearly,
δ is Σ̂b

i and T + Σ̂b
i –BBR proves the antecedent of the bounded collection axiom

for δ(x, y). Applying Σ̂b
i –BBR in A and taking v = a and u = b, we get

A |= ∃w < bd(t∗(|s|), s)∀x ≤ |s| (βt∗(|s|)(w, x) ≤ t ∧ δ(x, βt∗(|s|)(w, x), a, b))

Since A |= θ(a, b), A |= δ(x, y, a, b) → ϕ(x, y, a) and hence the consequent of the
bounded collection axiom for δ(x, y, a) is true in A.
(Induction schemes): We only write the proof for the usual induction scheme I,
the remaining cases being analogous. Assume A is ∃Π̂b

i –maximal for T + Σ̂b
i –IR.

To prove that A |= IΣ̂b
i , assume A |= ϕ(0, a) ∧ ∀x (ϕ(x, a) → ϕ(x + 1, a)),

where ϕ(x, v) ∈ Σ̂b
i and a ∈ A. We must show A |= ∀xϕ(x, a). Put ϕ(x, v) as

∃y ≤ t(x, v)ϕ0(x, y, v), where ϕ0(x, y, v) ∈ Π̂b
i−1 and t(x, v) is a term. By prenex

operations, the antecedent of the induction axiom for ϕ can be reexpressed as

∀x∀y [ϕ(0, a) ∧ (¬(y ≤ t(x, a)) ∨ ¬ϕ0(x, y, a) ∨ ϕ(x + 1, a))]

Let us denote by ψ(x, y, a) the Σ̂b
i –formula in brackets [ ] above. Since A is ∃Π̂b

i –
maximal for T + Σ̂b

i –IR and A |= ∀x, y ψ(x, y, a), by Proposition 2 it follows that



there are b ∈ A and θ(v, u) ∈ Π̂b
i satisfying A |= θ(a, b), and (T + Σ̂b

i –IR) +
θ(a, b) � ∀x, y ψ(x, y, a). Hence,

T + Σ̂b
i –IR � θ(v, u) → (ϕ(0, v) ∧ ∀x (ϕ(x, v) → ϕ(x + 1, v)))

Now define δ(x, v, u) to be the Σ̂b
i –formula ¬θ(v, u)∨ϕ(x, v). Clearly, T +Σ̂b

i –IR
proves the antecedent of the induction axiom for δ(x, v, u). By applying Σ̂b

i –IR,
we get A |= ∀x, v, u δ(x, v, u). In particular, A |= ∀x (¬θ(a, b) ∨ ϕ(x, a)), and
hence A |= ∀xϕ(x, a) since θ(a, b) is true in A. �

Combining Proposition 1 and Theorem 1, we can derive our ∀Σb
i –conservation

results. The proof is in two steps. First, we prove this conservation result only
for ∀Σ̂b

i –formulas. Second, we show how to extend it to general ∀Σb
i –formulas.

Theorem 2. Let E denote one of the following schemes: BB, I, PIND, LIND,
LLIND and let T be a ∀∃Π̂b

i –axiomatizable theory. Then T + EΣ̂b
i is ∀Σ̂b

i –
conservative over T + Σ̂b

i –ER.

Proof. By contradiction, assume T + EΣ̂b
i � ϕ but T + Σ̂b

i –ER �� ϕ, where
ϕ ∈ ∀Σ̂b

i . Let A be a countable model of (T + Σ̂b
i –ER) + ¬ϕ. Since T is

∀∃Π̂b
i –axiomatizable, so is T + Σ̂b

i –ER (for E = BB, recall that Σ̂b
i –BBR and

Π̂b
i−1–BBR are equivalent rules). By Proposition 1 there is B |= T + Σ̂b

i –ER
such that A ≺Σ̂b

i
B and B is ∃Π̂b

i –maximal for T + Σ̂b
i –ER. From Theorem 1 it

follows that B |= EΣ̂b
i . Hence, B |= T + EΣ̂b

i + ¬ϕ, which is a contradiction. �

Since T i
2 and Si

2 are ∀Σ̂b
i+1–axiomatizable, a first application of Theorem 2 is the

following strengthening of the well known facts that Si+1
2 implies T i

2 and Ri+1
2

implies Si
2, and of theorem 68 in [10] stating that BBΣ̂b

i+1 implies Si
2.

Corollary 1

1. LIOpen + Σ̂b
i+1–LINDR implies T i

2.
2. Both LIOpen + Σ̂b

i+1–LLINDR and LIOpen + Σ̂b
i+1–BBR imply Si

2.

To extend previous conservation result to ∀Σb
i –formulas, we need the following

lemma (the proof is by induction on the complexity of Σb
i –formulas).

Lemma 1. (i ≥ 1) Let ϕ(�v) ∈ Σb
i . There exists ϕ̂(�v) ∈ Σ̂b

i such that:
(1) BBΠ̂b

i−1 � ϕ(�v) ↔ ϕ̂(�v), and (2) BBΠ̂b
i−2 � ϕ̂(�v) → ϕ(�v).

(For i = 1, BBΠ̂b−1 denotes LIOpen.)

Theorem 3. Let E denote one of the following schemes: BB, I, PIND, LIND.
Then, LIOpen + Σ̂b

i –ER axiomatizes the ∀Σb
i –consequences of EΣb

i .

Proof. Assume EΣb
i � ∀�v ϕ(�v), where ϕ ∈ Σb

i . Let ϕ̂(�v) ∈ Σ̂b
i as in Lemma 1.

Since Si
2 implies BBΠb

i−1 (see [3]), EΣb
i implies BBΠb

i−1 and LIOpen+ Σ̂b
i –ER

implies BBΠb
i−2 by Corollary 1. Hence, EΣb

i � ∀�v ϕ̂(�v) and LIOpen+ Σ̂b
i –ER �

ϕ̂(�v) → ϕ(�v). So, this last theory proves ∀�v ϕ(�v) by Theorem 2. �



In what follows we deal with parameter free versions of T i
2 and Si

2. Notice that
there are two natural candidates for their parameter free counterparts: restricting
the axiom scheme to parameter free Σb

i –formulas, or to strict parameter free Σb
i

formulas. Since we are interested in conservation results over these theories, we
choose the weakest ones to make the results stronger. That is, we fix T i,−

2 ≡
IΣ̂b,−

i and Si,−
2 ≡ PINDΣ̂b,−

i . We derive the conservation theorems from our
previous work on inference rules. The key observation is the following:

Proposition 3

1. If T implies T i,−
2 then T is closed under Σ̂b

i –IR.
2. (i ≥ 1) If T implies PINDΣb,−

1 + Si,−
2 then T is closed under Σ̂b

i –PINDR.

Proof. (1): Assume T proves ϕ(0, v) ∧ ∀x (ϕ(x, v) → ϕ(x + 1, v)), where ϕ(x, v)
is Σ̂b

i . We must show T � ∀v ∀xϕ(x, v). The idea is to codify the parameter v
and the induction variable x in a single variable u using the pairing function and
to apply IΣ̂b,−

i . To this end, define θ(u) to be the following Σ̂b
i –formula:

(ispair(u) ∧ (u)0 < (u)1 ∧ ispair((u)1)) → ϕ((u)0, (u)1,1)

Trivially, T � θ(0) since ¬ ispair(0). Let us see that T � ∀u (θ(u) → θ(u + 1)).
Reasoning in T , we assume θ(u) and (ispair(u′) ∧ (u′)0 < (u′)1 ∧ ispair((u′)1),
where u′ = u + 1. We must show ϕ((u′)0, (u′)1,1).

Case 1: (u′)0 = 0. Then ϕ(0, (u′)1,1) since T � ∀v ϕ(0, v).
Case 2: (u′)0 > 0. Since (u′)0 < (u′)1, max((u′)0 − 1, (u′)1) = (u′)1 and hence
by the definition of the pairing function u codifies the pair 〈(u′)0 − 1, (u′)1〉
(that is, (u)0 = (u′)0 − 1 and (u)1 = (u′)1). Consequently, from θ(u) it follows
ϕ((u′)0 − 1, (u′)1,1) and hence ϕ((u′)0, (u′)1,1) since T � ϕ(x, v) → ϕ(x + 1, v).

From the induction axiom for θ(u) (available in T since it contains IΣ̂b,−
i ) it

follows that T � ∀u θ(u). To show T � ∀v∀xϕ(x, v), observe that ϕ(x, v) can be
inferred from θ(〈x, 〈x, v〉〉).
(2): The proof is similar to that of 1 but now we need to define a new tuple–
encoding function compatible with the PIND axioms: roughly speaking, if u
codifies the pair (x,�v) and x > 0, then �u

2 � must codify the pair (�x
2 �, �v). In [2]

Bloch proposed the following encoding function satisfying that property:

[x, v, z] = u ≡
{

|v| < z2 ≤ |u| < (z + 1)2 ∧
u = Concat(v + 2min(z2,|u|), x + 2|x|)

where Concat(x, y) = x · 2|y|−
•1 + y −• 2|y|−

•1. In words, we pad v to length z2

and concatenate the result with x (notice that the Concat function operates
on bit–strings rather than on binary numbers, that is, Concat(1x, 1y) = 1xy).
Observe that the encoding function [x, v, z] itself is not total, but it is total for
all z sufficiently large. Namely, as shown in [2], PINDΣb,−

1 proves:

(a) |x| ≤ 2z ∧ |v| < z2 → ∃!u ([x, v, z] = u),
(b) u > 0 → ∃!x, v, z ≤ u ([x, v, z] = u), and
(c) u = [x, v, z] ∧ x > 0 → �u

2 � = [�x
2 �, v, z]



Equipped with this encoding function, we can infer the PIND axiom for the
Σ̂b

i –formula ϕ(x, v) from the PIND axiom for the (parameter free) Σ̂b
i –formula

θ(u) ≡ u > 0 → ∃x, v, z ≤ u ([x, v, z] = u ∧ ϕ(x, v)). �

Observe that from the previous result and Theorem 2 it immediately follows
that T i+1,−

2 implies T i
2 and that PINDΣb,−

1 + Si+1,−
2 implies Si

2.

Theorem 4

1. T i
2 is ∃∀Σb

i –conservative over T i,−
2 .

2. (i ≥ 1) Si
2 is ∃∀Σb

i –conservative over PINDΣb,−
1 + Si,−

2 .

Proof. Using Lemma 1 as in Theorem 3, it suffices to show ∃∀Σ̂b
i –conservation.

We only write the proof of 1. Assume ϕ is an ∃∀Σ̂b
i –sentence such that T i

2 � ϕ

but T i,−
2 �� ϕ. Then T = T i,−

2 + ¬ϕ is consistent and ∀∃Π̂b
i –axiomatizable. Let

A be an ∃Π̂b
i –maximal model for T . By Proposition 3, T is closed under Σ̂b

i –IR.
Hence, A |= T +T i

2 by Theorem 1. So, A |= T i
2 +¬ϕ, which is a contradiction. �

As for parameter free BBΣb
i , we can prove that BBΣb

i is ∃∀Σb
i –conservative

over UBBΣ̂b
i as in Theorem 4 (UBBϕ is obtained quantifying universally the

parameters of ϕ(x, y) in both the antecedent and the consequent of BBϕ).

4 On Replacement and Bit–Comprehension Rules

In this section we shall study an inference rule closely tied to Σb
1–replacement:

Δb
1–bit–comprehension rule. This rule was defined in [7] as follows:

Δb
1–BCR :

ϕ(x) ↔ ψ(x)
∃y < 2|u| ∀x < |u| (Bit(y, x) = 1 ↔ ϕ(x))

where ϕ(x) ∈ Σb
1 and ψ(x) ∈ Πb

1. In [7], it is proved that BBΣb
0 (denoted there by

C0
2 ) is a ∀Σb

1–conservative extension of Δb
1–CR (the theory LIOpen+Δb

1–BCR).
So, in view of Theorem 3, it is natural to investigate the relationship between
Δb

1–BCR and Σ̂b
1–BBR. In this section, we consider the apparently weaker rule

for strict formulas Δ̂b
1–BCR and show that LIOpen + Δ̂b

1–BCR (denoted in
what follows by Δ̂b

1–CR) is equivalent to LIOpen + Σ̂b
1–BBR, see Theorem 5. In

fact, over LIOpen, the four rules Σb
1–BBR, Σ̂b

1–BBR, Δb
1–BCR and Δ̂b

1–BCR are
equivalent and, by Theorem 3, provide axiomatizations of the ∀Σb

1–consequences
of BBΣb

1. Moreover, in [9], answering a question posed in [7], it is shown that
Δb

1–CR is finitely axiomatizable; so, a finite number of nested applications of
any of the rules above axiomatizes the ∀Σb

1–consequences of BBΣb
1. However,

Problem 1. Is LIOpen+Σ̂b
1–BBR equivalent to [LIOpen; Σ̂b

1–BBR], the closure
of LIOpen under first order logic and unnested applications of Σ̂b

1–BBR?

Our work suggests a positive answer to Problem 1 since this is the case for the
analogous problem for collection rule in the usual language of Peano Arithmetic.

Now we prove that LIOpen + Σ̂b
1–BBR and Δ̂b

1–CR are equivalent. Our work
also provides a new proof of Johannsen–Pollett’s conservation theorem.



Firstly, observe that it can be easily shown that LIOpen + Σ̂b
1–BBR is closed

under Δ̂b
1-BCR. On the other hand, since C0

2 coincides with BBΣb
0, by Theorem

2, C0
2 is ∀Σ̂b

1 conservative over LIOpen+Σ̂b
1–BBR. So, in order to simultaneously

get the equivalence of LIOpen + Σ̂b
1–BBR and Δ̂b

1–CR, and Johannsen–Pollett’s
theorem, it suffices to prove that Δ̂b

1–CR is closed under Σ̂b
1–BBR. Next two

lemmas are the key ingredients of the proof. The first one provides a weak form
of replacement available in Δ̂b

1–CR (the proof is straightforward and we omit
it). The second one is a selection (or witnessing) principle for Δ̂b

1–CR.

Lemma 2. Let ϕ(x, y) ∈ Σ̂b
1 such that Δ̂b

1–CR � ∀x ≤ |s| ∃!y ≤ t ϕ(x, y). Then

Δ̂b
1–CR � ∃w < bd(t∗(|s|), s)∀x ≤ |s| (βt∗(|s|)(w, x) ≤ t ∧ ϕ(x, βt∗(|s|)(w, x)))

Lemma 3. Let ϕ(x, y) ∈ Σ̂b
1 such that Δ̂b

1–CR � ∀x∃y ≤ t ϕ(x, y), then there
exists ψ(x, y) ∈ Σ̂b

1 such that Δ̂b
1–CR proves

(1) ∀x∃!y ≤ t ψ(x, y), and (2) ∀x∀y (ψ(x, y) → ϕ(x, y))

Proof. (Sketch) The proof we present here leans upon an analysis of the class of
Σ̂b

1–definable functions Δ̂b
1–CR. We refine corollary 1 in [7] and prove that TC0

is the class of Σ̂b
1–definable functions of Δ̂b

1–CR. The basic result is a machine–
independent characterization of TC0 given by Clote and Takeuti in [4]:

Let BF be the set of basic functions {o, s0, s1, #, ×, | · |}∪{Πn
i : 1 ≤ i ≤ n},

where o(x) = 0, s0(s) = 2x, s1(x) = 2x + 1, |x| = �log2(x + 1)�, x#y = 2|x|·|y|,
× denotes the usual product and Πn

i (x1, . . . , xn) = xi.
Given g : ωn → ω and h0, h1 : ωn+1 → {0, 1}, a function f is defined by

concatenation recursion on notation (CRN) from g, h0 and h1 if

f(0, �x) = g(�x)
f(2n, �x) = 2 · f(n, �x) + h0(n, �x), provided n �= 0

f(2n + 1, �x) = 2 · f(n, �x) + h1(n, �x)

Clote and Takeuti proved that TC0 is the smallest class of functions containing
BF and closed under composition and CRN. In order to show that every function
in TC0 is Σ̂b

1–definable in Δ̂b
1–CR, we show a stronger technical result:

For each function f ∈ TC0 there exist a formula ψ(�x, y, z1, . . . , zn) ∈ Σb
0

and terms t(x), t1(x, y), t2(x, y, z1), . . . , tn(x, y, z1, . . . , zn−1) such that the Σ̂b
1–

formula ∃z1 ≤ t1 . . . ∃zn ≤ tn ψ(x, y, �z) defines f in the standard model and

LIOpen + Δ̂b
1–BCR � ∀�x∃!y ≤ t ∃!z1 ≤ t1 . . .∃!zn ≤ tn ψ(x, y, �z)

The proof proceeds by induction, using Clote–Takeuti’s characterization of
TC0. The claim obviously holds for the basic functions and for f defined by
composition from functions verifying the claim. So it suffices to prove the result
for functions defined by CRN and this can be done as in theorem 4 in [7].

It is not difficult to verify that, if f ∈ TC0 is defined by CRN from g, h0 and h1
then the proof of the previous technical result provide Σ̂b

1–formulas defining the
functions involved and such that the relations stated by the recursion equations
of CRN can be proved in Δ̂b

1–CR. Bearing this fact in mind, we can introduce
a universally axiomatized and conservative extension of Δ̂b

1–CR, denoted by



CRNA. This universal theory can be defined in such a way that the functions in
TC0 are defined by terms of CRNA. In this way we can prove that every function
Σ̂b

1–definable in Δ̂b
1–CR is in TC0 by a typical application of Herbrand’s theorem.

The whole argument is very similar to the Herbrand analyses of Si
2 developed

by W. Sieg in [11].
Finally, we derive Lemma 3 from Herbrand’s theorem applied to CRNA. ��

Theorem 5. The theories Δ̂b
1–CR and LIOpen + Σb

1–BBR are equivalent and
axiomatize the class of the ∀Σb

1–consequences of C0
2 .

Proof. Observe that C0
2 extends LIOpen + Σb

1–BBR, which in turn extends
Δ̂b

1–CR; so, since LIOpen + Σb
1–BBR is ∀Σb

1–axiomatized, it suffices to prove
that C0

2 is ∀Σb
1–conservative over Δ̂b

1–CR. Finally, by Theorem 3 it is enough to
show that Δ̂b

1–CR is closed under Σ̂b
1–BBR. Let us work in Δ̂b

1–CR.
Let ϕ(x, y) ∈ Σ̂b

1 and t, s be terms such that ∀x ≤ |s| ∃y ≤ t ϕ(x, y). Define
θ(x, y) ∈ Σ̂b

1 to be (x > |s| ∧ y = 0) ∨ (x ≤ |s| ∧ ϕ(x, y)). Then ∀x∃y ≤ t θ(x, y)
and, by Lemma 3, there is ψ(x, y) ∈ Σ̂b

1 such that (1) ∀x∃!y ≤ t ψ(x, y), and (2)
∀x∀y (ψ(x, y) → θ(x, y)). By (1) and Lemma 2, it holds that

∃w < bd(t∗(|s|), s)∀x ≤ |s| (βt∗(|s|)(w, x) ≤ t ∧ ψ(x, βt∗(|s|)(w, x)))

Hence, ∃w < bd(t∗(|s|), s)∀x ≤ |s| (βt∗(|s|)(w, x) ≤ t ∧ ϕ(x, βt∗(|s|)(w, x))), since,
by (2) and the definition of θ, we have x ≤ |s| ∧ ψ(x, y) → ϕ(x, y). ��
Corollary 2. (Johannsen–Pollett) C0

2 is ∀Σb
1–conservative over Δb

1–CR.
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